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Combining Time-Frequency Signal Analysis 
and Machine Learning with an Example in 

Gravitational-Wave Detection
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Summary
This paper presents a method for classifying noisy, non-stationary 

signals in the time-frequency domain using artificial intelligence. The pre-
processed time-series signals are transformed into time-frequency repre-
sentations (TFRs) from Cohen’s class resulting in the TFR images, which 
are used as input to the machine learning algorithms. We have used three 
state-of-the-art deep-learning 2D convolutional neural network (CNN) 
architectures (ResNet-101, Xception, and EfficientNet). The method was 
demonstrated on the challenging task of detecting gravitational-wave 
(GW) signals in intensive real-life, non-stationary, non-Gaussian, and 
non-white noise. The results show excellent classification performance 
of the proposed approach in terms of classification accuracy, area under 
the receiver operating characteristic curve (ROC AUC), recall, precision, 
F1 score, and area under the precision-recall curve (PR AUC). The novel 
method outperforms the baseline machine learning model trained on the 
time-series data in terms of all considered metrics. The study indicates 
that the proposed technique can also be extended to various other applica-
tions dealing with non-stationary data in intensive noise.
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1. Introduction to Time-Frequency Signal Analysis

A signal is most commonly presented as a time-dependent function that can be con-
sidered a representation characterized by perfect resolution in the time domain with no 
direct insight into frequency content. The second most common signal representation 
is the signal’s frequency spectrum. It is obtained by calculating a Fourier transform on 
the time-series signal; however, on the other hand, it provides no information on time 
instants when frequency components occurred in the original signal (their time localiza-
tion), thus providing only perfect frequency resolution, losing time resolution [1, 2]. 

The Fourier transform, and its inverse are defined as follows:

where x(t)  is the original signal in the time domain, X(f)  is the Fourier transform 
of the original signal, t is the time variable, f is the frequency variable, ℱ  is the Fourier 
transform, and ℱ−1 is its inverse.

Time-frequency (TF) signal analysis is a concept that considers both the time and 
frequency dimensions, allowing for tracking changes in both dimensions at the same 
time, thus leading to time-frequency representations (TFRs), which display the signal in 
a 2-dimensional (2D) TF plane [3, 4]. 

A basic TFR that overcomes some shortcomings of the Fourier transform is the 
short-time Fourier transform (STFT), obtained by performing the Fourier transform on 
the analyzed signal inside a sliding time window of a finite duration [5]. For each seg-
ment, the signal is assumed to be of a known duration, resulting in the signal spectrum 
as a function of time [6]. The STFT can thus be defined as follows:

where τ is the time instant center of the windowing function, and h(t)  is the moving 
windowing function.

The STFT is a linear TFR with well-localized components in time and frequency; 
however, a known shortcoming of the STFT is the resolution limits in time and fre-
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quency domains (due to the fixed-sized window width). It is known that shorter time 
windows provide better time resolution at the cost of a worse frequency resolution; on 
the other hand, wider time windows provide better frequency resolution at the cost of a 
worse time resolution. Thus, it is impossible to adjust the time and frequency resolutions 
independently when using a single fixed-size windowing function due to Heisenberg’s 
uncertainty principle [7, 8, 9].

However, by using a TFR, we get a better insight into both the time and frequency 
domains simultaneously when compared to only time-domain or frequency-domain rep-
resentation. Thus, the TFR decomposes the original time series signal in a way that 
shows the time instants of changes in frequency content, or rather, it is now possible to 
monitor and track signals with non-stationary content and to estimate its instantaneous 
frequency [10, 11, 12, 13]. 

Several groups or classes of the TFRs exist; the three most important ones are Co-
hen’s, affine, and reassigned classes. Cohen’s class is covariant to shifts of the signal in 
the time and frequency domain [14]. On the other hand, the affine class is covariant to 
time shifts (or rather translations of the signal) and scaling (or rather dilations of the sig-
nal), and are thus known as time-scale representations. In certain cases, a TFR can both 
belong to Cohen’s and affine classes at the same time, depending on its properties. One 
example of a TFR that belongs to Cohen’s class has already been mentioned: the STFT. 
The most common example of an affine class TFR is the continuous wavelet transform, 
which linearly expands the signal onto wavelets, which are a set of analysis functions 
that can be shifted in time and scaled accordingly to fit the original signal [15].

Both Cohen’s and affine classes are comprised of mostly bilinear and quadratic TFRs, 
which due to their non-linear nature, as a consequence, manifest the presence of cross-
terms or interference terms in the TF plane [16]. Due to these phenomena, the TFR’s un-
derstandability and ease of interpretation are hindered because of the overlapping of signal 
components with the cross-terms in the TF domain (which also can take on negative values 
due to the bilinear nature of those interactions). However, the quadratic or bilinear TFRs 
show improved TF resolution and concentration of auto-terms, despite introducing cross-
terms [17, 18], and offer a valuable insight into the spectral nature of the signal, the number 
of frequency components, their time localization, and frequency modulation.

The reassignment class (sometimes referred to as the reassignment method) is a 
local post-processing method for the TFRs; its goal is to improve the concentration or 
sharpness of the signal by refocusing the energy distribution, thus achieving better read-
ability of the TFR. The reassignment method is applicable to any bilinear TFR, includ-
ing Cohen’s and affine classes, thus suppressing the interferences and improving the 
TF localization of the original TFR to which it was applied. The reassignment method 
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is the second step of a two-step procedure where, first, the interfering components are 
smoothed out and reduced by using a 2D low-pass filter kernel; however, this also causes 
the smearing of the rest of the signal in the TF plane. Next, the second step is squeezing, 
where the signal terms are refocused after the smoothing procedure [19]. This method 
requires both the magnitude and phase of the observed signal, unlike the usual TFRs that 
require just the magnitude. The phase is necessary due to the fact that the components 
representing maximum contribution to the signal have slow phase variation with regard 
to time (thus, they can be detected by observing the phase’s variation rate) [20].

The rest of the paper is structured as follows: Section 2 presents some TFRs from 
Cohen’s class used as input for machine learning based classification. Section 3 describes 
three state-of-the-art deep learning architectures used for the application of gravitational 
wave (GW) detection given in this paper. Section 4 provides a short introduction to the 
gravitational wave detection problem and presents the results of the proposed procedure 
combining the TFRs and machine learning for their detection in intensive noise. Paper 
conclusions are found in Section 5.

2. Cohen’s Class of Time-Frequency Representations

Besides the already mentioned STFT, being a linear TFR, there are other TFRs in 
Cohen’s class that are bilinear or quadratic. The simplest one is the Spectrogram (SP), 
which is obtained as the squared modulus of the STFT [5, 21, 22]:

The Spectrogram (SP), providing low interference terms in the TFR, is not able to 
provide good resolution both in time and frequency at the same time. This is due to the 
fixed-sized window and Heisenberg’s uncertainty principle, as mentioned before.

In order to reduce the number of cross-terms between positive and negative frequen-
cies, most TFRs have adopted analytic forms of signals. The analytic signal is a complex 
signal obtained from the real-valued input signal by removing the negative frequencies 
from the spectral content (the real part is the original signal, and the imaginary part is the 
Hilbert transform of the original signal) as follows [4, 23]:

where y(t)  is the complex-valued analytic form of the signal, x(t)  is the real-
valued signal, and ℋ  is the Hilbert transform.

𝑆𝑆𝑃𝑃𝑥𝑥(𝑡𝑡, 𝑓𝑓) = |∫ 𝑥𝑥(τ)ℎ(τ − 𝑡𝑡)𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑
∞

−∞
τ|

2
. (3) 

𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝑗𝑗ℋ{𝑥𝑥(𝑡𝑡)} , (4) 
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Next, we present a list of other TFRs used in the paper. Let us start with the Mar-
genau-Hill (MH) distribution, which is one of the general Cohen’s class quadratic repre-
sentations, defined as the real part of the product of two STFTs with independently sized 
time windows, as follows [18, 24]:

where ℜ  denotes the real part, h is the first and g is the second windowing function, 
the STFTh(t, f)  and STFTg

∗(t, f)  are the STFTs for the respective windows, and ∗  is 
the complex conjugate.

The two independent windows approach allows for them to be individually chosen, 
so that they guarantee adequate time and frequency resolution, thus providing an im-
provement in resolution with regard to the SP. However, the drawback of this approach is 
the possibility of generating artifacts when the window lengths are significantly different 
in size, and when the signal contains components of similar frequencies [16].

The Wigner-Ville (WV) is another one of the fundamental TFRs for Cohen’s class. 
It is defined as the Fourier transform of the signals’ autocorrelation function as follows 
[25, 26]:

where 𝑦𝑦  is the analytic associate of the original real-valued signal. The WV im-
proves the auto-term resolution and improves the TF resolution; however, it suffers from 
cross-terms when applied to multi-component signals due to its quadratic nature. The 
interference terms that affect the WV make a visual interpretation of representation dif-
ficult. As a way to reduce the WV interference terms, several modified methods were 
developed [27, 28], some of which we will showcase next.

The Pseudo Wigner-Ville (PWV) is obtained by applying a time windowing function 
h(t)  on the autocorrelation of the WV; it is defined as follows [27]:

The time windowing acts as filtering in the frequency smoothing that attenuates the 
cross-terms oscillating in the frequency direction. However, this decreases the frequency 
resolution for the auto-terms, while the cross-terms oscillating in the time direction re-
main unattenuated.

𝑀𝑀𝐻𝐻𝑥𝑥(𝑡𝑡, 𝑓𝑓) = ℜ{𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇ℎ(𝑡𝑡, 𝑓𝑓)𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑔𝑔
∗(𝑡𝑡, 𝑓𝑓)} = ∫ 1

2
∞

−∞
(𝑥𝑥(𝑡𝑡 + τ)𝑥𝑥∗(𝑡𝑡) + 𝑥𝑥(𝑡𝑡)𝑥𝑥∗(𝑡𝑡 − τ))𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑τ , (5) 

 

𝑊𝑊𝑉𝑉𝑦𝑦(𝑡𝑡, 𝑓𝑓) = ∫ 𝑦𝑦 (𝑡𝑡 + τ
2) 𝑦𝑦∗ (𝑡𝑡 − τ

2) 𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑
∞

−∞
τ , (6) 

 

𝑃𝑃𝑃𝑃𝑉𝑉𝑦𝑦(𝑡𝑡, 𝑓𝑓) = ∫ ℎ(τ)𝑦𝑦 (𝑡𝑡 + τ
2) 𝑦𝑦∗ (𝑡𝑡 − τ

2) 𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑
∞

−∞
τ . (7) 
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The Smoothed Pseudo Wigner-Ville (SPWV) is obtained by applying an additional 
smoothing window g  on the autocorrelation of the PWV; it is defined as follows [27, 29]:

The SPWV allows for the independent control of the two windowing function 
lengths h(t)  and 𝑔𝑔(𝑡𝑡)  respectively, allowing for the independent control of the smooth-
ing in both the time and frequency domains. However, a tradeoff exists between the TF 
resolution and the attenuation of interference terms.

Furthermore, suppressing the interference terms of the WV is possible by using ker-
nel functions, which are often designed in the 2D Doppler-lag (ν, τ ) domain, also known 
as the ambiguity domain (where the Doppler variable (𝜈𝜈 ) represents the frequency shift 
and is obtained as the Fourier transform of the time (t ) variable) [4]. Defining an ambi-
guity function in the ambiguity domain allows for the applied Doppler-lag kernel func-
tions to be perceived as the WV filtering operations [4]. The TFRs that are obtained 
through kernel smoothing of the WV, or rather designed to remove interference terms, 
are referred to as the reduced-interference distribution (RIDs) group of the TFRs; we will 
next define some of them.

The Born-Jordan distribution (BJ) uses a narrowband kernel in the ambiguity do-
main that contains the sinc function, which can also be viewed as the Fourier transform 
of the first B-Spline [30]. The BJ provides good cross-term suppression at the cost of a 
reduced resolution of the auto-terms [31]; it moreover preserves time and frequency sup-
ports [32]. The BJ is defined as follows [29, 33]:

The BJ effectively suppresses the noise and damps the so-called “ghost-frequencies”.
The Choi-Williams distribution (CW) uses an exponential kernel with a width of σ  

as a way to suppress the cross-terms. The choice of kernel width 𝜎𝜎  allows for the control 
of the suppression of interferences and resolution trade-off, with smaller values helping 
to reduce cross-terms and larger values leading to an increase in auto-term resolution. 
The CW is defined as follows [22, 34, 35]:

𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉𝑦𝑦(𝑡𝑡, 𝑓𝑓) = ∫ ℎ(τ) ∫ 𝑔𝑔(𝑢𝑢 − 𝑡𝑡)𝑦𝑦 (𝑢𝑢 + τ
2) 𝑦𝑦∗ (𝑢𝑢 − τ

2) 𝑑𝑑𝑑𝑑
∞

−∞

∞

−∞
𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑τ . (8) 

 

𝐵𝐵𝐽𝐽𝑦𝑦(𝑡𝑡, 𝑓𝑓) = ∫ 1
|τ|
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−∞
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2) 𝑦𝑦∗ (𝑢𝑢 − τ
2) 𝑑𝑑𝑑𝑑

𝑡𝑡+|τ|
2

𝑡𝑡−|τ|
2

𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑τ . (9) 
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16𝜏𝜏2𝑦𝑦 (𝑡𝑡 + 𝑢𝑢 + 𝜏𝜏
2) 𝑦𝑦∗ (𝑡𝑡 + 𝑢𝑢 − 𝜏𝜏

2) 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . (10) 
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However, the CW does not provide the possibility of independent control over the 
amount of time and frequency smoothing. The weighing function does not decay along 
the axis in the ambiguity domain because, otherwise, it would not satisfy the marginal 
properties. Thus, the CW can only filter the cross-terms that result from interacting com-
ponents differing both in time and frequency, or rather it shows higher interference levels 
for signals whose frequency or time supports overlap [36].

The Butterworth distribution (BUD) is a generalized extension of the CW that pro-
vides better preservation of auto-term resolution and better suppresses the low-frequen-
cy cross-terms [37]. The BUD is defined as follows [38, 39]:

Its kernel acts as a 2D low-pass filter in the ambiguity domain that has variable pass-
band and transition region parameters [40, 41].

The Zhao-Atlas-Marks distribution (ZAM) reduces the interference terms while si-
multaneously providing good time and frequency resolution using a cone-shaped kernel. 
The ZAM is obtained by frequency smoothing the BJ, as follows [42, 43]:

Finally, a RID with its kernel based on the first kind Bessel function (RIDB) is de-
fined as follows [34, 38, 44]:

The RIDB maintains high TF resolution due to preserving auto-terms while sup-
pressing cross-terms; this is due to the low-pass filtering characteristics of the used Bes-
sel kernel.

When applying a kernel based on binomial coefficients to a RID, we obtain a RID-
BN, defined as follows [4, 45]:

𝐵𝐵𝐵𝐵𝐷𝐷𝑦𝑦(𝑡𝑡, 𝑓𝑓) = ∫ ∫ √σ
2|τ|

∞

−∞
𝑒𝑒−|𝑢𝑢|√σ

|τ| 𝑦𝑦 (𝑡𝑡 + 𝑢𝑢 + τ
2) 𝑦𝑦∗ (𝑡𝑡 + 𝑢𝑢 − τ

2) 𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑𝑑𝑑
∞

−∞
𝑑𝑑τ . (11) 

 

𝑍𝑍𝑍𝑍𝑀𝑀𝑦𝑦(𝑡𝑡, 𝑓𝑓) = ∫ ℎ(τ) ∫ 𝑦𝑦 (𝑢𝑢 + τ
2) 𝑦𝑦∗ (𝑢𝑢 − τ

2) 𝑑𝑑𝑑𝑑
𝑡𝑡+|τ|

2

𝑡𝑡−|τ|
2

∞

−∞
𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑τ . (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝑦𝑦(𝑡𝑡, 𝑓𝑓) = ∫ ℎ(τ) ∫ 2𝑔𝑔(𝑢𝑢)
π|τ|

𝑡𝑡+|τ|

𝑡𝑡−|τ|
√1 − (𝑢𝑢 − 𝑡𝑡

τ )
2∞

−∞
𝑦𝑦 (𝑢𝑢 + τ

2) 𝑦𝑦∗ (𝑢𝑢 − τ
2) 𝑑𝑑𝑑𝑑 𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑τ . (13) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑦𝑦(𝑡𝑡, 𝑓𝑓) = ∑ ∑ 1
22|τ|+1

+|τ|

𝑢𝑢=−|τ|
( 2|𝜏𝜏| + 1

|𝜏𝜏| + 𝑢𝑢 + 1 )
∞

τ=−∞
𝑦𝑦[𝑡𝑡 + 𝑢𝑢 + τ] 𝑦𝑦∗[𝑡𝑡 + 𝑢𝑢 − τ]𝑒𝑒−𝑗𝑗4π𝑓𝑓τ . (14) 
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If a kernel based on the Hanning window is used in the RID, we obtain a RIDH, 
defined as follows [33]:

Finally, if a triangular window-based kernel is used in the RID, we obtain the RIDT, 
defined as follows [33, 34]:

Next, we present the deep-learning models used to classify the above described TFR 
images.

3. Deep Learning Methods

Machine learning, as a part of artificial intelligence, has experienced rapid and in-
tensive development in recent years [46]. Deep learning, in particular, has spread to 
various research fields and commercial applications. This subfield of machine learning 
denotes the algorithms based on computational architectures called deep artificial neural 
networks (ANNs) and able to extract features from the provided input data automati-
cally. They use them for the learning process, thus eliminating the need for expert-based 
knowledge and manual feature selection specific for each field [47, 48]. Convolutional 
neural networks (CNNs) represent a type of the ANNs specially designed to utilize mul-
tidimensional input data, and today provide state-of-the-art performances in image clas-
sification and recognition tasks [47, 48].

Therefore, due to their above-described mathematical properties beneficial for non-
stationary signal analysis, the 2D TFRs have a great potential to be applied in the deep 
learning-based classification of non-stationary signals by combining them with the 2D 
CNNs used in pattern recognition. Three state-of-the-art CNN architectures suitable for 
application with the input data in the form of the TFR images are described next: ResNet, 
Xception, and EfficientNet.

3.1. ResNet

The ResNet CNN architectures reduce the impact of the vanishing gradient problem 
on the training process by utilizing the residual learning concept [49]. Thus, very deep 

𝑅𝑅𝑅𝑅𝑅𝑅𝐻𝐻𝑦𝑦(𝑡𝑡, 𝑓𝑓) = ∫ ℎ(τ) ∫ 𝑔𝑔(𝑢𝑢)
|τ|

+|τ|
2

−|τ|
2

∞

−∞
(1 + cos (2π𝑢𝑢

τ )) 𝑦𝑦 (𝑡𝑡 + 𝑢𝑢 + τ
2) 𝑦𝑦∗ (𝑡𝑡 + 𝑢𝑢 − τ

2) 𝑑𝑑𝑑𝑑 𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑τ . (15) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑦𝑦(𝑡𝑡, 𝑓𝑓) = ∫ ℎ(τ) ∫ 2𝑔𝑔(𝑢𝑢)
|τ| (1 − 2|𝑢𝑢|

|τ| )
+|τ|

2

−|τ|
2

∞

−∞
𝑦𝑦 (𝑡𝑡 + 𝑢𝑢 + τ

2) 𝑦𝑦∗ (𝑡𝑡 + 𝑢𝑢 − τ
2) 𝑑𝑑𝑑𝑑 𝑒𝑒−𝑗𝑗2π𝑓𝑓τ𝑑𝑑τ . (16) 
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CNN models can be trained, achieving increased classification accuracy. Residual learn-
ing is based on the shortcut (residual) connections that transfer the input to the convolu-
tional layers to their output, and then perform the element-wise addition of these feature 
maps [49]. In this way, non-linear CNN layers do not directly learn the underlying map-
ping, but rather learn residual functions [49].

The standard residual block consists of two layers with standard convolutions, an 
intermediate, and an output ReLU activation function. In addition, a bottleneck residual 
block, consisting of 1 × 1 , 3 × 3 , and 1 × 1  convolutional layers, two intermediate, 
and an output ReLU activation, is used in ResNet architectures, containing more than 50  
layers to reduce the computational cost [49].

Fig. 1. ResNet-101 architecture. 

Sl. 1. ResNet-101 arhitektura.
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ResNet-50, ResNet-101, and ResNet-152 are the most often used ResNet architectures, 
with the number in the name indicating the number of layers. The ResNet- 101 architec-
ture is depicted in Fig. 1. The two initial layers of this architecture, including the 7 × 7  
convolutional layer with 64  channels and the 3 × 3  max-pooling layer, are followed by 
the four groups of different numbers (3 , 4 , 23 , and 3 ) of the described bottleneck residual 
blocks with 256 , 512 , 1024 , and 2048  output channels, respectively. Finally, the glob-
al average pooling layer is placed before the fully connected and output layers.

3.2. Xception

The Xception [50] is a CNN architecture utilizing the previously-mentioned shortcut 
connections, and the depthwise separable convolutions [51] that consist of the point-

Fig. 2. Xception architecture. 

Sl. 2. Xception arhitektura.
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wise (1 × 1 ) and the depthwise convolution. The pointwise convolution maps the cross-
channel correlations by projecting the input channels onto a new channel space, while 
the depthwise convolution maps the spatial correlations of the channels by performing a 
spatial convolution on each channel independently [50]. The depthwise separable convo-
lutions significantly reduce computational costs compared to the standard convolutions 
[52] while simultaneously providing high accuracy [50].

The Xception architecture, consisting of the entry, middle, and exit flows, is illustrat-
ed by a schematic overview in Fig. 2. This architecture contains 36  convolutional layers 
divided into 14  modules, where all modules, except for the first and the last one, have 
linear residual connections [50]. The first two layers perform the standard, and the others 
the depthwise separable 3 × 3 convolutions, followed by the batch normalization [50, 
53]. Additionally, 3 × 3 max-pooling layers with a stride of 2  are utilized too [50]. The 
output (classification) layer may optionally be preceded by a fully connected layer [50].

3.3. EfficientNet

The EfficientNet architecture utilizes the compound scaling procedure, in which all 
three CNN dimensions (including network width, depth, and resolution) are scaled si-
multaneously by fixed values calculated based on the compound coefficient specifying 
how much extra computational capacity is available [54]. The EfficientNet-B0 represents 
a novel base CNN architecture obtained by a multi-objective neural architecture search 
optimizing floating-point operations per second and accuracy [54, 55]. The architecture 
is characterized by the main building block called mobile inverted bottleneck convolu-
tion (MBConv) [52, 55] and squeeze-and-excitation optimization [56].

The MBConv was introduced in the MobileNetV2 CNN architecture developed for 
mobile platforms to reduce memory requirements [52]. This inverted residual block con-
tains linear bottleneck layers and depthwise separable convolutions, i.e. the pointwise 
convolution first increases the number of channels of the input data, which is then fol-
lowed by the depthwise convolution and another pointwise convolution that again re-
duces the number of channels to match the input [52]. Bottleneck layers are connected 
by shortcut connections, and do not utilize non-linear activations [52].

The squeeze-and-excitation module performs the feature map recalibration by sup-
pressing those with less information and emphasizing the more informative ones [56]. 
The squeeze stage of this procedure includes performing global average pooling on each 
channel [56]. In the excitation stage, the obtained channel descriptors are fed to two fully 
connected layers containing the ReLU and sigmoid activation functions, respectively 
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[56]. Finally, the learned weights obtained at the output of these layers are utilized to 
rescale the input feature maps [56].

The EfficientNet-B0 CNN architecture is shown in Fig. 3. EfficientNet-B0 architec-
ture. The initial standard 3 × 3 convolutions with 32  output channels are followed by 
one 3 × 3 MBConv1 module with 16  output channels, two 3 × 3 MBConv6 modules 
with 24  channels, two 5 × 5 MBConv6 modules with 40  channels, three 3 × 3 MB-
Conv6 modules with 80  channels, three 5 × 5 MBConv6 modules with 112  channels, 
four 5 × 5 MBConv6 modules with 192  channels, and one 3 × 3 MBConv6 module 
with 320  channels [54]. Finally, the output layer is preceded by the standard 1 × 1 
convolution with 1280  channels and the global average pooling layer [54].

EfficientNet-B1 to B7 architectures are obtained by scaling up the base EfficientNet-
B0 CNN using different compound coefficient values [54]. These CNN architectures 
provide state-of-the-art classification performances while, at the same time, being sig-
nificantly faster and having considerably fewer parameters and operations than the com-
petitive architectures [54].

Next, we present a method combining the TFRs and deep learning models for non-
stationary GW signals classification in intensive noise.

Fig. 3. EfficientNet-B0 architecture. 

Sl. 3. EfficientNet-B0 arhitektura.
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4. The Application of the Proposed Method Combining the 
TFRs and Machine Learning to the GW Detection

4.1. An Introduction to the GW Detection

An example of combining the TFRs with the deep learning-based classification to non-
stationary signals is gravitational-wave (GW) detection. The GWs are defined as ripples 
in the space-time curvature, which propagate at the speed of light and are caused by mas-
sive accelerating objects, such as coalescing black holes [57]. Although Albert Einstein 
predicted their existence in 1916  within the general theory of relativity [58], the GWs 
were not experimentally detected until 2015 , when the Advanced Laser Interferometer 
Gravitational-Wave Observatory (LIGO) detectors [59] made the first direct observation of 
the compact binary coalescence GW signal originating from the binary black hole (BBH) 
merger [60]. This detection was immediately awarded the Nobel Prize in Physics in 2017,  
and it marked the beginning of intensive research in the GW data analysis.

Besides two Advanced LIGO detectors (Livingston, Louisiana, and Hanford, Wash-
ington) in the USA, the Advanced Virgo detector near Pisa, Italy, is run by the Euro-
pean Gravitational Observatory (EGO) [61, 62]. Moreover, two new detectors, including 
KAGRA in Japan and LIGO-India, are expected to join the observation network. The 
GW detectors are large Michelson interferometers with light-reflecting mirrors located 
at each end of the two orthogonal arms 4  km long in the Advanced LIGO detectors and 
3  km long in the Advanced Virgo detector [59, 61, 63]. The space-time strain caused by 
the GW coming to the Earth shortens one arm of the detector and simultaneously length-
ens the other. Thus produced difference in the arms’ lengths is measured as the phase 
difference of the two reflected laser beams, and the optical signal collected by the output 
photodetector is proportional to the amplitude of the GW strain [60].

The extremely small magnitudes of the GWs require exceptional measurement sen-
sitivity of the interferometers. However, despite state-of-the-art measurement and noise 
reduction equipment, various instrumental and environmental noise sources still signifi-
cantly impact the acquired GW measurements. Some of the most common instrumental 
noise sources include electrical power system harmonics, noise in electronic compo-
nents, thermal noise, quantum noise, and optical system noise [64]. On the other hand, 
some well-known environmental noise sources are seismic noise, vibration noise due to 
human activity, and electromagnetic noise [65, 66].

Therefore, the collected GW data are characterized by the noise that is non-station-
ary, non-white, and non-Gaussian [65]. Additionally, the magnitudes of the GWs are 
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much lower than the background noise, resulting in very low signal-to-noise ratio (SNR) 
values. Thus, detecting the GW signals is a complex and challenging task, requiring the 
development of specialized algorithms. There are three main categories of the existing 
approaches to the GW detection, including matched filtering [67, 68, 69], denoising 
methods [70, 71, 72], and machine learning-based detection [73].

Matched filtering-based search for a known signal consists of correlating the noisy 
GW data to a database of simulated waveform templates [74]. Although matched filtering-
based methods are used today in LIGO detectors, they are computationally expensive, re-
quire large waveform databases, and provide optimal performance only for Gaussian noise 
[75]. Furthermore, denoising methods are applied to the GW data to reduce the noise and 
can be beneficial for initial data processing. However, these methods ought to be coupled 
with other detection algorithms. Finally, machine learning has recently received increased 
interest in detecting different types of the GWs [73]. Nevertheless, these approaches have 
been primarily focused on classifying time-series [76, 77, 78] or spectrogram representa-
tions, unlike our method, which uses the TFRs from Cohen’s class [79, 80, 81].

4.2. The GW Detection from the TFRs Using Machine Learning

A method for detecting the GW signals in intensive noise based on utilizing quad-
ratic TFRs from Cohen’s class with 2D deep CNN architectures was proposed and devel-
oped by the authors of this paper in [82], and [83]. The flowchart of the proposed method 
and experimental setup is shown in Fig. 4. The procedure consisted of data preparation, 
deep learning models, and performance evaluation.

The data generation started with acquiring the real-life noise data from the Advanced 
LIGO detectors, which are used as background noise in the generated data examples. 
Using the actual LIGO noise containing detector glitches allowed the generation of the 
realistic GW dataset. The data were collected from the repositories at the Gravitational 
Wave Open Science Center (GWOSC) [84] for the O2 observing run [85], checked for 
the specific quality requirements, and downsampled to 2048  Hz.

The extensive simulations of the GW waveforms originating from the BBH merg-
ers were performed in parallel with LIGO data extraction, utilizing software packages 
LIGO Algorithm Library (LALSuite) [86], and PyCBC [69, 87]. The simulations were 
based on the effective-one-body waveform model SEOBNRv4 in the time domain [88], 
for which a parameter space was defined. These parameters were randomly chosen for 
each iteration of waveform simulations. The simulated waveforms were then multiplied 
by the one-sided Tukey window and projected onto the antenna patterns characteristic 
for the Advanced LIGO detectors, thus obtaining noise-free GW signals.



113

J. Lerga, N. Lopac, D. Bačnar, F. Hržić: Combining Time-Frequency Signal Analysis and Machine Learning...

Fig. 4. Experimental setup flowchart. 

Sl. 4. Dijagram toka eksperimentalnog postava.
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These signals were then injected into the background noise after being scaled to 
obtain the desired injection SNR, i.e. the desired network optimal matched-filter SNR 
(NOMF-SNR) [89, 90]. The NOMF-SNR was in the range of 8 − 30  dB, which cor-
responded to the values ranging from −123.46  to −2.27  dB according to the standard 
SNR definition for the raw, noisy time series.

The obtained time-series data examples were then preprocessed by applying the 
whitening procedure in the frequency domain [91] based on the local estimate of the 
noise amplitude spectral density (ASD) obtained by the Welch method [92], which was 
followed by high-pass filtering at 20  Hz. The data examples were then cropped to 0.5  
s length, sufficient to observe characteristic BBH chirp waveforms. Finally, 100 000  
time-series data examples were generated, with one half containing the GW signals in 
the background noise, and the other half containing only noise.

For illustration purposes, Fig. 5. An example of the time series containing only 
noise: (a) Raw noise; (b) Preprocessed noise provides a randomly chosen example of the 
generated time series containing only noise, where the raw data and the data after pre-
processing, i.e. whitening and high-pass filtering, are shown. Additionally, Fig. 6 gives 
an example of the time series containing a GW signal, with the NOMF-SNR of 19  dB, 
corresponding to the SNR of −77.76  dB, where the raw noise, the noise-free simulated 
GW signal, and the preprocessed noisy GW signal are shown. As seen in Fig. 6, the 
amplitudes of the GW signals are much lower than the noise amplitudes, making it very 
difficult to visually distinguish between the time-series examples with only noise and 
those containing GW signals.

Fig. 5. An example of the time series containing only noise: (a) Raw noise; (b) Preprocessed noise. 

Sl. 5. Primjer vremenskog niza koji sadrži samo šum: (a) Neobrađeni šum; (b) Šum nakon 
predobrade.
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Fig. 6. An example of the time series containing the GW signal in the noise (NOMF-SNR = 19 dB, 
SNR = -77.76 dB): (a) Raw noise; (b) GW signal without noise; (c) Preprocessed noisy GW signal. 

Sl. 6. Primjer vremenskog niza koji sadrži GW signal u šumu (NOMF-SNR = 19 dB, SNR = -77,76 
dB): (a) Neobrađeni šum; (b) GW signal bez šuma; (c) GW signal u šumu nakon predobrade.

In the next phase, the generated time series were used to obtain 12 previously de-
scribed TFRs from Cohen’s class, including SP, WV, PWV, SPWV, BJ, CW, BUD, ZAM, 
RIDB, RIDBN, RIDH, and RIDT. Prior to the TFR computation, analytic signals had 
been obtained by utilizing the Hilbert transform. In this way, 12 different TFR datasets 
were obtained, each with 100 000 TFRs, where each TFR contained the 0 − 0.5  s time 
range and the 0 − 1024  Hz frequency range. Fig. 7 provides the TFRs obtained from 
the whitened noise-only time series shown in Fig. 5. An example of the time series con-
taining only noise: (a) Raw noise; (b) Preprocessed noise. On the other hand, the com-
puted TFRs of the whitened time series containing the GW signal, whose plots are given 
in Fig. 6, are shown in Fig. 8. These figures show that the GW-generated chirp pattern 
can be more easily spotted in the TFRs than in the time-series representations.
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Fig. 7. The TFRs of the time-series example containing only noise: (a) SP; (b) WV; (c) PWV; (d) 
SPWV; (e) BJ; (f) CW; (g) BUD; (h) ZAM; (i) RIDB; (j) RIDBN; (k) RIDH; (l) RIDT. 

Sl. 7. TFR-ovi primjera vremenskog niza koji sadrži samo šum: (a) SP; (b) WV; (c) PWV; (d) SPWV; 
(e) BJ; (f) CW; (g) BUD; (h) ZAM; (i) RIDB; (j) RIDBN; (k) RIDH; (l) RIDT.
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Fig. 7. (cont.) The TFRs of the time-series example containing only noise: (a) SP; (b) WV; (c) PWV; 
(d) SPWV; (e) BJ; (f) CW; (g) BUD; (h) ZAM; (i) RIDB; (j) RIDBN; (k) RIDH; (l) RIDT. 

Sl. 7. (nast.) TFR-ovi primjera vremenskog niza koji sadrži samo šum: (a) SP; (b) WV; (c) PWV; (d) 
SPWV; (e) BJ; (f) CW; (g) BUD; (h) ZAM; (i) RIDB; (j) RIDBN; (k) RIDH; (l) RIDT.
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Fig. 8. The TFRs of the time-series example containing the GW signal in the noise (NOMF-SNR = 
19 dB, SNR = -77.76 dB): (a) SP; (b) WV; (c) PWV; (d) SPWV; (e) BJ; (f) CW; (g) BUD; (h) ZAM; (i) 

RIDB; (j) RIDBN; (k) RIDH; (l) RIDT. 

Sl. 8. TFR-ovi primjera vremenskog niza koji sadrži GW signal u šumu (NOMF-SNR = 19 dB, SNR 
= -77,76 dB): (a) SP; (b) WV; (c) PWV; (d) SPWV; (e) BJ; (f) CW; (g) BUD; (h) ZAM; (i) RIDB; (j) 

RIDBN; (k) RIDH; (l) RIDT.
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Fig. 8. (cont.) The TFRs of the time-series example containing the GW signal in the noise (NOMF-
SNR = 9 dB, SNR = -77.76 dB): (a) SP; (b) WV; (c) PWV; (d) SPWV; (e) BJ; (f) CW; (g) BUD; (h) 

ZAM; (i) RIDB; (j) RIDBN; (k) RIDH; (l) RIDT. 

Sl. 8. (nast.) TFR-ovi primjera vremenskog niza koji sadrži GW signal u šumu (NOMF-SNR = 19 
dB, SNR = -77,76 dB): (a) SP; (b) WV; (c) PWV; (d) SPWV; (e) BJ; (f) CW; (g) BUD; (h) ZAM; (i) 

RIDB; (j) RIDBN; (k) RIDH; (l) RIDT.
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The obtained TFRs were normalized and stored as 256 ×  256  grayscale PNG im-
ages. Each TFR dataset was then divided into the training, validation, and test subset, 
following the 70/15/15%  ratio. Next, the 12 datasets of the TFR images (a total of 1.2 
million images) were used as input to the deep learning classification algorithms based 
on the three 2D CNN architectures described in Section 3 (ResNet-101, Xception, and 
EfficientNet). Thus, 36 different TFR-CNN models were obtained. The overview of the 
classification procedure providing the probability that the input TFR contains the GW 
signal is depicted in Fig. 9.

Fig. 9. Deep CNN-based classification of the TFRs of the GW time series. 

Sl. 9. Klasifikacija TFR-ova GW vremenskog niza zasnovana na dubokim CNN.

The deep learning models were trained using the binary cross-entropy loss function 
and choosing optimal training parameters, including learning rate, optimizer algorithm, 
and batch size. Moreover, all models were trained from scratch, not relying on trans-
fer learning techniques. Finally, the performance of the trained TFR-CNN models was 
evaluated on the test dataset using several evaluation metrics. Additionally, their perfor-
mance was also compared to the baseline model trained on the original time series. For 
this purpose, an adapted 1D deep CNN model presented in [76] was used as a state-of-
the-art technique for detecting the GWs in noisy time series.

The study in [82, 83] reported very high classification performances of the pro-
posed method, with the values of the evaluation metrics in the following ranges: 
96.540 −  97.100%  

 

 for the classification accuracy, 0.98505 −  0.98854 

 

 for 
the area under the receiver operating characteristic (ROC) curve (ROC AUC), 
97.549 −  99.507%  

 

 for the precision, 94.147 −  95.867%  

 

 for the recall, 
96.459 −  97.029%  

 

 for the F1 score, and 0.98989 −  0.99195  

 

 for the area un-
der the precision-recall curve (PR AUC). Moreover, the proposed method outper-
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formed the baseline model by 3.393 −  3.953% 

 

, 1.718 −  2.067% 

 

, 0.349 −  2.307% 

 

, 
5.294 −  7.014% 

 

, 3.620 −  4.190% 

 

, and 1.269 −  1.475%  

 

 in terms of classification 
accuracy, ROC AUC, precision, recall, F1 score, and PR AUC, respectively. Further-
more, the excellent classification performance of the developed approach was also sup-
ported by additional, detailed metrics, including confusion matrices, ROC curves, and 
precision-recall curves. Finally, the statistical significance of the obtained results was 
confirmed by McNemar’s statistical significance test.

5. Conclusion

This paper presents a method for detecting low-intensity signals in intensive noise 
by combining the deep learning methods and the TFRs from Cohen’s class. The method 
was demonstrated on a challenging task of the GW detection. The experimental setup 
consists of data preparation, training and testing of deep learning models, and perfor-
mance evaluation. Real-life recordings were retrieved from LIGO detectors with and 
without the GW injections, allowing for testing the method in intensive real-life, non-
stationary, non-Gaussian, and non-white noisy scenarios, with the SNR ranging between 
-123.46 and -2.27 dB. Following the preprocessing procedure, 12 TFRs from Cohen’s 
class were calculated (SP, WV, PWV, SPWV, BJ, CW, BUD, ZAM, RIDB, RIDBN, 
RIDH, and RIDT), resulting in 1.2 million TFR images. These were then used as input 
to the three deep learning algorithms (ResNet-101, Xception, and EfficientNet). Each of 
the 36 obtained TFR-CNN models was trained and evaluated, delivering an excellent 
classification performance of the proposed technique, with the classification accuracy up 
to 97.100%, ROC AUC up to 0.98854, recall up to 95.867%, precision up to 99.507%, 
F1 score up to 97.029%, and PR AUC up to 0.99195. Furthermore, the proposed tech-
nique outperformed the baseline model by up to 3.953%, up to 2.067%, up to 7.014%, 
up to 2.307%, up to 4.190%, and up to 1.475% in terms of classification accuracy, ROC 
AUC, recall, precision, F1 score, and PR AUC, respectively. McNemar’s statistical test 
confirmed the statistical significance of these results. The achieved high performances 
suggest that the proposed technique is not limited to the GW data only, but that it can 
easily be extended to other problems dealing with non-stationary signal classification.
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Kombinacija vremensko-frekvencijske analize 
signala i strojnoga učenja uz primjer u detekciji 

gravitacijskih valova

Sažetak

Ovaj rad predstavlja metodu klasifikacije šumom narušenih nestaci-
onarnih signala u vremensko-frekvencijskoj domeni korištenjem umjetne 
inteligencije. Naime, signali u obliku vremenskih nizova transformirani su 
nakon predobrade u vremensko-frekvencijske prikaze (TFR) iz Cohenove 
klase, rezultirajući TFR slikama korištenim kao ulaz u algoritme stroj-
noga učenja. Korištene su tri suvremene metode dubokoga učenja u obli-
ku 2D arhitektura konvolucijskih neuronskih mreža (CNN) (ResNet-101, 
Xception i EfficientNet). Metoda je demonstrirana na zahtjevnom proble-
mu detekcije signala gravitacijskih valova (GW) u intenzivnom stvarnom 
i nestacionarnom šumu koji nema karakteristike ni Gaussovog ni bijelog 
šuma. Rezultati pokazuju izvrsne performanse klasifikacije predloženoga 
pristupa s obzirom na točnost klasifikacije, površinu ispod krivulje zna-
čajke djelovanja prijamnika (ROC AUC), odziv, preciznost, F1-mjeru i 
površinu ispod krivulje preciznost-odziv (PR AUC). Nova metoda nad-
mašuje osnovni model strojnoga učenja treniran na podatcima u obliku 
vremenskih nizova s obzirom na razmatrane metrike. Istraživanje poka-
zuje da se predložena tehnika može proširiti i na različite druge primjene 
koje uključuju nestacionarne podatke u intenzivnom šumu.

Ključne riječi: nestacionarni signali; vremensko-frekvencijski pri-
kazi; umjetna inteligencija; strojno učenje; konvolucijske neuronske mre-
že; gravitacijski valovi.
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