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Summary

This paper presents an approximate approach to the out-of-plane linear static analysis of
isotropic thin-walled curved beams with doubly symmetric H-shaped cross-sections, whose
undeformed centroid line is the circular arc. The governing equations are derived using
Vlasov's assumptions, the elasticity equations expressed in the cylindrical coordinate system,
and the equilibrium equations for the curved centroid line. The terms containing the curvature
effect are linearized by neglecting the higher order terms of the Maclaurin series expansion.
With this linearization, the geometric properties for straight thin-walled beams can be used.
An additional simplification is introduced by using the warping moment—bimoment relation
for straight thin-walled beams. The approximate closed-form solutions for long, slightly, and
moderately curved beams, obtained by the proposed and Vlasov’s approaches, are compared
with the results of the shell finite element analysis by investigating the influence of beam
length and curvature on displacements and normal stress.

Key words: thin-walled curved beam, doubly symmetric H cross-sections, out-of-plane
static analysis, closed-form solutions.

1. Introduction

The curved beams with thin-walled open cross-section find numerous applications in
various engineering fields (curved parts of highways, public and industrial buildings, and
ship and offshore structural elements, for example) due to their attractiveness and favorable
stiffness-to-mass ratio. Due to the existence of initial curvature and the complex internal
force—displacement relations with coupling effects of the internal forces, the structural
analysis of curved beams is more complicated than that of the straight beams. For doubly
symmetric cross-sections, commonly used for curved girders, the axial force (the
circumferential force) and the in-plane bending moment (moment about the principal axis
perpendicular to the plane of curvature) are coupled, as are the torsional moment and the
out-of-plane bending moment (moment about the principal axis in the plane of curvature
moment). For asymmetric cross-sections, all internal forces are coupled, while in the case of
monosymmetric cross-sections, the coupling effects depend on the shape of the cross-
section [1].
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Vlasov [2] proposed governing equations for thin-walled curved beams with an
arbitrary, open cross-section shape, where undeformed centroid line is curved into a circular
arc. To obtain the internal force—displacement relations of curved thin-walled beams with
small curvature, Vlasov replaced the strain measures of straight beams with those of curved
beams in the internal force—displacement relations of straight beams. The governing equations
were obtained using the free-body approach, neglecting the distances between the shear centre
and the cross-section centroid in the equilibrium equations. In his approach, Vlasov assumed
that the cross-sectional distortion and the shear strain in the middle surface can be neglected.
Timoshenko [3] used the same approach in the in-plane analysis of curved beams, where
warping is neglected, but he additionally assumed that the centroid line is inextensible. Yoo
used a similar approach in his study [4]. It must be emphasized that the majority of papers
published in the last 30-40 years, that are related to the analytical solutions for the curved
beams, deal with buckling and vibration problems. The papers that are important for this
research, [1, 5-11], are based on previously mentioned Vlasov’s assumptions; they are
presented in more detail in the following paragraph.

Nishino and Fukusawa [5] performed a linear analysis of thin-walled curved beams by
setting the expression for the longitudinal displacement that was subsequently used in other
studies [6-8]. Usami and Koh [6] introduced an infinitesimally thin fictitious thin-walled
branch to obtain the longitudinal centroid displacement. The linear parts of the Maclaurin
series expansion for terms containing the curvature effect in the longitudinal displacement
expression are used in [7], while the quadratic terms of series expansion are used in [8]. Yang
and Kuo [9-11] performed the analysis of thin-walled curved beams by neglecting the
membrane component of shear stress, as stated in [12]. A modified expression for the
longitudinal displacement is proposed in [9], the influence of radial stresses on curved beams
is investigated in [10], while the curved beam finite element is introduced in [11].

To the best of the authors’ knowledge, Tong and Xu [1] were the first to extend
Vlasov’s approach using the elasticity equations for shells of revolution [13]. In their study,
Tong and Xu, [1], presented a detailed comparison between their approach, Vlasov's
approach, and other approaches [6, 9] based on Vlasov’s assumptions. According to the
approaches presented in [1] and [9], and contrary to the approaches presented in [5-8], the
longitudinal displacement expression for a doubly symmetric I-shaped cross-section differs
from that for a doubly symmetric H-shaped cross-section, where an additional term, related to
the cross-sectional warping, exists.

The aforementioned methods are still used in the analysis of curved beams. For
example, the analyses of ring beams in [14] and [15] are based on Vlasov's approach, while
the analysis of thin-walled curved composite beams in [16] is based on the approach of Tong
and Xu. Kustura et al. [17] presented a simplification of the approach for calculating the
longitudinal displacement given in [9] by obtaining closed-form solutions required for the in-
plane static analysis of thin-walled curved beams with doubly symmetric I- and H-shaped
cross-sections.

Numerical methods dealing with the static and buckling responses of thin-walled
structures [18], particularly with the curved beams, are developed and studied to a larger
extent than analytical methods. Beam finite elements are used for the analysis of curved
beams [19] and thin-walled curved beams [8, 20-22]. The influence of shear is neglected in
[8, 20] while it is considered in [21, 22]. The isogeometric finite element analysis of complex
thin-walled structures [23] is also used for the analysis of the curved [24, 25] and curvilinear
beams [26, 27]. Generalised beam theory is implemented in the analysis of thin-walled beams
with cross-sections having two axes of symmetry [28, 29] and one axis of symmetry [28, 30].
Carrera’s unified formulation for straight thin-walled beams [31] is also applied in the
analysis of curved beams [32].
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Regarding the linear static analysis of curved thin-walled H-beams, it must be
emphasized that none of the above-mentioned analytical studies provide solutions for
displacements and stresses in closed form. It should be noted that all these analyses provide
only the governing equations without giving their solutions in analytical form and mostly
without specifying boundary conditions for different types of supports. Therefore, the main
objective of this study is to provide closed-form solutions for the out-of-plane analysis of
curved thin-walled beams with doubly symmetric H cross-sections.

In this paper, Vlasov’s assumptions and the expression for longitudinal displacement of
the H cross-section given in [1, 9] are used to determine the longitudinal strain and,
consequently, the normal stress. Based on the normal stress, the internal forces—displacement
relations are established. All the terms containing the curvature effect in these relations are
consistently linearized using the Maclaurin series expansion in which higher order terms are
neglected. This simplification is also used in [7], but in that study it is applied to different
internal force—displacement relations since its definition is based on a different expression for
longitudinal displacement. As a consequence of this simplification, in this study, all geometric
properties for curved beams are replaced with straight thin-walled beam properties, in contrast
to [1] where some of the geometric properties retained curvature terms. In addition, in-plane
forces and displacements are decoupled from the out-of-plane components. Since the
curvature effect is approximately considered with this linearization, the solutions obtained
with this approach should be applicable to moderately and slightly curved beams. Moreover,
instead of using the modified bimoment to define the curved beam warping moment [1], this
study uses the relationship between the warping moment and the bimoment [2] that is valid
for straight thin-walled beams. Thus, the warping moment is included in the calculation of the
total torsional moment, while it is neglected in [9].

The second section of the paper deals with the procedure for deriving the governing
equations based on the equilibrium equations of the free-body approach and the closed-form
solutions for displacements obtained using the method of initial parameters. In the third
section, the solutions obtained using the proposed approach and Vlasov’s approach are
compared with shell finite element solutions for different curvatures and beam lengths. As
previously mentioned, the solutions of the governing equations in all references are not given
in analytical form, which requires the use of different numerical procedures to solve systems
of coupled differential equations. For this reason, only Vlasov’s approach is used for the
comparison and its solutions are presented in analytical closed form in Appendix B.
Moreover, Vlasov’s approach is chosen as the first systematically derived approach for the
analysis of thin-walled beams; it is used in almost all references [1, 5-17, 20, 21, 24, 28-31,
33, 35, 36] for the same purpose. In contrast to [1], Vlasov used the geometric properties of
straight thin-walled beams; the same is done in this paper. Finally, conclusions are drawn in
the last section of the paper.

2. Theoretical development

2.1 Displacements and normal stress

The middle surface of a thin-walled curved beam with a doubly symmetric H-shaped
cross-section is shown in Fig. 1, while the geometry of the cross-section is shown in Fig. 2.
The undeformed centroid line of this curved beam is a circular arc with a radius R. In the
following analysis, the cylindrical coordinate system Op@Z and the curvilinear coordinate
system Cxyz are used, where p=R —y and ¢=x/R. The origin C is located at the cross-
section centroid and the origin O is located at the centre of the undeformed curved centroid
line. The positive direction of the x-axis corresponds to an increase in the angle, ¢, while the
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y- and z-axes are the principal axes of the cross-section; u, v, and w are displacements of any
point S on the middle surface (Fig. 2) and uc, vc and wc are displacements of the cross-section
centroid C in the direction of the x-, y- and z-axes, respectively.
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Fig. 1 Global and local coordinate systems Fig. 2 H cross-section

The analysis presented in this study is limited to the out-of-plane static analysis of a
doubly symmetric H-shaped cross-section with flanges perpendicular to the plane of
curvature. The governing expressions presented in this paper are derived based on the
following assumptions:

(1) the strains and displacements are small,

(2) the cross-section middle line is rigid in its own plane,

(3) the shear strain in the middle surface is neglected, and

(4) the material is linear elastic.

In order to present approximate closed-form solutions, the following constraints are
introduced in this study:

(a) the initial curvature of the beam is moderate (R/b* > 7, where b* is the dimension of
the largest cross-section wall), and

(b) only the uniformly distributed line loads are considered.

If the doubly symmetric cross-section rotates as a rigid body in its own plane, the
transverse displacements for the point S are defined as follows [1, 2, 9]:

V=V.-za, w=we+ya, (1)

where o is the angle of torsion (twist angle). Based on the strain—displacement relations
presented in [7] and following the approach presented in [1, 9], where the shear strain in the
middle surface is neglected, the expression for the longitudinal displacement « of a point S for
a doubly symmetric H-shaped cross-section (Fig. 1) is defined as follows:

u:uc—yy+zﬂ+a)19RLiy, (2)

with

y:v’c+uC/R, p=-we, 9=—(a'+w'C/R), 3)

where w=yz is the sectorial coordinate, y and f are the slopes of the deflection line in the
Cxy and Cxz planes, respectively, & is the relative angle of torsion [8], and ()'=d()/dx. The

last term on the right-hand side of Eq. (2) represents the warping displacement, where the
term R/(R — y) introduces the curvature effect.
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The longitudinal strain & for curved beams is defined as follows [7, 13]:

. :L[i”_lj | ()
R—-y\ox R

According to Hooke’s law, the normal stress is ox = E&, where E is the modulus of elasticity.
For doubly symmetric H cross-sections, using Egs. (1) — (4), one obtains [1, 9]

o.=F u'C—V—C—y(vngu—c —Z(Wg—g —w—R(a"+& i %)
R R R) R-y R )|R-»

2.2 Internal force — displacement relations

The internal force—normal stress relations for curved thin-walled beams are defined in
the same way as for the straight ones [1, 2], i.e.,

N = IA o,d4, M. = —IA o, yd4, M, = IA o, zd4, B= L o.wdd, (6)

where N, M., My, and B are the longitudinal force, the bending moment about the z-axis, the
bending moment about the y-axis, and the bimoment, respectively. When the full curvature
effect is taken into account, the internal force—displacement relations are obtained on the
basis of Egs. (5) and (6), i.e.,

R — -
1 -y -z —0o—— u e
R—-y CTp
N —y _y2 o Yo R vﬂ+i
M.\ _p I R-y LdA R (7)
My A 2 R R_y " a |’
R—y , R
R "
O -yo —z0 —0° —— —~+a
i R-y ] LR

In some previous studies, the influence of the curvature in Eq. (7) is completely
disregarded, like in [2], or it is considered using complex expressions, as in [8]; in this study,
only the linear terms of the Maclaurin series expansion of the terms R/(R —y) and R*/(R — y)?,

2
L:HX, [LJ =1+2

s : (®)

are retained. With the approximations of the curvature effect defined by Eq. (8), the geometric
properties of the curved beams, represented as integrals within round brackets in Eq. (7), can
be calculated using geometric properties of the straight thin-walled beams. For doubly
symmetric H cross-sections (Fig. 2), non-zero geometric properties are

A=[ dd=bty+2ht, 1= y’dd=1b[12+2ht,(b]2),

9
IyZJ.AZZdA:2tlh3/12’ Iw:J.Aa)szzflbzh3/24, ©)
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while all other geometric properties vanish since J.A yd4 = JA zd4 = IA wdA4 = L yowdAd =

= L zwdA = JA yo'dd = _[A y2odd = J.A y*d4=0. Thus, internal force—displacement relations,

Eq. (7), are transformed into a simplified, approximate form

N:EA(u’C —%CJ—E;Z (vé +”?Cj

(10)

EI "
B=-2e|yw 2\ pr [ 2 igr
R R R

According to the equations listed in (10), in-plane displacements (#c and vc) and in-
plane internal forces (N and M:) are decoupled from out-of-plane displacements (wc and @)
and out-of-plane internal forces (M, and B) for this type of cross-section. This observation is
valid regardless of the terms used to describe the curvature effect. Furthermore, by letting
R = o in Egs. (10), it is easy to verify whether the internal force—displacement relations for
the straight thin-walled beams [2] are recovered.

The relationship between the warping moment M,, and the bimoment B for the straight
thin-walled beams [2] is defined as

M,=B. (11)

According to [1, 33], Eq. (11) can be applied to curved beams with an I-shaped cross-section,
while in the case of H-shaped cross-section, a bimoment given by Eq. (6) must be redefined
as

By=[o o024, (12)
C A X R—y

Since the analysis presented in this paper is limited to beams with small and moderate
initial curvatures, the difference between the - B, Egs. (6) or (10), and the modified bimoment
Ben, (Eq. 12), is neglected to obtain further simplification in this analysis. Then, the total
torsional moment M can be expressed as follows:

M. =M,+M,, (13)

where the pure torsional moment of a curved beam M, is expressed as in [1]:

M, :GJtc(a'H]”;J. (14)

In expression (14), G is the shear modulus and /i is the torsional moment of inertia for a
curved thin-walled beam [1], defined as

2
o=~ [ 2] raa, (15)
374 R-y

where 7 1s the wall thickness.
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Using Egs. (8) and (15), and noting that L yt?’d4=0 for this type of cross-section, the

following simplification is obtained:

I, ;%J‘Atsz:I, :%(bt3+2htl3), (16)

where /: represents the torsional moment of inertia for a straight thin-walled beam.

Finally, using Egs. (5) and (10), the normal stress can be related to the internal forces as
follows:
o, = R2 {(23 ~ M R)z+
1,(2-R*1,/1,)

R
R_y(My—BRIy/[w)a)}R—_y. (17)

2.3 Equilibrium and governing equations

Since all internal forces for doubly symmetric cross-sections are defined with respect to
the cross-section centroid, the infinitesimal segment dx of the curved centroid line with out-
of-plane internal forces and distributed line loads is shown in Fig. 3, where dx = Rd¢, O- and
g- are the shear force and the distributed line load in the z-axis direction, respectively, and mx
is the distributed torsional load along the curved centroid line. According to the constraint (b)
given in section 2.1, only the constant distributed line loads are considered in this analysis
(gz = const.; mx = const.).

Fig. 3 Infinitesimal segment of a curved centroid line with out-of-plane internal forces and distributed loads

Using Fig. 3, the differential equilibrium equations required for the out-of-plane static
analysis are obtained:

0. +q,=0
M
M;——y+mx =0. (18)
R
’ Mx
M,-0, + R =0

A detailed explanation of the derivation of the moment equilibrium equations is given in
Appendix A. If the shear force Q: is eliminated from these expressions, the system (18) is
reduced to two differential equations:

, . (19)
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Using Egs. (10), (11), (13), (14), (16), and (19), the governing equations for this
approximate approach are derived:

" 14

a”"—(3+k2)g—:+n2%+2v‘;{c—(2+n2+k2)%—Em—i): o)
3a""—(1+n2+k2);‘:+(4+n2)%g'—k2;—§—22—1§: ’

where k*=R>GI ,J(EI) and n® =R*I y / I, are the torsional-flexural constants. The
solutions of these governing equations can be defined as follows:
we(@)=C,+Cyp+ D, [C3 cosh(D,¢)+C, sinh(quﬁ)] +
R
2
EI, k™ 2 Q1)

5

+(C5+ CyDygp)cosp+(C, + CyDyp)sing+ R- Cy —

a($) = D,[C, cosh(Dyp) + C, sinh(D,#) ]| -

—%(cgk2 +Cs + CyDyp)cos g+ %(QRZ = C; = CyDyp)sing - C,

where ¢=x/R. In the equations above, Ci...Cs are integration constants, while Co is
introduced to simplify a particular solution. With the introduction of Hi = 2k*-n’+2 and
H> = n?(k*+1)—2, auxiliary constants Di...Ds are defined as

2,2, 2
Dlzl’ D2:_R_k+2ﬂ’
) 2 n+l
2 2, 2 (22)
R __REG+D)
’ D H,’ ) D, H,

In this paper, the integration constants are determined based on the initial parameters
arranged into an initial state vector,

T
V|x:0 =V :[on MyO By Weo My By & %J . (23)

The initial parameters, i.e., the internal forces and displacements at the initial section
x =0 are calculated by introducing wc and «, Eq. (21), into Egs. (3), (10), (11), and (13).
Thus, a system of eight algebraic equations is generated and solved to obtain eight unknown
integration constants (Ci...Cs) as functions of the initial parameters from Eq. (23).
Introducing H3 = iPn*(kK+n*+1)+3n*(n’—1)—6, these integration constants are expressed as
follows:

R q.R’ 1
CI:wCO+RaO+G—[[MyOR+BO—D +(qu3—me2)(1+ ﬂ

2 _2

4 1 n
R3
C2=_Q20
GI,
2 2 2, 2 (24)
_ D\ _Hi ok By g kg Rk (n” + Dm,
3 30 5
Gl, H, R D H,
R? H )
C4:190+EIQH2 |:(1_k_21jQZOR+(n +1)Mx0j|
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3 4
Co=—Rag+—2—|[Hizn *4 oy Re(n?+2)B, |+
ELH, |\ H, ’

RS
+ 2
EI H?
R? n?+1
= “O..R+M
EI, H, (-Qu0 w)

C,=-RpB,—- R gl G + (24)

2

{~q.R[ Hy+2(H, ~ H)+ K2n* (0 +2) [+m [ Hy+ (0 =2)H, ]}

6=

R4
+W{[H3 = 3H\| M, ~[ 2n” + 2)H, + Hy - 3H, |04k

R2 n +1 2
Cy = B (M +q.R —m,R)
R? k> +n*+2
C, = R———m
9 — El ((Iz k2 xJ

Using the solutions and definitions of the state vector variables according to Eq. (23), the
derivation of the field matrix, K, and the load vector, I, is straightforward and leads to the
basic equation of the method of initial parameters,

v=Kv,+I. (25)

Since some members of K and I are too long, they are not presented in the paper.

According to [33], the boundary conditions for the static analysis of thin-walled curved
beams can be defined in several ways. In this paper, the boundary conditions for the out-of-
plane analysis and different types of supports are adopted according to Table 1.

Table 1 Boundary conditions for the supports of thin-walled curved beams

Clamped end we=0, f=0,a=0,9=0
Simply supported we=0,M,=0,a=0, B=0
Symmetry 0.=0,=0,M =0, 9=0

The boundary conditions listed in Table 1 are also valid for Vlasov’s approach, whose
governing expressions and analytical solutions are given in Appendix B.

3. Illustrative example

In this section, the out-of-plane static analysis of a curved beam clamped at both ends
and loaded with a uniformly distributed load ¢: at the centroid line of a radius R, as shown in
Fig. 4, is performed. The beam length is calculated as L = R@ , where @ is the central angle.
Using the symmetry, only half of the beam is analysed, as shown in Fig. 5; the symmetry joint
with released antisymmetric degrees of freedom (DOFs) in the symmetry plane, i.e. in the
mid-span section M, is introduced.

The H-beam analysed in this section has the following geometric (Fig. 2) and material
properties: b=200 mm, ~2=100 mm, and 7=10 mm; E=73 GPa and G=28 GPa
(v=0.3036). For these data, the moments of area are calculated according to Egs. (9) and
(16): I; = 13.33-10* mm*, I, = 166.67-10* mm*, and /1, = 16666.67-10° mm®.
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Fig. 4 Complete curved beam model Fig. 5 Symmetric curved beam model

The results obtained using the analytical approach presented in this paper
(LC = Linearized Curvature) and Vlasov’s approach (VL) are compared with the solutions
obtained using the finite element method (FEM). The finite element analysis is performed
using ADINA [32], where 4-noded shell finite elements with an average size of 10 mm are
used for all beams analyzed. At the clamped end, all DOFs are restrained (thus restraining
warping also), while the boundary conditions at the symmetry plane are defined to restrain
symmetric displacements only. A cylindrical coordinate system is introduced to define the
beam geometry and consequently the local coordinate axes. The constant line load, g- =1
N/mm, acts along the curved centroid line. The generated finite element mesh with the load
and boundary conditions is shown in Fig. 6a. The undeformed (dashed lines) and deformed
configurations of the FEM model are shown in Fig. 6b.

a) b)

PRESCRIBED

LINELOAD
TIME 1.000

1.00 y ] \'x

Fig. 6 FEM model of a curved beam with medium curvature, (R/b = 8):
a) FEM mesh, boundary conditions, and load; b) undeformed and deformed configurations

The analytical solutions are compared with the numerical ones for various beam lengths
L and radii of curvature R, resulting in several hundred processed models. The solutions for
the centroid deflections wc and the angles of torsion « according to (21) are normalised with
their absolute maximum values, W= wc/|wcmax and @ = a/|max, and shown in Fig. 7 for
moderately curved beams (R/b = 8). The maximums, [wc|max and |max, as absolute values,
occur at the beam mid-span, x/L = 1/2. The distributions in Fig. 7 are shown along half of the
beam length (0 < x/L < 1/2) for different central angles @. Since L = R®, the beam length is
related to the value of @ for R = const.; e.g., for R/b=8 and @=1, L/b= 8 or for @®=3,
L/b =24 (corresponding to a very long beam).

Figure 7a shows the normalised wc distribution, that is almost identical irrespective of
the value of @. On the other hand, the distribution of the normalised « depends on the value
of @. For lower @ values, the normalised « decreases monotonically from zero at the clamped
end, with one inflection point. For higher values of @, the distributions of the normalised
a increase at the beginning and then decrease to the lowest negative value at the symmetry
plane, resulting in two inflection points. The distributions of the normalised wc and
o obtained using Vlasov’s approach and FEM are identical in shape with the solutions shown
in Fig. 7; therefore, they are omitted.
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Fig. 7 Analytical LC solutions for R/b = 8:
a) normalised centroid deflections; b) normalised angles of torsion

Taking the FEM solutions as reference, the comparison between the LC an VL methods
can be established on the basis of relative errors of the solutions calculated at the beam mid-
span according to

LC,VL _  FEM LC,VL aFEM

SwECVE = We ” We 100, oo EVE :aw.l()o_ (26)
C

The relative errors calculated for various curvatures and central angles are shown in Tables 2
and 3.
Table 2 Relative errors of the centroid deflections for the beams with medium curvature at the beam mid-span
R/b=T R/b=8 R/b=9 R/b=10

D w2 | 374 Vd w2 | 374 V4 w2 | 374 Vd w2 | 374 Vg
LC [-109|—-11.7|—12.6| —8.85|—9.49|—10.2|—7.28 |—7.78 | —8.33|—6.03 | —6.45 | —6.89
VL |—-14.7|-13.7|-13.8| -12.0|-11.0(-11.2{-9.94 |-9.12|-9.21 | -8.30 | =7.59 | =7.65

Table 3 Relative errors of the angle of torsion for the beams with medium curvature at the beam mid-span
R/b=T R/b=8 R/b=9 R/b=10

D w2 | 374 T 2 | 374 Vs w2 | 374 T w2 | 374 T
LC |-143|-14.1|-15.0| -12.1|-12.0|—12.0|-10.2|—9.89 | —9.72 | —8.69 | —8.24 | —7.96
VL [(-203|-17.1|-16.3|—-16.8|-13.8|—-13.1 |—-14.0|-11.4|—-10.6 |—11.8|—9.42 |—8.96

From Tables 2 and 3, it is easy to observe that wc and « solutions obtained by the LC
method for moderately curved beams are closer to FEM solutions than Vlasov’s solutions for
all central angles (@ = /2, 37/4, x). The difference between the LC and VL solutions is more
pronounced for lower central angles (e.g., 77/2), especially for the solutions of « for all
curvatures. For higher central angles (e.g., 7), these differences are smaller, and for larger
curvatures (@= 7z, R/b = 10) are practically negligible. This observation justifies the usage of
Vlasov’s approach for the determination of displacements for long beams with small and
medium curvatures.

The bending moment M, and the bimoment B calculated according to (10) and (21) are
normalised with respect to their absolute maximum values, (Z\ZIy = M/|My|lmax and

B = B/|Bmax), and shown in Fig. 8 for a constant beam length of L/b= 10 and different
curvatures.
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Fig. 8 The normalised distributions obtained by the LC method for beams with L/b = 10:
a) bending moment; b) bimoment

Due to the uniformly distributed load, the normalised distribution of M, along the half
of the beam length (Fig. 8a) is similar to the analogous distribution of M, for straight beams
regardless of the beam curvatures. The largest bending moment occurs at the clamped end,
and about half of its value occurs at the beam mid-span; the unfolded (longitudinal)
distribution for curved beams is very similar to quadratic distribution. From Fig. 8b, one can
see that the normalised B distribution depends on the curvature. For medium curvatures
(R/b < 10), the normalised B distribution first increases and then decreases, showing two
inflection points. For larger curvatures (R/b>10), the normalised B distribution
monotonically decreases with one inflection point similar to the distribution of bimoment for
straight beams.

Regarding the normal stress distribution along the cross-section contour, it should be
emphasized that, for this type of cross-section, the normal stress at the horizontal wall (line
FCG in Fig. 2) is zero. The normal stress along vertical cross-section walls (lines AFD and
BGE in Fig. 2) is linearly distributed with different extreme values at the wall end points A
and B (or D and E). The distributions of normal stresses along the inner (point A) and outer
(point B) flanges for a moderately curved beam with R/b = 8 and central angle @=27/5 (i.e.,
L/b=10.1) are shown in Fig. 9a, and the distributions for @= 7 (i.e., L/b =25.1) in Fig. 9b.

—point A
- = point B

a) 15 b) 150

—point A
NS - = point B

100 |

o, MPa
i
(e}

. . . 0 0.1 0.2 0.3 0.4 0.5
x/L x/L

Fig. 9 The longitudinal distributions of the normal stress obtained by the LC method at the inner (point A) and
the outer (point B) flange for R/b = 8 and for: a) @=27/5;b) ==

For the beam with R/b= 8 and @=27/5, the maximum normal stress occurs at the
clamped end (x = 0) at point B of the outer flange. This value is slightly higher but very close
to the stress value at point A of the inner flange at the same section, Fig. 9a. While
approaching the beam mid-span, the normal stresses on both flanges decrease, but with
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different gradients. At the beam mid-span, the normal stress is much higher at the outer flange
than at the inner flange, as can be seen from Fig. 9a. For longer beams, the maximum value of
normal stress occurs at the inner flange of the clamped end, which is shown in Fig. 9b. On the
beam in this figure, three different regions can be distinguished: 1) a region near the clamped
end where stresses at the inner flange are dominant; ii) a region where stresses at the outer
flange are dominant; and iii) a region where stresses at the inner flange approach zero while
stresses at the outer flange decrease monotonically to the minimum at the plane of symmetry
(x/L =1/2). The value of the maximum stress oxmax at the outer flange (point B) and its
position xmax for the distribution in Fig. 9b, calculated using the LC, VL, and FEM methods,
are presented in Table 4.

Table 4 Position and value of the maximum normal stress at the outer flange for R/» =8 and &= r

FEM LC VL
Xmax (mm) 527.1 527.7 512.0
Gemax (MPa) 56.8 59.8 62.4

Analysing the results shown in Table 4, it is obvious that the LC method predicts the
FEM solution more accurately than the VL method, again.

Figure 10 shows the normal stresses calculated for various R/b and @ for point A at the
clamped end.

Fig. 10 The normal stress obtained by the LC method for point 4 at the clamped end

In this figure, the curvatures, R/b, and the central angles, @, are shown in a linear scale,
while the stress, O'XLC, expressed in MPa, is given in a logarithmic scale. As expected, the

normal stress at point A of the clamped end increases with the increasing values of the
centroid line radius R and the beam length L. Figure 10 can be also used to determine the
value of normal stress for any combination of curvatures, central angles, and distributed load
values since the results shown were obtained for g- = 1 N/mm.

A better comparison of analytical methods can be drawn by calculating the relative
errors of normal stresses with respect to the FEM stress according to

LC,VL FEM
o~ -0

LC,VL _ Yy X

X

Using the above expression, the relative errors of normal stresses obtained by both analytical
methods for moderately curved beams and various central angles at flange edges A and B are
shown in Tables 5 and 6. These stresses are calculated at the position x/b= 1 along the
centroid line in order to avoid numerical difficulties of the FEM solution at the clamped end.
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Table 5 Relative normal stress errors for moderately curved beams at point A of the inner flange and for x = b

R/b=T7 R/b=8 R/b=9 R/b=10

()] 72 | 374 T 72 | 374 T 72 | 374 T 2 | 374 T

LC |-7.52|-2.84|-0.67| —5.52(—2.05|—-0.21|—4.19|—-1.46|+0.11 | —-3.25|—1.03 | +0.31

VL [-16.1|-10.2| —6.85|—12.9|-8.26|—-5.36 |—10.6 | —6.79 | —4.27 | -8.93 | —=5.67 | —3.48

Table 6 Relative normal stress errors for moderately curved beams at point B of the outer flange and for x = b

R/b=T R/b=8 R/b=9 R/b=10

(0] 72 | 374 Vs 72 | 374 T 72 | 374 i 72 | 374 i

LC | 547 | 578 | 7.16 | 428 | 5.01 | 6.26 | 3.54 | 4.42 | 5.57 | 3.04 | 3.96 | 5.12

VL | 833 | 12.0 | 169 | 731 | 11.0 | 15.7 | 6.63 | 10.1 | 14.9 | 6.13 | 9.45 | 14.3

Comparing the results of the two methods, it is obvious that the proposed LC method
gives a better prediction of the FEM normal stresses than Vlasov’s method. This difference is
more evident here than in the case of the displacement comparison. For both flanges (points A
and B), the stress relative error decreases with the increasing curvature for moderately curved
beams (7 < R/b < 10). According to Tables 5 and 6, the value of the central angle, @, i.e., the
beam length L, affects the stress relative error at the inner and outer flanges differently. For
the inner flange (Table 5), and for all curvatures, the stress relative errors decrease for higher
values of @ in both analytical methods. The stress relative errors determined with the LC
method are significantly smaller than those determined with Vlasov’s method. For the outer
flange (Table 6), this trend is reversed, i.e., the increase in the value of @ increases the
relative error, but for higher @ values, the LC method predicts the FEM stresses better. This
trend is maintained even for slightly curved beams with R/b > 10 when a small increase in the
value of relative error is observed for point B of the outer flange, as it is shown in Table 7.

Table 7 Relative normal stress errors for slightly curved beams at point B of the outer flange for x =5 and &= 7

R/b 11 12 13 14 15

LC | 475|475 | 4.79 | 5.00 | 5.30

VL | 14.0 | 140 | 14.1 | 145 | 149

From Table 7, which shows the solutions for @= 7 and slightly curved beams
(11 £R/b < 15), it is easy to conclude that an increase in the value of the radius of curvature
has no significant effect on the relative normal stress errors at the outer flange, but the LC
solutions are still considerably closer to the FEM solutions.

4. Conclusions

A comprehensive analytical approach for the determination of displacements and normal
stresses of moderately and slightly curved thin-walled beams with doubly symmetric H cross-
section is presented. Only the uniformly distributed out-of-plane loads are considered. By
neglecting the higher order terms of the Maclaurin series expansion, the terms containing the
curvature effect in expressions for internal forces are linearized. These terms are neglected in
Vlasov’s approach for the analysis of thin-walled curved beams, making it primarily intended
for the analysis of beams with small curvature. The linearization of the terms related to the
curvature extends the capability of this approach to the analysis of moderately curved beams.
Moreover, this linearization allows the use of geometric properties of the straight thin-walled
beam in the analysis of the curved beams without modifications. A further simplification results
from the use of warping moment—bimoment (M,—B) relation for the straight thin-walled beams
in the presented approach, thus avoiding the introduction of the modified bimoment as in
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[1, 33]. The proposed method and Vlasov’s method, as a fundamental and one of the earliest
models for the analysis of the thin-walled beams, are compared by calculating displacements
and normal stress relative errors with respect to the numerical solution obtained using shell
finite elements. The influence of the curvature effect and the beam length is investigated using
the R/b ratio and the central angle, @. It is shown that both approaches approximate the finite
element solution for centroid line deflections in a similar way. The proposed approach gives a
better approximation of the twist angles than Vlasov’s approach for moderately curved beams,
especially for smaller beam central angles. Even better results are obtained for the normal stress
distribution as the dominant stress component. The proposed method provides the solutions 2-6
times closer to the finite element solutions than Vlasov’s solutions, for small and medium
curvatures and for the inner and outer flanges irrespective of the beam central angle. These
results justify the use of the proposed closed-form approximate solutions in the analysis of long,
slightly and moderately curved thin-walled beams, especially in the early design stages when a
large number of analyses can be performed efficiently.

Based on the extensive research conducted in the preparation of this paper, it should be
noted that none of the approaches presented in [1-17], including the approach presented in this
paper, are suitable for the analysis of short and relatively short thin-walled curved beams. The
values of displacements and stress relative errors calculated by the previously mentioned
methods are rather high for the moderately curved beams with L/b < 8. Also, based on the
authors’ experience in the analysis of the straight thin-walled beams, this observation leads to
the conclusion that the shear stress in the middle surface cannot be neglected in the analysis of
relatively short thin-walled curved beams, as it is assumed in the introduction of the paper.
The influence of shear taken into account with approximate analytical expressions is well
investigated in the analysis of the straight thin-walled beams [35-37]. As for curved thin-
walled beams, the number of references related to the analytical solutions for this subject is
very limited. To the authors’ knowledge, only Kano et al [38] included the influence of shear
in the analysis of thin-walled curved beams by the method of successive approximations over
equilibrium conditions for the infinitesimal wall element. Our further research into the thin-
walled curved beam will include the analysis of other doubly symmetric cross-sections,
different load types and boundary conditions, and the application of this approach to the
curved composite thin-walled beams.
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Appendix A

The moment equilibrium equations at the left end section of infinitesimal segment of a
curved centroid line shown in Fig. 3 are:

D> My, =—M, +(M,+dM )cosdg— (M, +dM )sindg+m Rdgcos(dg/2)=0

zMoy =-M,+(M,+dM )cosdg+ (M, +dM, )sindg— (O, +sz)Rsind¢:0'(A‘1)

Using sin(d¢g) = d¢, cos(d@) = 1, cos(d@/2) = 1, and after neglecting higher order terms, the
previous expressions are transformed into

dM, - M ,d¢g+m Rdp=0, dM, + M d¢—Q.Rd¢$=0. (A.2)
With ()'=d()/dx and ¢=x/R, the final form of the moment equilibrium equations given in
Eq. (18) is obtained by dividing (A.2) by Rd¢.
Appendix B

Neglecting the curvature effect, i.e., using R/(R—y)~1 and R*(R —y)* =1, Vlasov’s
internal force—displacement relations are recovered from Eqgs. (7) and (9) as

N = EA(u. v /R), MZ=EIZ(Vg+vC/R2)‘ BD
M, =—EI (W —a/R), B=-EI,(w./R+a")

The normal stress according to Vlasov reads
o.=M,/I,-z+B]l, o. (B.2)

Following the procedure described in section 2, and using k*=R*GI .J(EIl,) and
n* =R*I y / 1, , the governing equations according to Vlasov’s approach are obtained:

nee

" "
(24 o W, W, m
amr_k2 2+I’l2 C_(n2+k2) Cc ™" =0

o R EI,
a” W”” W” q Ra) (B'3)
a””—(n2 +k2)—2+(1+n2)—c—k2—§——2 =0
R R R E,
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The solutions of these equations are given by Eq. (21) with the following auxiliary
constants, D1...D4:
R k> +n’+1 R’ Rk
D, =k, Dy=———5>—, Dy=——oF—, D,=- . (B4
: o2 k(K +1) e B9

The unknown integration constants Ci...Co are:

R 5 s 1-k2
ClszO+Ra0+G—[ MyORJrBO—me -q,R 2

t

Cy =
2 G]t QZO

R 1 R
L= E—[{Um[(lﬁ + 1)30 + M 4R~ ‘1;(2 - mez}

2
Cy=8+ X 1 ( : onRJero)

EI, 1+k>\ K>
R K+2 B
Cs=-Ray——| ——— M R+—2— |+
’ ’ E[w[(k2+l)2 > k2+1j
3 2077.2 2 2,72 2
R—{mx(u " (22k +23) — f J—qZR(H " (f +§) + ;1 H
El, (k+1) k”+1 (k" +1) k™ +1
R 1
=—— (-0, R+ M
6 E]w k2+1( QzO xO)
R? R? 3n? 2n*
C;=-Rpy+— 80_2EI I+ ——+ 5 |0.0R -
k™ +1 y k™ +1 ( K24 1)
2 2
—| 1+ f 2 S [ M, (B.5)
k= +1 (k2 + 1)
R 1 5
2 2 2
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