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Abstract—Computers have become increasingly vulnerable
to malicious attacks with an increase in popularity and the
proliferation of open system architectures. There are numerous
malware detection technologies available to protect the computer
operating system from such attacks. This type of malware
detector targets programs based on patterns detected in the
properties of computer applications. As the amount of analytical
data increases, the computer defense system is adversely affected.
The performance of the detection mechanism has been hindered
due to the presence of numerous irrelevant characteristics. The
goal of this study is to provide a feature selection approach
that will help malware detection systems be more accurate
by detecting pertinent and significant traits. Furthermore, by
selecting the most important features, it is possible to maintain
an acceptable level of accuracy in the detection of malware
while significantly lowering the computational cost. The proposed
method displays the most important features (MIFs) obtained
from each machine learning method, including data cleaning and
feature selection. Furthermore, the method applies six machine
learning classification techniques to the selected feature set. Sev-
eral classifiers were evaluated based on several characteristics for
malware detection, including Support Vector Machines (SVM),
Logistic Regression (LR), K-nearest neighbor (K-NN), Decision
Tree (DT), Naive Bayes (NB), and Random Forest (RF). Our
suggested model was tested on two malware datasets to determine
its effectiveness. In terms of accuracy, precision, F1 scores, and
recall, the experimental findings show that RF and DT classifiers
beat other techniques.

Index Terms—Malware Detection, Machine Learning, Feature
Selection, Information Gain, Cybersecurity.

I. INTRODUCTION

Malware stands for malicious software and is intended to
harm systems and users by stealing information, destroying
data, or simply irritating them. Malware is widely distributed
and computer security issues are on the rise, according to re-
ports [1]. Malicious programs or attacks, such as malware and
ransomware families, continue to pose serious cybersecurity
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concerns, with potentially devastating effects [2]. Computer
systems, data centers, the Web, and mobile devices have
been damaged, with applications in a variety of sectors and
companies [3], [2], [4]. By encrypting data in an unbreakable
format that can only be decoded by the attacker, the majority
of malware is designed to restrict victims from accessing
computer data [5]. Since removing the infection results in
irreversible damage, victims are compelled to comply with the
attacker’s demands [6]. If anyone does not comply with the
attacker’s demands, data will be permanently gone. Assailants
are using current technology to turn traditional malware into
developing malware families, making it more difficult to
recover from a malware infection [7], [8].

Malware is a sophisticated and diverse threat that affects
people around the world and prohibits them from accessing
their system or data until they pay for it [4]. It does this
by locking the system’s screen or encrypting the files of the
users. The two primary varieties of malware, depending on
attack strategies, are locker malware, which prevents access to
the computer or device, and crypto malware, which prevents
access to files or data [9]. It is quite difficult to recover without
paying the extortion after these attacks. Due to the above prob-
lems, malware detection has become very important for us.
Traditional malware detection methods, such as event-based,
statistical-based, and data-centric methods, are ineffective [9].
As a result, the research community should focus on achieving
the maximum degree of optimal protection and security by
using futuristic technologies against such advanced hostile
assaults.

Today, many researchers use machine learning in malware
detection, it is a novel research field that might be very useful
in the creation of creative malware solutions [10]. The use of
Machine Learning (ML) techniques allows for the automated
identification of malware, including ransomware, based on
their dynamic characteristics, which improves security [11],
[12]. Support Vector Machines (SVM), Logistic Regression
(LR), Decision Tree (DT), Naive Bayes (NB), Random Forest
(RF), and Neural Network (NN) based architectures have the
ability to identify and classify malware [13].

For malware detection with machine learning in general
follow two steps, feature extract from the program file and then
classify malware based on these features. Feature extraction
from a program file is more costly and time-consuming for
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malware detection. That’s why in this study we thoroughly
analyze and explore the use of machine learning algorithms
for selecting features to detect malware.

Using automated technologies, a malware producer can
easily build a significant number and variety of malware.
As a result, we’re employing machine learning to tackle the
following issues: (i) How to get the best feature set for
malware detection? (ii) How to classify malware with better
accuracy?

In this paper, we present a feature selection methodology
for malware detection. Optimal feature selection and malware
categorization are the two key aspects of this approach. The
following contributions have been made by us: To classify
malware, look for the most important features (MIFs). We
use a data cleaning strategy (removing zero and near-zero
variance predictors) and a feature selection method to get the
best results (Information Gain). Then, on the basis of these
attributes, we employ machine learning classifier methods
to categorize malware. The algorithms used to classify are
Support Vector Machines (SVM), Logistic Regression (LR),
K-Nearest Neighbors (K-NN), Decision Tree (DT), Naive
Bayes (NB), and Random Forest (RF). In this case, RF and
DT demonstrate a greater accuracy.

Using our model, we are able to identify the most effective
features for a given malware dataset. When these features
are extracted from a program file during the feature extrac-
tion process, it results in reduced time and cost. Initially,
our malware dataset comprised 53 features. However, after
selecting the 9 features that yielded the highest accuracy,
subsequent extractions only require these 9 chosen features
from the program file. This streamlined approach of extracting
9 features significantly minimizes both the time required and
associated costs when compared to extracting all 53 features.

The feature selection that we have done here will be more
useful for malware analysis and detection. That is because
next time we will only extract the selected feature from the
program file so that the feature extraction will be very fast.
And the machine learning algorithm will be able to respond
much faster with fewer features.

We have shown in our research how to select the best
features from a dataset out of many features, maintain good
accuracy and also reduce time consumption and memory cost.

The remainder of the paper is laid out as follows: In
Section II, we go through some of the ML-based malware
categorization work that has been done. The strategies we
used in this work are explained in Section III. In Section
IV, the experimental setup and findings are described. Finally,
Sections V and VI bring the paper to a close.

II. LITERATURE REVIEW

Various malware has been classified using traditional detec-
tion approaches. A well-defined behavioral structure can be
used to evaluate various malware, and most malware families
share common behavioral aspects such as payload persistence,
stealth tactics, and network activity. The most extensively used
conventional anti-malware system is signature-based analysis,
and Abiola and Marhusin suggested a signature-based malware

detection model by extracting the Brontok worms and using
an n-gram approach to break down the signatures [14]. The
architecture allows for malware identification and the creation
of a trustworthy solution that removes all dangers. The static-
based analysis examines the application’s code for malicious
activities without executing or running the code[15], while
dynamic analysis monitors the behavior of malicious intent
processes. Processes that exhibit malicious intent behavior will
be flagged as suspicious and terminated in order to address this
flaw [16]. Both static and dynamic analysis have limitations in
terms of detecting undiscovered malware and are ineffective
against code obfuscation, high variation output, and targeted
assaults.

EldeRan, a machine learning-based technique for dynami-
cally evaluating and categorizing ransomware, analyzes benign
software actions based on probable distinctive symptoms of
ransomware [17]. EldeRan employs two types of machine
learning components: feature selection and classification, both
of which are implemented in the Cuckoo Sandbox environ-
ment. To obtain and dynamically analyze datasets, Windows
API calls, Registry Key Operations, File System Operations,
the set of file operations done per File Extension, Direc-
tory Operations, Dropped Files, and Strings are utilized. The
method was tested with 582 ransomware files from 11 different
families, as well as 942 good-ware programs, producing a
0.995 area under the ROC curve, showing accuracy. Another
prior work has developed a method for categorizing API
calls in binary sequences that use Long-Short-Term Memory
(LSTM) networks to classify malware based on its behav-
iors [18]. In the sandbox environment, a dynamic analysis
approach was used to retrieve API calls from the changed
log. The suggested LSTM-based system obtained 96.67%
accuracy in automatically categorizing ransomware activity
from a malware dataset, according to the evaluation. The
authors acknowledge the potential for accuracy improvement
through larger datasets and LSTM network optimization.

Such precision suggests that machine learning might be a
realistic and effective method for detecting new ransomware
variations and families. Deep Neural Network (DNN) can
tackle complicated detection issues and may be used to iden-
tify ransomware by building a revolutionary dynamic detection
approach. In a prior study, Bayesian Hyperparameter Opti-
mization was applied for deep neural network-based network
intrusion detection [19]. Ghanei et al. released a study lately
in which they proposed a dynamic malware detection system
based on Deep Neural Network (DNN) and Convolutional
Neural Network (CNN) [20]. The machine learning model is
built using Long Short-Term Memory (LSTM). According to
the evaluation report, the combination of DNN with LSTM is
successful in the identification of new malware, with an accu-
racy of 91.63%. Masum et al. suggested a feature selection-
based framework for ransomware detection and prevention
that uses a variety of machine learning methods, including
neural network-based designs [21]. They used a variety of
machine learning methods for ransomware classification, in-
cluding Decision Tree (DT), Random Forest (RF), Nave Bayes
(NB), Logistic Regression (LR), and Neural Network (NN)
based classifiers. By using a variance threshold and VIF
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criterion value, they choose 13 features from a data collec-
tion. The suggested framework was optimized using a small
number of key characteristics and tested with several machine
learning classifiers. The experimental findings demonstrate the
resilience and efficacy of the suggested framework.

In Android, deep learning has also been used to identify
malware. Hossain and Riaz presented a malware detection
method for Android that combines static and dynamic analysis
for both machine learning and deep learning classifiers [22].
They attempted to analyze a multilayer detection approach that
would work on both static and dynamic data from user permis-
sions and network traffic. The model will use user permissions
to identify malware before it is installed from the Android
Manisfest.xml file, and network traffic data will be used to
detect malware at runtime. Bakour & Ünver demonstrated
how to use deep learning and image-based features to identify
malware on Android devices [23]. By transforming various
files from Android application sources into grayscale images,
they produced four datasets of grayscale photos. The suggested
model was then trained using two categories of image-based
characteristics, local features and global features, which were
taken from the created image dataset. They achieved extremely
effective run time overhead ranging between 0.11 to 2.02 s for
each sample, which resulted in classification accuracy of more
than 98%. Additionally, they tested the robustness of Android’s
anti-malware systems against hybrid obfuscation techniques
and injection attacks. Two injection attacks (i.e. the benign
permissions injection attack and the benign permissions code
injection attack) were suggested [24].

III. METHODOLOGY

This research is experimental research, in which we take
datasets and find the best feature for classification. Even after
removing some less important features, our accuracy remained
at a good level, while the memory cost and computational cost
also decreased. As illustrated in Fig.1, our model consists of
modules for data cleaning, feature selection, classification and
finaly evaluation.

A. Data Cleaning (Remove Zero and Near Zero Variance
Predictors)

For data cleaning, we removed zero and near zero variance
predictors. Removing zero and near-zero-variance predictors
refers to the process of identifying and eliminating variables
(predictors) that have very little or no variability in their
values. These predictors do not provide useful information for
predictive modeling tasks and can potentially introduce noise
or cause computational issues[25].

Zero Variance Predictors: Features with zero variance have
a fixed and meaningless value across all data points. It is safe
to eliminate these features because they do not increase the
variability of the data.

Near-Zero Variance Predictors: Near-zero variance features
have values that are essentially constant with little variation.
Although they may not be completely constant, they offer
relatively little information and are not likely to significantly
affect the performance of the model.

Fig. 1. Malware Classification Model. Our model consists of 5 steps.
These are Data Cleaning, Feature Selection, Classification, Prediction and
Evaluation.

In comparison to the number of samples, zero and near-
zero variance predictors have a small number of unique values
or a single dominant value that occurs frequently. Identifying
these variables may be done in a number of ways, including
checking for unique values, constructing frequency tables, and
so on. In this experiment, the percentage of unique values is
utilized to discover zero variance features.

1) Percentage of Unique Values: It’s calculated by dividing
the total number of samples by the number of unique values,
which decreases as the data’s granularity increases.

PUV =
Number of Unique V alue

Total row number of dataset
× 100 (1)

A variable will be classified as a zero variance predictor if
it exhibits a frequency of unique values lower than a specified
limit and exceeds the predetermined frequency ratio criterion.
We remove various features from our dataset based on the
percentage of unique values. It helps us to reduce the number
of features in the beginning.

B. Feature Selection (Information Gain (IG))

Through the data cleaning process, some features will be
removed. Then we’ll apply the information gain methods
to find out which features have a good impact on our
classification accuracy. Information Gain (IG) is a feature
assessment approach based on entropy that is widely used
in machine learning. IG can also be used to measure the
amount of information provided by a feature with respect
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to a target variable [26]. The Information Gain (IG) metric
evaluates the extent to which a feature contributes valuable
information about the target class. IG can detect the features
with the highest information based on the target class. High
IG characteristics are highly relevant to the target class and are
frequently used to improve classification results. As a result,
we will have to keep deleting non-essential features. Entropy
generates IG, as seen in the (2) to (4) equations [27]. The
formula for analyzing more than two classes using entropy is
presented below.

H(X) = −
K∑
i=1

P (xi) log2 P (xi) (2)

The number of classes/features of a dataset is K. And the
following formula is used to determine the IG of a feature X
and the class label Y.

IG(X,Y) = H(X)−H(X | Y) (3)

H(X | Y) = −
∑
j

P (yj)
∑
i

P (xi | yi) log2 (P (xi | yi))

(4)
Entropy is a measure of a class’s unpredictability based on the
likelihood of a particular event or feature occurring. Entropy
and IG are inversely proportional. The amount of information
accessible before learning the attribute value and the amount
of information available after learning the attribute value are
the two main determinants of the amount of knowledge gained.
For multiclass, the maximum IG value is 1.

Although there are many other methods besides IG for
feature selection, such as PCA, autoencoders etc, our primary
focus in this study was to evaluate the effectiveness of the
chosen approach specifically. In addition, information gain has
been widely used in various datasets; it is also useful for a
dataset that has a hybrid data type. Agrawal and Kshirsagar
proposed an information gain-based feature selection method
for Android malware detection [28].Kumar et al. proposes a
method for mobile malware detection that uses information
gain and support vector machine [29]. Shu et al. proposes
an information gain-based semi-supervised feature selection
algorithm for hybrid data, considering symbolic, numerical,
and missing features, and demonstrates its superiority over
other feature selection methods using experiments on ten UCI
datasets. The article presents a sentiment analysis system
for distance education that integrates information gain (IG)
methods for feature selection[30].

C. Classification and Parameter Tuning
The algorithms used to classify are Support Vector Ma-

chines (SVM), Logistic Regression (LR), K-Nearest Neighbors
(K-NN), Decision Tree (DT), Naive Bayes (NB), and Random
Forest (RF).

1) Support Vector Machine (SVM): SVM is a powerful
classification algorithm that finds an optimal hyperplane to
separate malware classes.

Parameter Tuning: Utilizing the radial basis function (RBF)
kernel to enhance performance, with a specific focus on
optimizing the values of gamma and C, which are the key
parameters associated with the RBF kernel.

2) Logistic Regression (LR): LR estimates the probability
of malware or non-malware instances based on their features.

Parameter Tuning: Tune Solver and Maximum Iterations to
balance fitting and generalization.

3) k-Nearest Neighbors (k-NN): k-NN classifies instances
by majority vote from their k nearest neighbors using distance
metrics.

Parameter Tuning: Experiment with different k values, met-
ric, and P values for an optimal trade-off between overfitting
and smoothing.

4) Decision Tree (DT): DT recursively splits data based on
feature thresholds to create a tree-like classifier.

Parameter Tuning: Tune criterion, max depth, min samples
to split a node, and min samples for leaf nodes to control
complexity.

5) Naive Bayes (NB): is a probabilistic classifier based
on Bayes’ theorem, employing the ’naive’ assumption of
independence.

6) Random Forest (RF): Random Forest is an ensemble
learning method that builds multiple decision trees and com-
bines their predictions for classification. It is robust, handles
high-dimensional data well, and helps reduce overfitting.

Parameter Tuning: Important hyperparameters include the
number of trees (n estimators), the maximum depth of each
tree (max depth), and the number of features considered for
each split (max features).

D. Evaluation Metrics

In this section, we explain how we evaluate the performance
of our machine learning models. We use a variety of metrics
to get a comprehensive understanding of how well our models
are working. These metrics measure different aspects of model
performance, such as accuracy, precision, recall, and resource
utilization. By understanding how our models perform, we can
identify areas where they can be improved.

1) Classification Evaluation Metrics: Our evaluation pro-
cess begins with traditional classification metrics that focus on
the models’ predictive capabilities:

• Accuracy: Measures overall correctness (correct predic-
tions/total predictions), but may be inadequate for imbal-
anced datasets.

• Precision: Proportion of true positives over total predicted
positives, valuable when false positives are costly.

• Recall (Sensitivity): Proportion of true positives over
total actual positives, crucial for identifying all positive
instances.

• F1-Score: Harmonic mean of precision and recall, bal-
ances evaluation for imbalanced classes.

2) Performance and Resource Metrics: In addition to clas-
sification metrics, we consider custom metrics that shed light
on the efficiency and resource utilization of the models:

• Build Time: This metric records the time (in seconds)
needed to train each model on the training dataset. It
reflects the efficiency of the algorithm during the training
phase.

• Prediction Time: Prediction time (in seconds) indicates
the time taken by each model to make predictions on the
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test dataset, showcasing their real-time decision-making
speed.

• Build Peak Memory Usage: The peak memory consump-
tion (in bytes) during model training highlights the max-
imum memory requirement during the training process.

• Prediction Peak Memory Usage: This metric reveals the
highest memory usage (in bytes) during prediction, pro-
viding insights into memory demands during operational
use.

The variety of evaluation metrics chosen guarantees a thorough
examination of our machine learning models. We acquire a
full grasp of each model’s capabilities across various circum-
stances by taking into account predictive performance and
resource utilization.

Here the methodology steps described in our paper con-
sidered common practices in the field of machine learning.
However, we believe it is essential to highlight these steps
as they serve as a foundation for our research and ensure
the reliability and validity of our results. Data pre-processing,
including data cleaning, is indeed a mandatory step, especially
when dealing with datasets containing a large number of
features. By explicitly mentioning these steps, we aim to
provide clarity and transparency in our methodology, making
our work more reproducible and enabling other researchers
to build upon our findings. Moreover, the data set we have
used, as far as we know, feature selection has not been done
using information gain on these data sets, and we have tried
to validate the results with some simple algorithms.

IV. EXPERIMENTS AND RESULTS

A. Dataset Details

In this study, we utilized two distinct datasets: the first
dataset was extracted from GitHub [31], containing 138,047
samples with 53 attributes. Among these samples, 70% rep-
resent malware instances, while the remaining 30% constitute
legitimate observations. The attributes encompass a variety of
features, including the file’s hash, usage frequency, priority,
and memory usage. All feature values are derived numerically
from the PE (Portable Executable) headers of executable files.

The second dataset, obtained from Kaggle [32], consists of
100,000 samples with 32 attributes. Here, 50% of the samples
pertain to malware, and the other 50% correspond to be-
nign observations. These attributes capture behavioral features
extracted from software. The dataset’s attributes include file
sizes, file hashes, and memory usage, with all feature values
presented in numerical format.

B. Data Cleaning

For data cleaning, we have 2 parts, remove duplicate data
and remove zero or near zero variance predictor. After delet-
ing duplicates from dataset 1, our dataset contains 104,589
observations, 60% of them being malware and 40% being
legal observations. We use the metric Percentage of Unique
Values to remove zero or near zero variance predictors. If

there are less than 10% unique values in the samples, the
predictor is said to have near zero variance. In some instances,
the threshold is set very close to zero to select the predictor
of near-zero variance [25]. For that, in this case, we removed
extremely near-zero variance predictors by using a near-zero
criterion. For datasets 1 and 2 we established a threshold of
0.05% for features with a very low unique value. Columns with
a proportion of less than 0.05% are deleted. After deleting 21
features, there are 32 features left to examine. In the same way,
after deleting duplicates from dataset 2, our dataset contains
34,382 observations, with 40% of them being malware and
the remaining 60% benign observations and removing zero or
near-zero variance predictors. Columns with a proportion of
less than 0.05% are deleted. After deleting 18 characteristics,
there are 14 features left to examine.

C. Feature Selection

For feature selection, we use Information Gain (IG). In the
context of malware classification, the focal point is the class
label (benign or malicious). By using IG for feature selection,
we can identify the most informative features that are relevant
to the classification task and discard the less informative
ones, which can improve the accuracy and efficiency of the
classification algorithm. The IG score is calculated as the
entropy reduction that results from the splitting of the data
based on a given feature. Entropy measures the randomness
or uncertainty of the data, and reducing the entropy means
increasing the homogeneity or purity of the data. Therefore,
the features that result in a high reduction in entropy are
considered more informative for the classification task.

1) Apply Information Gain on Dataset 1: Upon completing
data cleaning for dataset 1, we obtained a total of 32 features
for feature selection. We utilized Information Gain (IG) to
determine the importance of each feature for classification.
The computed IG values ranged from 0.0357 to 0.5681, and
we selected a threshold value of 0.5 for feature selection,
as it is frequently used in the literature [33]. A higher IG
value indicates that the feature is less entropic and more
informative [34], [35]. To identify the most significant features,
we experimented with different thresholds ranging from 0.1 to
0.5 and found that the accuracy of the model is consistent with
all the characteristics of the fitted model up to a threshold
value of 0.5. However, features with IG values less than
0.05 or greater than 0.5 resulted in a dramatic alteration in
accuracy and were therefore excluded from our final selection
of features, resulting in a final set of 9 features. These features
were identified as the most important features (MIFs) for our
analysis. Table I presents the final selected features along with
their corresponding IG values for dataset 1.

2) Apply Information Gain on Dataset 2: After data clean-
ing from dataset 2, we have 14 features for feature selection.
We use Information Gain for knowing a feature’s importance
for classification. We get IG values for all features from 0.0663
to 0.6623. For this dataset, the model accuracy is closer to that
of an all-feature-fitted model up to a threshold of 0.1. From
these IG values, we took the threshold value of 0.1. Features
with a value greater than 0.1 have been taken. And we found
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TABLE I
THE FINAL SELECTED FEATURES FROM DATASET 1 AFTER APPLYING THE

INFORMATION GAIN METHOD, WITH CORRESPONDING INFORMATION
GAIN (IG) VALUES.

Feature Name IG Value
ResourcesMaxEntropy 0.5681
ResourcesMinEntropy 0.5513
ResourcesMeanSize 0.5218
ResourcesMaxSize 0.5210
SectionsMaxEntropy 0.5162
Characteristics 0.5089
SectionsMinEntropy 0.5038
SectionMaxVirtualsize 0.5020
AddressOfEntryPoint 0.5015

our final best feature set where 13 features exist. Table II
demonstrates the final selected features with the Information
Gain value of dataset 2.

TABLE II
THE FINAL SELECTED FEATURES FROM DATASET 2 AFTER APPLYING THE

INFORMATION GAIN METHOD, WITH CORRESPONDING INFORMATION
GAIN (IG) VALUES.

Feature Name IG Value
static prio 0.6623
nvcsw 0.6168
prio 0.6069
utime 0.5807
vm truncate count 0.5582
nivcsw 0.2569
map count 0.2305
free area cache 0.2073
mm users 0.2067
reserved vm 0.1797
last interval 0.1451
exec vm 0.1274
total vm 0.1250

D. Experimental Setting

We conducted our experiments to assess the performance
of our model in comparison with traditional machine learning
techniques, including SVM, LR, K-NN, DT, NB, and RF
classifiers. This section outlines the hardware and software
configurations used for the experiments, as well as the specific
methodology employed.

1) Hardware Configuration: The experiments were con-
ducted on a system with the following specifications:

• Processor: Intel Core i5-6200U (2.30 GHz, 2 physical
cores and 4 logical processors)

• Memory: 8 GB DDR4 RAM
• Graphics Card: Intel HD Graphics 620
• Storage: 500 GB HDD
2) Software Configuration: The following software tools

and libraries were employed for the experiments:
• Operating System: Windows 10 Home (64-bit)
• Python Version: 3.8.0
• Scikit-Learn Version: 0.23.2
3) Experiment Methodology: Both datasets were randomly

divided into training and test sets while maintaining the class
distribution between benign and malicious samples. Each
machine learning model was trained on the training data and

evaluated on the test data. To ensure the reliability of our
results, we employed 10-fold cross-validation for each model.

Python’s scikit-learn tools were utilized to develop the
algorithms, and the hyperparameter settings were carefully
tuned for each model.

This comprehensive experimental setup provides insight
into the hardware and software context of the experiments,
as well as the specific performance metrics used to evaluate
the models. These details contribute to the transparency and
reproducibility of the research findings.

E. Results

To distinguish between malware and legitimate samples,
we used SVM, LR, K-NN, DT, NB, and RF classifiers. The
outcomes of the models in terms of accuracy, precision, recall,
and F1 score are calculated from confusion matrices. Here, we
provide the accuracy, precision, recall, F1 score, memory use,
and processing time for each dataset with and without feature
selection. To demonstrate the required time and memory, we
choose the model build and prediction time. We also choose
the highest value of memory during model training and testing.
In terms of accuracy, precision, recall, F1 score, required time
and memory, Table III shows the outcomes of the models on
dataset 1 without feature selection and Table IV shows the
outcomes of the models on dataset 1 after feature selection.

For dataset 1, the accuracy before and during feature se-
lection is extremely close in this case. We observed that the
accuracy obtained using 53 features is roughly equivalent to
the accuracy achieved using 9 features. Here, the RF classifier
surpasses other models in terms of precision, accuracy, and
F1 score. Although the NB classifier has the best recall, it
performs poorly on other performance criteria for before and
after feature selection. When compared to RF, DT and K-NN
classifiers perform admirably. In comparison to RF, DT, and K-
NN, SVM is less accurate. However, when compared to other
approaches, LR fails to reach a satisfying F1 score and recall
score, even though the accuracy score is fail when compared
to DT, RF, and K-NN classifiers.

Tables III and IV further demonstrate that training and
testing without feature selection consumes more time and
memory compared to the setup involving feature selection.
The absence of feature selection leads to increased time and
memory requirements. We also observe that NB requires the
least amount of training time both before and after feature
selection. In terms of prediction, both RF prior to feature
selection and LR subsequent to feature selection require less
time. In addition, LR requires the least amount of memory
during training before feature selection, whereas KNN requires
the least memory following feature selection. Additionally,
LR consumes less memory for prediction both before and
after feature selection. The cost of a model increases with the
requirement of more memory and time. Therefore, it can be
argued that the cost of the model decreases following feature
selection.

Once more, we have demonstrated model performance and
results for dataset 2 based on time and memory both before and
after feature selection. Table V shows the outcomes, required
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TABLE III
FOR DATASET 1, THE EXPERIMENTAL RESULTS OF SEVERAL CLASSIFIERS WERE ANALYZED WITHOUT FEATURE SELECTION.

Classifier Accuracy Precision Recall F1 Score Build Time Prediction Time Build Peak Memory Prediction Peak Memory
SVM 0.98± 0.01 0.98± 0.03 0.98± 0.01 0.98± 0.01 57.750± 1.50 9.140± 0.50 33891300± 1− 2% 631800± 1− 2%
LR 0.97± 0.01 0.97± 0.02 0.96± 0.01 0.96± 0.01 3.150± 0.80 0.170± 0.01 3890600 ± 1-2% 591800 ± 1-2%
KNN 0.98± 0.01 0.97± 0.01 0.98± 0.02 0.98± 0.02 33.130± 1.00 70.350± 2.50 4562000± 1− 2% 4190400± 1− 2%
DT 0.98± 0.02 0.98± 0.01 0.98± 0.01 0.98± 0.01 1.900± 0.40 0.070± 0.02 20546000± 1− 2% 6381900± 1− 2%
NB 0.45± 0.02 0.42± 0.03 0.99 ± 0.01 0.59± 0.04 0.145 ± 0.05 0.078± 0.05 40346000± 1− 2% 22450100± 1− 2%
RF 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 2.330± 0.80 0.032 ± 0.02 22769000± 1− 2% 6664000± 1− 2%

TABLE IV
FOR DATASET 1, THE EXPERIMENTAL RESULTS OF SEVERAL CLASSIFIERS WERE ANALYZED AFTER FEATURE SELECTION.

Classifier Accuracy Precision Recall F1 Score Build Time Prediction Time Build Peak Memory Prediction Peak Memory
SVM 0.96± 0.01 0.95± 0.03 0.96± 0.01 0.95± 0.01 36.790± 1.20 4.880± 0.300 6278900± 1− 2% 629400± 1− 2%
LR 0.89± 0.02 0.88± 0.02 0.85± 0.03 0.86± 0.05 0.203± 0.10 0.002 ± 0.001 3871600± 1− 2% 592000 ± 1-2%
KNN 0.97± 0.01 0.96± 0.01 0.97± 0.04 0.97± 0.02 1.010± 0.50 5.305± 0.800 3285700 ± 1-2% 4189700± 1− 2%
DT 0.99 ± 0.01 0.97± 0.01 0.98± 0.01 0.97± 0.01 0.630± 0.10 0.006± 0.001 6740800± 1− 2% 1779400± 1− 2%
NB 0.44± 0.03 0.41± 0.05 0.99 ± 0.01 0.58± 0.06 0.047 ± 0.01 0.005± 0.001 6908700± 1− 2% 4041900± 1− 2%
RF 0.98 ± 0.01 0.99 ± 0.01 0.98± 0.02 0.98 ± 0.01 1.670± 0.50 0.031± 0.010 8962900± 1− 2% 2064500± 1− 2%

TABLE V
FOR DATASET 2, THE EXPERIMENTAL RESULTS OF SEVERAL CLASSIFIERS WERE ANALYZED WITHOUT FEATURE SELECTION.

Classifier Accuracy Precision Recall F1 Score Build Time Prediction Time Build Peak Memory Prediction Peak Memory
SVM 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 4.598± 1.00 1.2800± 0.500 8485600± 1− 2% 2271900± 1− 2%
LR 0.94± 0.02 0.95± 0.02 0.95± 0.01 0.94± 0.01 0.312± 0.05 0.1560± 0.005 1299700± 1− 2% 240900 ± 1-2%
KNN 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 1.280± 0.40 3.5600± 0.700 1127900 ± 1-2% 1383300± 1− 2%
DT 0.98± 0.01 0.97± 0.01 0.99 ± 0.01 0.98± 0.02 0.515± 0.10 0.0005 ± 0.0001 4984900± 1− 2% 1376800± 1− 2%
NB 0.69± 0.03 0.90± 0.02 0.56± 0.04 0.65± 0.03 0.156 ± 0.05 0.0780± 0.050 8123100± 1− 2% 4540500± 1− 2%
RF 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.651± 0.10 0.0312± 0.010 6210200± 1− 2% 1524400± 1− 2%

TABLE VI
FOR DATASET 2, THE EXPERIMENTAL RESULTS OF SEVERAL CLASSIFIERS WERE ANALYZED AFTER FEATURE SELECTION.

Classifier Accuracy Precision Recall F1 Score Build Time Prediction Time Build Peak Memory Prediction Peak Memory
SVM 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 2.466± 0.50 0.390± 0.10 2891700± 1− 2% 208400 ± 1-2%
LR 0.91± 0.02 0.92± 0.02 0.94± 0.01 0.93± 0.01 0.187± 0.05 0.005± 0.001 1292900± 1− 2% 240500± 1− 2%
KNN 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.156± 0.05 0.890± 0.10 1127000 ± 1-2% 1382400± 1− 2%
DT 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.078 ± 0.01 0.0003 ± 0.0001 2678200± 1− 2% 724200± 1− 2%
NB 0.56± 0.03 0.76± 0.02 0.42± 0.04 0.55± 0.03 0.150± 0.05 0.0155± 0.05 3341900± 1− 2% 1924600± 1− 2%
RF 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.281± 0.05 0.0156± 0.01 3425700± 1− 2% 867900± 1− 2%

time and memory of the models on dataset 2 without feature
selection.

Then, Table VI shows the outcomes, required time and
memory of the models on dataset 2 after feature selection.

The performance of various machine learning models was
evaluated on dataset 2 based on precision, accuracy, and F1
score, both before and after feature selection. The SVM,
K-NN, DT, and RF classifiers were found to outperform
other models. In contrast, the NB classifier failed to meet
the performance requirements, and the LR classifier achieved
a reasonable accuracy score but failed to attain satisfactory
precision, F1 score, and recall score, when compared to the
aforementioned classifiers. Additionally, the required time and
memory for the models were compared before and after feature
selection. It was observed that NB and DT required the least
training time before and after feature selection, respectively.
The DT classifier was found to be the fastest for prediction
both before and after feature selection, while K-NN consumed
the least amount of memory during training before and after
feature selection. SVM was found to use less memory after
feature selection, while LR used less memory for prediction
before feature selection. The cost of the model significantly
decreased after feature selection.

At last, we produced ROC curves as part of our cross

validation using 10-fold cross validation before and after
feature selection.

2a- 2f shows the ROC curve for dataset 1 for each of
the classifiers before feature selection, which includes 10-fold
curves and a mean curve. The RF, SVM, and LR all had the
highest mean Area Under Curve (AUC) scores of 0.99, K-NN
and DT also provide a good response, while the NB had the
lowest (mean AUC: 0.66)

On the other hand, 3a- 3f shows the ROC curve for dataset
1 for each of the classifiers after feature selection, which
includes 10-fold curves and a mean curve also. The RF, SVM,
and K-NN all had the highest mean Area Under Curve (AUC)
scores of 0.99, while the NB had the lowest (mean AUC: 0.85)
From the ROC curves before and after feature selection of
dataset 1, we can see that the classifiers are giving almost close
results. That means even after we reduced the features, our
model still responds like all the previous features are present.
The ROC curve before features selection of dataset 2 for each
of the classifiers is shown in 4a- 4f , which contains 10-fold
curves and a mean curve. The RF had the greatest mean Area
Under Curve (AUC) ratings of 0.95, followed by the SVM
with 0.93 and the LR with 0.91, while the NB had the lowest
(mean AUC: 0.84)

The ROC curve after features selection for dataset 2 for
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(a) Support Vector Machines classifier ROC curve (b) Logistic Regression classifier ROC curve

(c) K-Nearest Neighbors classifier ROC curve (d) Decision Tree classifier ROC curve

(e) Nave Bayes classifier ROC curve (f) Random Forest classifier ROC curve

Fig. 2. Receiver Operating Characteristic (ROC) Curves for Various Classifiers (SVM, LR, K-NN, DT, NB, RF) on Dataset 1 Before Feature Selection. Here
RF, SVM, and LR had the highest mean Area Under Curve (AUC) scores of 0.99, K-NN and DT also provided a good response, while the NB had the lowest
(mean AUC: 0.66).
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(a) Support Vector Machines classifier ROC curve (b) Logistic Regression classifier ROC curve

(c) K-Nearest Neighbors classifier ROC curve (d) Decision Tree classifier ROC curve

(e) Nave Bayes classifier ROC curve (f) Random Forest classifier ROC curve

Fig. 3. Receiver Operating Characteristic (ROC) Curves for Various Classifiers (SVM, LR, K-NN, DT, NB, RF) on Dataset 1 After Feature Selection. Among
these classifiers, RF, SVM, and K-NN achieved the highest mean AUC scores, registering an impressive 0.99, while NB exhibited the lowest mean AUC of
0.85.
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(a) Support Vector Machines classifier ROC curve (b) Logistic Regression classifier ROC curve

(c) K-Nearest Neighbors classifier ROC curve (d) Decision Tree classifier ROC curve

(e) Nave Bayes classifier ROC curve (f) Random Forest classifier ROC curve

Fig. 4. Receiver Operating Characteristic (ROC) Curves for Various Classifiers (SVM, LR, K-NN, DT, NB, RF) on Dataset 2 Before Feature Selection. RF
secured the highest mean AUC score at 0.95, closely followed by SVM with 0.93 and LR with 0.91, whereas NB exhibited the lowest mean AUC of 0.84.
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(a) Support Vector Machines classifier ROC curve (b) Logistic Regression classifier ROC curve

(c) K-Nearest Neighbors classifier ROC curve (d) Decision Tree classifier ROC curve

(e) Nave Bayes classifier ROC curve (f) Random Forest classifier ROC curve

Fig. 5. Receiver Operating Characteristic (ROC) Curves for Various Classifiers (SVM, LR, K-NN, DT, NB, RF) on Dataset 2 After Feature Selection. RF
achieved the highest mean Area Under Curve (AUC) score at 0.96, closely followed by SVM with 0.95 and LR with 0.90, whereas NB recorded the lowest
mean AUC of 0.65.
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each of the classifiers is shown in 5a- 5f , which contains
10-fold curves and a mean curve. The RF had the greatest
mean Area Under Curve (AUC) ratings of 0.96, followed by
the SVM with 0.95 and the LR with 0.90, while the NB had
the lowest (mean AUC: 0.65)

In a manner akin to dataset 1, for dataset 2, ROC curves
are presented both prior to and following the implementation
of feature selection. Notably, the classifiers produce highly
comparable outcomes. This observation implies that, despite
the reduction in features, our model’s performance maintains
consistency with that achieved using the full feature set.

V. DISCUSSION

When we analyze the findings presented above, we can
observe that the use of feature selection techniques can
greatly reduce the computational cost of our model without
compromising its accuracy in detecting malware. This is a
significant advantage as it allows for faster and more efficient
processing of large datasets. However, it is important to note
that our work has some limitations. Using existing datasets
has its benefits as it provides a thoroughly tested approach.
However having access, to malware files for feature extraction
and dataset creation is crucial. This autonomy allows us to
tailor the datasets to perfectly align with our research needs
potentially leading to accuracy, in our models. Moreover,
while removing features, we had to use different threshold
values across various datasets since we were unable to apply
them uniformly. This can introduce some inconsistencies in
the feature selection process and affect the performance of
the model. Another important factor to consider is that the
dataset already showed a level of accuracy, in all aspects,
which limits how much we can improve it further. However,
by maintaining the accuracy and lowering the computational
cost, we have still achieved a practical improvement in the
overall efficiency of the model. In terms of the implications
of the study, our findings have practical applications in the
field of cybersecurity. The ability to detect malware quickly
and accurately is crucial in protecting computer systems and
networks from potential threats. By reducing the computa-
tional cost of malware detection, we can improve the efficiency
and effectiveness of cybersecurity measures. Our study also
highlights the importance of feature selection in machine
learning models and the potential benefits it can provide.
In summary, our research imparts valuable perspectives on
the significance of feature selection in the realm of malware
detection. Moreover, it illuminates possible paths for future
investigations aimed at refining the precision and effectiveness
of these models.

VI. CONCLUSIONS AND FUTURE WORK

Financial institutions, corporations, and individuals are all
becoming increasingly vulnerable to malware. It’s critical to
have an automated system that can successfully identify and
detect malware while also reducing the danger of unwanted
activity. We proposed a feature selection-based model for
successful malware detection in this research and we used
several machine learning classifier techniques. There is a

variation in the best feature set for each classification method.
The results show that the malware detection tools cannot
focus on any of the single aspects independently. We ran all
of the trials on two malware datasets and used a rigorous
comparative analysis to compare the performance of SVM,
LR, K-NN, DT, NB, and RF classifiers. The RF and DT
classifiers outperformed other classifiers in the experiments,
attaining the best accuracy, F1, and precision scores with good
consistency. Additionally, feature selection lowers the cost of
the computation, which saves us a ton of time and memory.

In future work, it is possible to experiment with more
features and find the best features for classifications. Also,
we can extract these selected features from program file
directly. And we can implement a whole pipeline for malware
classification. Additionally, algorithmic improvements can be
achieved, by suggesting innovations in this field that combine
deep learning with ensemble learning. Different types malware
analysis has different types of datasets, we can apply our
method on those datasets.
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