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Utilised in a variety of  consumer products, per- and polyfluoroalkyl substances (PFAS) are major environmental contaminants that 
accumulate in living organisms due to their highly hydrophobic, lipophobic, heat-resistant, and non-biodegradable properties. This review 
summarizes their effects on microbial populations in soils, aquatic and biogeochemical systems, and the human microbiome. Specific 
microbes are insensitive to and even thrive with PFAS contamination, such as Escherichia coli and the Proteobacteria in soil and aquatic 
environments, while some bacterial species, such as Actinobacteria and Chloroflexi, are sensitive and drop in population. Some bacterial 
species, in turn, have shown success in PFAS bioremediation, such as Acidimicrobium sp. and Pseudomonas parafulva.
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Per- and polyfluoroalkyl substances (PFAS) are a large group of  
over 9,000 fluorinated carbon compounds used in a wide range of  
industrial and consumer applications thanks to their heat resistance, 
non-degradability, and hydro- and oleo/lipophobicity. Industrial 
applications include aqueous film-fighting foams, coatings, and 
surfactants, whereas consumer applications include non-stick cookware, 
shampoos, cleaners, paints, and food packaging materials (1–4) (Figure 
1). Their continued consumer and industrial use have made PFAS a 
major environmental and human health concern, as they contaminate 
soils, groundwater, rivers, lakes, drinking water, and the atmosphere.

They affect microbial communities across these diverse 
environments by disrupting their biogeochemical activities in water and 
soil, with a ripple effect on the organisms in the higher trophic level of  
the food chain, including humans and their microbiome (5–10).

This, in particular, affects their beneficial symbiotic role in animal 
and human metabolism through digestion and absorption of  
nutrients in the gut, neutralising drugs, and synthesis of  vitamins 
that aid immune response (7), which may ultimately advance to the 
development of  metabolic diseases (8). This evidence in mice models 
(7, 8) is driving research for comparable results in humans, although 
the knowledge of  PFAS-induced microbial dysbiosis and metabolic 
syndrome in humans is limited and very much understudied.

Over the years, different environmental remediation strategies 
have been designed to degrade PFAS contaminants in the 
environment (11). This includes nanofiltration designs, reverse 
osmosis in household drinking water (12), and biodegradation. 
However, heavily fluorinated domains in the molecular structure of  
PFAS make them resistant to degradation and present a major 
challenge to environmental scientists, regulators, and government 
agencies in the development of  active remediation methods (11). 
One possible avenue is microbial degradation, which has proved 
effective and cheap in the elimination of  chlorinated compounds, 
gasoline spills, and most common industrial wastes (13).

The aim of  this review is to take a closer look at the published 
and unpublished data on the complex relationship between PFAS 
and healthy microbiome in humans, microbial populations in the 
environment, and the utilisation of  microbial species in 
bioremediation of  PFAS in the environment.

PFAS: PROPERTIES AND CLASSIFICATION

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are 
synthetic compounds with at least one carbon-fluorine bond (CF). 
Some of  the most common PFAS include perfluoroalkyl acids 
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(PFAAs), perfluoro octane sulphonate (PFOS), perfluorooctanoic 
acid (PFOA), and other fluoroalkyl substances (14, 15) (Figure 2) .

Over the last 30 years, efforts have been made to characterise 
PFAS by their functional groups, from Banks et al. (14) in 1994 to 
the Organization for Economic Co-operation and Development/ 
United Nations Environment Program (OECD/UNEP) in 2019–
2021, which commissioned a report identifying 4730 substances 

(15, 16). Thanks to the further efforts of  OECD, the European 
Chemical Agency (ECHA), and the US National Institutes of  Health 
(NIH), by 2022 this number has grown to over 9,000 (17, 18).

PFASs are broadly classified as polymeric and non-polymeric, 
based on their chemical composition and the length of  side chains 
(Table 1). The higher the number of  carbon chains, the higher their 
hydrophobicity and bioaccumulation (19). Recent classification 

Figure 1 Most common sources of  
PFAS in the environment

Table 1 Polymeric and non-polymeric PFAS classification and examples (7, 11)
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Perfluoroalkyl Substances (PerFASs) Acronym Formula Examples
Perfluoroalkyl acids PFAAs CnF2n+1R PFHxS, PFOA

Perfluoroalakane sulphonates PFSAs CnF2n+1SO3- PFOS

Perfluorocarboxylic acids PFCAs CnF2n+1COO- C8-PFPA

Perfluoroalkyl phosphonic acids PFPAs CnF2n+1(O)P(OH)O- C8-PFPiA

Perfluoroalkane sulphonamides FASA CnF2n+1SO2NH2 FOSA

Perfluoroalkyl ether acids PFEAs CnF2n+1O-CmF2m+1 GenX

Perfluoroalkyl sulphonamideotic acids FASAAs CnF2n+1SO2NHCH2COOH FOSE, MeFOSA

Polyfluoroalkyl Substances (PolyFASs)
Fluorotelomer alcohols FT CnF2n+1CH2CH2OH FTO

Polyfluoroalkyl phosphoric acid esters PAPs (O)P(OH)3-X(OCH2CH2CnF2n+1)x diPAP

Fluorortelomer saturated aldehydes FTALs CnF2n+1CH2CHO 8:2 FTAL

Fluorotelomer unsaturated aldehydes FTUALs CnF2n+1CF=CHCHO 4,8-Dioxa-3H-perfluorononoate
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A
S Fluoropolymers FPs PFTE

Perfluoropolyethers PFPEs HOCH2O-(CmF2mO)n-CH2OH PFPE-BP

Side-chain fluorinated aromatics sc-F CnF2n+1-aromatic rings Fluoriated methacrylate
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PFAS AND THE HUMAN MICROBIOME

The human microbiome comprises 10–100 trillion microbes (9) 
which inhabit the entire human body, such as the gut, skin, and 
mouth. Its importance is obvious in different functions of  the skin, 
intestinal homeostasis, nutrient absorption, and overall host health.

The major source of  PFAS pollution in humans are industrial 
and municipal waste-water treatment plants (WWTPs). WWTPs 
also contribute directly to the release of  PFAS into the atmosphere, 
freshwater, and soil through recycled wastewater and the release of  
contaminated sewage sludge as biosolid for fertilisation (21, 22). 
Over 300 chemicals from the environment have already been 
characterised in different human clinical samples (20), which has 
shifted focus of  many microbiome projects on the diet and 
disruption of  endogenous microbial populations and their diversity 
in humans (23). A nine-year study across the US (24) detected PFOS, 
PFOA, perfluorohexane sulphonate (PFHxS), and perfluorooctanoate 
(PFNA) in over 95 % of  7,876 participants. Another, more recent 
study (25) reported high levels of  PFOA in overweight and obese 
12–18 year-old children (25).

Another important source of  air pollution are PFAS-containing 
materials such as upholstery, stain-resistant carpets, textiles, paints, 
and food packaging materials disposed of  in landfills. There in the 
landfills, PFAS precursors degrade into more lightweight and volatile 
PFAS such as fluorotelomer alcohols (FTOHs) and end up in the 
atmosphere through aerobic and anaerobic processes causing air 

groups them in three classes: perfluoroalkyl substances (PerFAS), 
polyfluoroalkyl substances (PolyFAS), and fluorinated polymers. 
PerFAS are straight-chain, fluorinated aliphatic compounds with a 
fully fluorinated methyl or methylene carbon atom. PolyFAS are 
branched-chain fluorinated alkyl compounds. They may have a 
non-fluorinated aromatic ring with a fluorinated methyl or methylene 
carbon group and an aliphatic side chain or a fluorinated aromatic 
ring with a fluorinated methyl or methylene carbon group with an 
aliphatic side chain (19). Fluorinated polymers are further divided 
into three subclasses: fluoropolymers, perfluoropolyether, and side-
chain fluorinated polymers.

The structure and chain lengths of  PFAS confer different 
physiochemical and functional properties in regard to their transport, 
accumulation, and degradation in the environment. PFAS with an 
aliphatic fluorinated long carbon chain which ranges from C4–17 
bioaccumulate more easily and resist biodegradation due to the 
strong C-F bonds (19).

Substantial efforts have been made to restrict the production 
and ban the use of  long-chain PFAS in commercial and consumer 
products, PFOS and PFOA in particular (20). However, precursors 
of  PFOS and PFOA, perfluoroalkyl carboxylic acids (PFCAs), 
perfluoroalkyl sulphonic acids (PFSAs), fluorotelomer alcohols 
(FTOHs), and shorter-chain PFAS such as GenX are still being 
produced and, therefore, still present pollution risk (Figure 3).
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Figure 2 Chemical structure of  
some common long- and short-
c h a i n  P F A S .  P F O A  – 
perfluorooctanoic acid (long-chain); 
PFOS – perfluorooctane sulphonate 
( l o n g - c h a i n ) ;  P F B S  – 
perfluorobutane sulphonate (short-
chain); PFBA – perfluorobutanoic 
ac id (shor t-chain) ;  GenX – 
hexafluoropropylene oxide dimer 
a c i d ;  P F H x S  – 1 - c h l o r o 
perfluorohexane sulphonate
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pollution (26, 27). However, no research data have specifically 
identified microbial species in the human oral/respiratory 
microbiome affected by airborne PFAS.

Long-chain perfluoroalkyl carboxylates (such as PFOA) and 
sulphonates (such as PFHxS) accumulate highly in plants and animals 
(30), whereas humans mostly accumulate PFAS through 
contaminated drinking water, non-stick cookware, food packaging, 
and food (31, 32). Food accounts for the bulk of  exposure, which 
ranges about 16–99 % for PFOA, 81–199 % for PFOS, and 38–96 % 
for PFCAs and PFSAs (33). In addition, animals raised and plants 
grown in PFAS-contaminated areas have shown high concentrations 
of  PFAS (34). This level of  contamination is evident in the end 
products such as eggs, grain, milk and meat, and fruit and vegetables 
(34–37).

PFOA, PFOS, and GenX are reported to be highly toxic to the 
intestinal microbiome by murine model and ex vivo human studies 
of  intestinal bacteria. The microbial abundance of  Collinsella 
aerofaciens, a major bacterial species active in the metabolism of  
carbohydrates in the human gut is altered at varying concentrations 
of  PFOA, PFOS, and GenX. However, Escherichia coli is insensitive 
to these chemicals even at concentrations higher than the reported 
tolerance of  Collinsella sp. PFCA (39). A study of  PFAS effects on 
Zebra fish (38) showed changes in the gut microbiome, inflammation, 
oxidative stress, impaired lipid metabolism, decreased levels of  
triglycerides and fatty acids, and compromised intestinal epithelial 
layer barrier. Our preliminary data show differences in the 
sensitivities of  human microbiome bacteria to PFOA, PFOS, and 
GenX to (39), suggesting that the ingestion of  these toxic chemicals 
from food and water can alter the gut microbiome and ultimately 
impair human metabolism. However, much more research is needed 
to evaluate the impact of  PFAS on human microbiome and 
metabolic activity. In addition, identifying the genetic markers in 

the affected microbial species might help to elucidate biological 
functions and pathways affected by PFAS in humans.

PFAS and microbes in the environment

PFAS are present in all ecosystems (40–42) and can easily affect 
microbes native to these systems/habitats, whose major function 
is to maintain biotic processes such as nutrient cycling, decomposition 
of  organic matter, and biodegradation of  pollutants. Considering 
that microbes have a brief  lifecycle and replicate rapidly due to 
simple genome, they quickly respond to environmental stress 
through genetic mutations and may be a good model to study PFAS 
toxicity. (43). Here we detail the effects of  PFAS contamination on 
microbes in different environmental systems.

Aquatic ecosystems

PFAS have been found in a variety of  aquatic systems, from 
rivers, lakes, and streams to groundwater, municipal sewage, treated 
drinking water, rainfall, and snow (44, 45). Volatile PFAS and their 
precursors, such as fluorotelomer carboxylic acids (FTCA), 
fluorotelomer unsaturated carboxylic acids (FTUCA), fluorotelomer 
sulphonate (FTSA), and perfluoroalkane sulphonamido acetic acid 
(FASAA) undergo a metabolic transformation in the atmosphere 
to produce short-chain PFSA and PFCA that end up in the aquatic 
environment. These short-chain PFAS are highly reactive with water 
(48), easily bioaccumulate in the aquatic food chain, and are toxic 
to many aquatic organisms (such as invertebrates and green algae) 
(49).

Due to high hydrophobicity, long-chain PFAS often have an 
even greater potential for bioaccumulation in aqueous environments 
and organisms (50). They are often released directly into surface 
waters from fluorine chemical plants or WWTPs (51). In Fuxin, 

Figure 3 PFAS transport across 
different ecosystems



171Shittu AR, et al. The effects of  per- and polyfluoroalkyl substances on environmental and human microorganisms and their potential for bioremediation 
Arh Hig Rada Toksikol 2023;74:167-178

China, the levels of  PFOA have been reported to reach up to 
524 ng/L in the groundwater and 668 ng/L in the river (52), which 
is way above the recommended regulatory standards.

Carbon build-ups in aquatic ecosystems contribute substantially 
to the control of  metabolic activities of  environmental microbiomes 
(53) and to the growth of  planktonic bacteria and protozoa. 
However, PFAS reduce the amount of  biogenic and total dissolved 
carbon in water, which adversely affects many microbial communities 
and nutrient cycling and composition in aquatic habitats (54, 55). 
PFOS and PFNA have also been reported to biomagnify in the 
food web of  aquatic animals (56).

Exposure to PFAS significantly affects the balance of  bacterial 
population. There are reports of  reduced bacterial diversity and 
drops in the populations of  Actinobacteria and Bacteriodetes (57) in 
favour of  Verrucomicrobia, Proteobacteria (58, 59), and Photobacterium 
phosphoreum in surface water (60, 61). These studies also report that 
perfluoro butanoic acid (PFBA) interferes with the transfer of  
nutrients in bacteria (60), while perfluorotetradecanoic acid 
(PFTeDA) moves up the food chain from heterotrophic bacteria to 
amoebae (protozoa) (59). Some genera, such as Bacteroidetes, 
Proteobacteria, and especially Acidobacteria, have been reported resistant 
to PFAS concentrations of  up to 20 mg/L (62) (Table 2).

The molecular mechanism of  PFAS toxicity to microbes involves 
oxidative stress, which damages the cell membrane and DNA, 
rendering some bacteria inactive (63, 64).

Sediments provide a habitat for a wide variety of  benthic 
organisms, and much of  their biomass includes microorganisms 
important for ecological processes such as biodegradation, 
biogeochemical cycling, and bioremediation (66–70).

Pollutants such as PFAS seem to have a major role in structuring 
microbial communities and their function in aquatic sediments (71, 
72). Long-chained PFAS tend to build up over time (65, 73), which, 
once a threshold is crossed, may have irreversible negative effects 
on microbial populations and the structure of  the benthic zone 
(74–77). In such conditions, tolerant and sulphate-reducing strains 
like the Desulfococcus genus and GOUTA19, become dominant 
microbial communities, and diversity drops (77–79).

PFAS in drinking water and health effects

Reports about the occurrence and toxicity of  PFAS in drinking 
water come from all over the world (28, 48, 80). Average 
concentrations range between <10 ng/L and 1200 ng/L (81–85). 

PFAS occurrence in drinking water has been linked to several sources 
such as nearby fluorochemical production plants, PFAS-based 
firefighting foam (86), WWTPs, and surface runoff  (87). Even at 
low concentrations (ng/L) PFAS in drinking water may have 
deleterious effects on human health as PFAS tend to build up in 
the liver and affect liver function (88). PFAS contamination of  
drinking water at levels above the United States Environmental 
Protection Agency (US EPA) health-based reference level of  
70 ng/L (89) have also been associated with pregnancy-induced 
high blood pressure, hypertension, and preeclampsia as well as 
testicular and kidney cancers. Continued testing of  drinking water 
and implementation of  regulatory measures is therefore essential 
for keeping PFAS concentrations below this limit.

Soil ecosystems

Soil takes the lead as a sink for persistent chemical pollutants 
released into the environment from sources such as fluoride plants, 
aqueous film-forming foam from fire training sites, and sludge and 
biosolids from WWTPs, landfills, and incineration plants (6, 90–92). 
PFAS accumulate in soil over time and persist there for a long time, 
affecting micro and macro-organisms, which are abundant and serve 
to decompose organic matter, recycle biogeochemicals and nutrients, 
and remediate soil of  contaminants (5, 43).

Soils are mostly contaminated by PFOS, because of  their 
widespread and long-time application (94), but all PFAS change the 
structure of  soil and, consequently, the distribution and function 
of  microbial communities (5, 75, 93, 94). A recent study relying on 
a next generation sequencing technology (95) showed that PFOA 
in low concentrations affect bacterial diversity in soil less than PFOS. 
As for PFAS toxicity in soil microbial species, the mechanisms 
include membrane disruption, oxidative stress, and DNA damage-
induced inactivation and/or death in Escherichia coli (96). In 
Pseudomonas putida PFOA is more toxic when combined with either 
chromium or tetra butyl ammonium (97).

PFAS contamination usually affects the diversity and 
composition of  soil microbial communities. Long-chained PFAS 
and PFAS with the sulphonic group are more toxic to soil microbial 
flora than short-chained PFAS with carboxylic groups (97). There 
are reports, sometimes apparently controversial, that some important 
bacterial groups are eliminated, such as Cyanobacteria (75, 78), or 
depleted, such as Chloroflexi, Haliangium, Latescibacteria, and some 

Table 2 Impact of  PFAS and its compounds on aquatic and soil microbes

Microbes/Genus Response to PFAS exposure PFAS compound References
Sediminibacterium, Opitutus, Luteolibacter, Microcystis Increase PFAS 48

Photobacterium phosphoreum Increase PFCA, PFOS, PFOA 58, 61

Actinobacteria and Bacteriodetes Decrease PFAS 106

Verrucomicrobia and Proteobacteria Increase PFAS 106

Proteobacteria and Chloroflexi Decrease PFOS 62

Desulfococcus and GOUTA19 Abundant/ Increase PFAS, PFOS, PFOA 77, 79



172 Shittu AR, et al. The effects of  per- and polyfluoroalkyl substances on environmental and human microorganisms and their potential for bioremediation 
Arh Hig Rada Toksikol 2023;74:167-178

species of  the genus Acidobacteria (6, 35, 75). Higher PFC 
concentrations are also known to impede the growth and metabolism 
of  the Bacillus spp. (95) and Sphingomonas paucimobilis (104, 105).

Other groups seem to thrive, such as Firmicutes, some 
Acidobacteria, and Actinobacteria (75). Comparative studies of  bacterial 
communities affected by PFAS contamination point to potential 
changes in soil nutrients (5, 97, 98), total carbon, and pH (99). 
Elevated PFOA concentrations in sediments seem to boost some 
populations of  Proteobacteria (100–102), such as Pseudomonas spp., 
which may be owed to their ability to defluorinate fluorotelomer 
alcohols by removing multiple CF2 groups to form shorter-chain 
PFCAs (102), which are less toxic (95, 103) and quicker to degrade 
(95). Besides Proteobacteria, Verrucomicrobia also seem to withstand 
PFAS contamination (106) (Table 2).

Greater abundance of  some bacteria in contaminated soils 
provides an insight into which bacterial groups could be used to 
enhance PFAS biodegradation and bioremediation.

The effects of  PFAS on soil organic content

As PFAS contamination affects the composition and diversity 
of  microorganisms in soil, so does it affect its organic matter content 
(107, 108). Soil microorganisms are active in biogeochemical cycling 
and play an important role in pollutant degradation (109). The effect 
of  PFAS on soil microbial populations may therefore affect the 
microbial diversity and ability to carry out geochemical processes 
in the soil (109, 110).

PFAS-induced changes in the abundance of  fungi and bacteria 
may reflect on the organic content in soil and eventually carbon 
content available for cycling. However, possible connections with 
biogeochemical cycles have not been elucidated yet.

Zhalnina et al. (111) studied the effect of  PFAS on the nitrogen 
cycle (nitrification and denitrification) and related cycle genes in 61 
ammonia-oxidising microorganisms and reported that PFAS did 
not affect the ammonia monooxygenase gene abundance in bacteria 
but reduced it significantly in archaea. In fact, PFAS treatment seems 
to have favoured the growth of  Acidovorax temperans in the soil. A. 
temperans is notorious for reducing the nitrate content in soil, and 
its proliferation implies nitrate depletion in PFAS-contaminated 
soils (Table 3). In contrast, nitrate- and sulphate-reducing bacterial 
genera, such as Acidobacteria, and Gammaproteobacteria, are inhibited 
by PFAS (35), leading to an increase in the level of  nitrates and 
sulphates in the soil (35). Nitrates and sulphate concentrations and 
pH levels of  contaminated soils influence nutrient availability, which, 
in turn, influences which plants will grow there.

As for the carbon cycle, PFAS are reported to inhibit glycoside 
hydrolases and interrupt carbohydrate metabolism and membrane 
transport in soil microbes (99). In addition to glycoside hydrolase 
inhibition, long-chain PFAS inhibit the activity of  sucrase and urease (75).

Impact of  PFAS contamination on vegetation

Several studies have shown that PFAS accumulate in spring 
wheat, oats, potatoes, maize, perennial ryegrass, winter wheat, winter 

Table 3 Impact of  PFAS on soil microbial communities and associated biogeochemical cycles

PFAS Impact on population Bacteria groups impacted Potential nutrient cycle associated References
PFOS Increase Bacteriodetes Nitrogen cycle 34, 94, 127

PFOS/PFOA Increase Alphaproteobacteria Nitrogen cycle, Sulphur cycle, carbon cycle 5, 75, 

PFOA, PFOS Increase Gammaproteobacteria Nitrogen cycle 5, 75, 126

PFOA, PFOS Increase Acidobacteria Carbon cycle, nitrogen cycle 5, 34, 75, 127, 128

PFOS Increase Firmicutes Nitrogen cycle 75, 129, 130

PFOA, PFOS Increase/Decrease Chloroflexi Sulphur cycle 5, 34, 75, 127, 131

PFOS, PFOA Increase/Decrease Actinobacteria Nitrogen cycle 5, 75

PFAS Decrease Thermoleophilia Sulphur cycle 5

PFOS, PFAS Decrease Deltaproteobacteria Sulphur cycle 5, 75

Table 4 Microbial species and mechanisms by which they biodegrade PFAS

Bacterial species Biodegradation mechanism PFAS References
Acidimicrobium sp. S. A6 Defluorination PFOA, PFOS 124

Synechocytis sp. PCC 6803 Decarboxylation, 2x reductive & oxidative defluorination, 
trifluoromethyl loss PFOA, PFOS 132

Pseudomonas parafulva S. YAB1 Decarboxylation PFOA 133

Pseudomonas aeruginosa S.HJ4 C-C bond cleavage PFOS 10

Pseudomonas plecoglossicida 2.4-D Decarboxylation, desulphonation PFOS 134

Gordonia sp. S. NB4-1Y Desulphonation FTSA, FTAB 135

Mycobacterium vaccae Dechlorination FTOH 136
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rye, canola, winter barley, carrots, and cucumber through soil 
(112–115). The last two studies (114, 115) point to the use of  sewage 
effluent as fertiliser that contaminates the soil and then crops. 
Lechner and Knapp (114) further discourage the idea of  air-to-plant 
transfer, as plants growing on soil not fertilised by sludge showed 
no increase in PFAS concentrations.

MICROBIAL BIOREMEDIATION OF PFAS

As we indicated earlier, strong covalent bonds between PFAS 
atoms make them resist biodegradation by microbial metabolism. 
Biodegradation has proven successful with oil and gas spills, 
chemical and industrial wastes, and other environmental pollutants. 
Although our current knowledge of  microbial metabolism of  
fluorinated compounds is modest, enormous progress has been 
made towards microbial biodegradation of  highly fluorinated alkyl 
compounds. Recent concepts involve direct targeting of  specific 
PFAS molecules and regions that have fewer fluorine atoms, such 
as fluorobenzene, fluoroacetate, perfluorohexylethanol, and 
perfluorohexylsulphonate (61, 116–118). They also rely on combined 
knowledge of  microbiology, enzyme biochemistry, and chemistry.

Bioremediation has a number of  advantages over the classical 
physical and chemical remediation methods, including incineration, 
whose major drawback is the release of  hazardous hydrogen fluoride 
and other toxic gases in the air. Other methods of  PFAS elimination 
from water involve reverse osmosis, nanofiltration, and activated 
carbon filtration, yet these methods have not proven effective, safe, 
and reliable (120–122).

In contrast, biodegradation of  PFOA and PFOS using activated 
sludge under low oxygen conditions has been reported successful 
(123). Success in defluorination has also been reported with 
fluoroacetate dehalogenase in the biodegradation of  difluoractate, 
2,3,3,3-tetrafluoropropionic acid, and trifluoroacetate (124). 
Microbial degradation of  chlorides involves different mechanisms 
based on four types of  reactions: oxidation/reduction, hydrolysis, 
substitution, and elimination. Bacterial species with reported success 
in PFAS bioremediation include Acidimicrobium sp. and Pseudomonas 
parafulva (Table 4).

CONCLUSION

Physical, chemical, and biological methods are being explored 
to immobilise, eliminate, or degrade PFAS in the environment, and 
microbial remediation shows promise. It would be interesting to 
know how soil microbial bacteria adapted to PFAS can help in soil 
remediation, and especially how much PFAS they can take up and 
metabolise.

Another venue of  action should involve more stringent 
regulations to minimise the use of  PFAS and with it the threat it 
poses to the living organisms and humans.
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Djelovanje per- i polifluoroalkilnih tvari na okolišne i ljudske mikroorganizme i njihov potencijal za bioremedijaciju

Budući da se koriste u izradi raznih potrošačkih proizvoda, per- i polifluoroalkilne tvari (engl. per- and polyfluoroalkyl substances, krat. PFAS) 
veliki su zagađivači okoliša koji se nakupljaju u živim organizmima zbog svoje izrazite hidrofobičnosti, lipofobičnosti, otpornosti na toplinu 
i biološke nerazgradljivosti. Ovaj članak donosi sažeti pregled njihova djelovanja na populacije mikroba u tlu, vodnim i biogeokemijskim 
sustavima te na humanom mikrobiomu. Pojedini su mikrobi neosjetljivi na zagađenje PFAS-om, čak i napreduju, poput bakterije Escherichia 
coli i proteobakterija u tlu i vodi, a osjetljive su pojedine bakterijske vrste, poput rodova Actinobacteria i Chloroflexi, pa im se smanjuje populacija 
u takvom okružju. Neke su se, pak, bakterije pokazale uspješnima u bioremedijaciji, poput vrsta Acidimicrobium sp. i Pseudomonas parafulva.
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