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INTRODUCTION

A graph G is defined as a pair G = (V,E), where V =
V(G) is a non-empty set of vertices and E = E(G) is a set
of edges. Throughout this paper the term »graph« means
finite graph in which the set of vertices V is finite.
Chemical graphs are just graph-based descriptions of
molecules, with vertices representing the atoms and
edges representing the bonds. A numerical invariant as-
sociated with a chemical graph, especially if it is of
chemical significance and/or applicability, is called top-
ological index.

The Wiener index W is the first topological index in-
troduced by the chemist Harold Wiener for investigating
boiling points of alkanes.! After Wiener, many topologi-
cal indices were proposed by chemist and also by mathe-
maticians. The Szeged index is a topological index re-
lated to W, introduced by one of the present authors,? de-
noted here by Sz,. To define the Szeged index of a graph

over all edges e = uv of G, where m,(¢|G) is the number of edges whose distance to vertex u is
smaller than the distance to vertex v, and where m,(¢|G) is defined analogously. The aim of this
paper is to compute the edge Szeged index of the Cartesian product of graphs. As a conse-
quence of our result, the edge Szeged index of Hamming graphs and C,-nanotubes are com-

G, we assume that e = uv is an edge connecting the verti-
ces u and v. Suppose that n,(¢|G) is the number of verti-
ces of G lying closer to « than to v, and that r,(¢|G) is the
number of vertices of G lying closer to v than to u. Ver-
tices equidistant to # and v are not taken into account.
Then the Szeged index of the graph G is defined as
852(G) = Zmiuer)u(€ G)ny,(e|G). For more information
about the Szeged index and its mathematical properties
one should consult the articles.3-7

Suppose that u and v are vertices of G. The distance
d(u,v) is defined as the length of a minimal path be-
tween u and v. If e = xy is an edge of G then d(u,e) =
Min{ d(u,x),d(u,y)}.

In the Ref. 8, an edge version of the Szeged index
was introduced, named »edge Szeged index«. This new
index is defined as Sz,(G) = X,m,(¢G)m,(¢G) where
m,(e|G) is the number of edges whose distance to vertex
u is smaller than the distance to vertex v, and where
m,(e|G) is defined analogously.
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Throughout this paper our notation is standard and
taken mainly from the books.’"!! Following Imrich and
KlavZar,!'! the Cartesian product G x H of two graphs G
and H is defined on the Cartesian product V(G) x V(H)
of the vertex sets of the factors. The edge set E(G x H)
is the set of all pairs [ (u,v),(x,y)] of vertices for which ei-
ther u = x and [v,y] € E(H) or [u,x] € E(G) and v = y
Thus V(G x H) = V(G) x V(H) and
E(Gx H) = {[(u,0),(x;y)] | u = x, [vy] € E(H), or,

[u.x] € E(G), v = y}. Moreover, K, denotes a complete
graph with n vertices and a hypercube of dimension n,
Q,., is the Cartesian product of n copies of K,.

MAIN RESULTS AND DISCUSSION

For investigating the mathematical properties of a given
topological index y, it is important to compute y(G x H),
for every graphs G and H. One should recall that numer-
ous molecular graphs are of the form G x H. In the
papers'2-14 this problem was solved for the Wiener, ver-
tex Szeged, and PI index. In this section we continue
along the same lines, and compute the edge Szeged in-
dex of product graphs.

We first introduce a further »edge-vertex Szeged in-
dex« denoted here by Sz,. It is defined as Sz,,(G) =
122 e [1(d GIm(€d G) + n(d GIm,(dG)],  where
n,(eG), n(eG), m,(e|G) and m(e|G) are defined in Sec-
tion 1.

Lemma 1. — Suppose G is an acyclic graph with exactly
n vertices. Then Sz,,(G) = W(G) —n(n — 1)/2.

Proof: By a result of Dobrynin and Gutman,'® Sz(G) =
W(G) for acyclic graphs G. So,

SZev(G) =

1125 - cerc [ 1 G)m(d G) + n (e Gm,(¢] G)] =
]/22uv=eEE(G)[ I’Lu(€| G)(”v(e| G)_l) + I’lu(€| G)(nu(e| G)_l )] =
1l22uu=eEE(G)[2 nu(e‘ G)nv(e| G) - (i’lu(€| G)+l’lv(€| G))] =
Sz,(G) —n(n—-1)/2 = W(G) —n(n - 1)/2. n

In order to prove our main result, we assume that
V(G) = {Ml,l/tz,. } V(H) = {UI’UZ"--’U‘Y}’ Am =
[0 (0] | vv; € E(H)}, 1 <m < and B, =
{[(uiv,),(uv)] | wiuj € E(G)}, 1 <n<s. It is easy to see
that the A,,’s and Bn’s are partitions of the edge set of
G x H. We also assume that C,, = { (u,,,0;) | v; € V(H)},
1<m<r,and D, ={(u;,v,) | u; € V(G)}, 1 <n<s. Clearly,
the C,,’s and also D,,’s are two partitions of V(G x H).

The following Lemma is crucial for our main result.

Lemma 2. — With the above-specified notation we have:
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(i)  For every [(u,,0),(u,,0)] € A,
dGXH((upvvk)’[(unvi)v(ut’vj)]) <
dGXH((u]ﬁvl)v[(ut’vi)9(ut’vj)])
if and Only if dH(Uk’[vi’vj]) < dH(v17[vi’vj])'

(11) dGXH((up’vk)v (ui»vt)) < dGXH((Mp’UZ)’ (ui’vt))
if and only if dy(vi,v,) < dy(v;, v).

Proof: (i) and (ii) are immediate consequences of Corol-
lary 1.35 in the book.!! [ |

Lemma 3. — For every [ (up,0,),(u,,0))] € A,
(1) m(u Uk)([( vk) (up’vl):"G x H)
IV(G)m, ([Uk»Uz]|H) + [E(G)|n, ([v.v,]H),
(1) 1200 ([0, (11,0) ] G X H = [ V(G| ([v0,]| H).-

Proof: Directly from the definition, we have
my, ([ve.v ] H = [{[v,v;] € EM)|dp(opfviv;]) < du(v[vio]}
whereas by Lemma 2(i),
|{ [(ut’vi)’(utvvj)] € At| dG X H((Mp’vk)v[(unvi)’(ut’vj)]) <
da  n((p0) [ U0 (upv)D}| = my ([U,v]G). Since the Aj’s
are disjoint, [{ e € UA,|dg . u((ty,00).€) < dg x u((p,0)),€) |
=[V(G)|my,([v4,v/]|G). On the other hand, n,,([v,,v/]|H) =
[{ v, € V(H)|dy(vg,v) < dy(vp,v,)}|. Therefore By Lemma
2(11)’ H[(uivvt)’(ujvvt)] € Bt|dG>< H((upsvk)’[(Mi’vt)s(uj’vt)]) <
da « u((p0), [(upv).(upv)DY| = degg(upn, ([vev] H).
Since the B;’s are disjoint, |{ e € UB,, | dg x u((U,n,01),€) <
dg « u((Umv).0)}| = (1122 i<, degg(up)ny, ([vpv/]|H). But
(UAm) N (UBn) - @ SO my, vk)( (up9vk) ( Ul)]|G X H) -
e € (AW U (UB)d((ipun.e) < dlupw.e)) =
|V(G)| mvk([vksvl:" H) + |E(G)|nvk([vk’vl]‘H)

This completes the proof of (i). The proof of (ii) is
similar and so it is omitted. |

Theorem 1. — Sz,(G x H) =

IV(G)3Sz,(H) + 2E(G)||V(G)*Sz.,(H) +
|V(G)||E(G)|*Sz,(H) + |[V(H)[3Sz,(G) +
2/E(H)| V(H)[%Sz,,(G) + [V(H)[|E(H)|?Sz,(G).

Proof: Since (UA,) N (UB,) =J

Sz(G x H) = X e, m(dG x H) my(eG x H) +

Y eun. (G x Hm,(¢fG x H). On the other hand, By
Lemma 3

Zeea,mle|Gx Hm(e|G x H) =

X vi,vj]eE(H)q V(G)| 2mv,-([ Ui,vj]\ H)mvj([ vi’vj:" H) +

[EG)n, ([vav ) H)ny (o0 H) +

[EG)V(G)(my[vi, ]\ Hyn, ([v:0;]H) +

my,([vv|Hn, ([ v ,]\H))-

Then we have Zoeon,, e Gx Hm(Gx H) =
[V(G)*Sz(H) + [E(G) 4 V(G)[Sz,(H) +
2|V(G)AE(G)|Sz,,(H). Since Hx G = G x H, for comput-
ing X, ,m, (¢fGxH)m,(¢eGXxH), it suffices to replace
G and H in Eq. (1), which completes our proof. u

Theorem 2. — Sz,,(G x H) = |V(G)]3Sz,,(H) +
[E(G)||V(G)%Sz,(H) + [V(H)*Sz,,(G) +
|E(H)||V(H)|?Sz,(G).

Proof: By definition, we have:
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Sz.,(GxH) =
172% en,, [m(d G xH)n,(d G xH) +
m,(e| G xH)n, (e GxH] +
1/2% e g [m. (e GXH)n, (el G x H) +
m,(dGxH)n(dGxH)] (2

On the other hand, By Lemma 3,

Zoeon,[m(eG x Hn(dG x H) +
m,(e|G x H)n,(e|G x H)] =
L evGZe=uceml 2 V(G E(G)n,(d H)n,(eH) +
|V(G)|*(m,(eH)n(eH) + m,(eH)n,(eH)] =
IV(G)*Sz.,(H) +[E(G)[| V(G)|%Sz,(H).

Similarly, one can compute the second summation

of Eq. (2). |
Suppose ®'_, G; denotes the Cartesian product of
Gy, Gy, ...,G,. If G, =G, = ... =G, = G then we write

GI’I as ®:',l:lGi' AISO, E;,i = E(®Z:l,k¢in) and V,
V(® Z=1,k¢in)- Suppose E; = E(G;) and V; = V(G)), 1 <i<
= H, 1J¢1|V | and by Corollary
1.35 of the book of Imrich and KlavZar,!!

n. Then obviously |V, |

[EG x H) =
1
2

1
Z(u mev(Gxn) degaxu((a.b)) =
Zuev(6) Zpevan [degg(a) + degy(b)] =
IE(G)IV(H) +[EH)[|V(G)|.

An inductive argument shows that
|EjH Vil
_] 1,j#i |V1|
Klavzar, Rajapakse, and Gutman!2 proved that Sz,(G x H) =
|[V(G)3Sz,(H) + |V(H)]3Sz,(G). Again, by means of
mathematical induction one can see that Sz,(®-; G;) =

21| Viil? Sz,(G)). Therefore, we arrive at the following
generalizations of Theorems 1 and 2:

Bl = A3).

Theorem 3. —
i) Sz.(®L Gy =
SV 0il2Sze(Gy) + [EG IV 5,i282(G],
(i)  Sz(®L G) =
SV aiPSzo(G) + 2E |V 5% Sz (G)] +
[E 2V il S2(Gy).

Proof: (I) In Theorem 2, we proved the case of n = 2.
Suppose the result is valid for n.

S2( @ G) = 520G X ®L, G)) =
IVt 3S2(®@ 121 Gj) + B[ Vi 2S24(® 21 G) +
IV st S2e(Grit) + [E st natllVisin|* S20(Gat) =
E Ve d? Sze(G) + [V it ns P S2e(Grpr) +
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|En 1|‘Vn+1||vn+l 1|2 SZU(Gi) +

n |En+l|'| rf+l,i‘
i=1 |

SZU(Gi) +

+1|

‘En-%—l n+1||V n+l n+l‘ SZU(G}‘H-I) -

|Vn+l l‘ SZ(:‘U(Gi) +

|E i H Vi,

Vi il? S2(G) | | Vs || E i 1+
|Vn+1|

|E n+l, n+1HV n+l, n+1| SZU(Gn+1) (4)

Apply Eq. (3) and our formula for |V}, we have:

| En+l | | +l 1|
\% E¢| + ———
| n+1H n,z‘ |Vn+1|
Vo [EjHVail Bl Vsl a
n+l ] Lj#i |Vl| |Vn+1|
n |E || n+l || | ‘En+lH Vri+lz| _
A:ly- -
=Ly | Vil | Vo |
¢
n ‘ Ej || V""‘l:j | ‘ En+1 H Vrf+1,i| _
=1 i =
S A | Vi |
Y

By this equation and Eq. (4), one can see that
Sz @ G)) =
SV el 820G +[E IV el S2,(G))1.

(IT) In Theorem 1, we proved the case of n = 2 and
so we can assume that the result is valid for n > 2. Then

872G X®L1 G)) = |V,,°S2(® L, G)) +
2Bl Vil 3Sz.(® -, G)) +
[Etl 21Vt S2o(® 121 G) + [V 5yt 1 382(Gry) +
2E itV st it Sze(Grat) +
|E st st 21V st ast] S2(Gpn) =
ELV a1 il? $2(Gy) + [V st pit P S2e(Grat) +
22 LBl Vil V 1 il* Szeo(G) +

|E i1 Ve

22 Sze(Gy) +

| +1|

2 |Efz+l,n+l ||V;+1,n+1|2 SZe(Gpus) +
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Y E 2 Vst 2V 511 S24(Gy) +

w |En 2 Viil?

i= Sz,(G;) +
' ‘Vn+l |2

221 ]‘En1||En+1HVn+l 1‘2 Szv(Gi) +

|E n+l n+1| |V n+l n+1|SZv(Gn+1) =

SV anil? S2(G) +

+ ‘ En+1 H Vnc+l,i| +
|Vn+1|

2E ;+l,n+l||V ;+l,n+l|2 S7e(Gpa1) +

221 ]|V +11|2SZev(G)[|Vn+]||E 1‘

En Vrf i
SV SlSz2 (G ||V, +1||En,\+i' el Vool | |
|Vn+]|

|E n+l n+l| |V n+l n+1‘ S7(Gpi1) =
IV i1 l3 S2G) + 2By IV > S2,(G)] +

2|E +lz|2|V +11| SZU(G)

This proves the result. |

As an immediate consequence of previous theorem,
we have:

Corollary. —
() Sza(G") = H V(| V[S(G) + (n-1) |E|Sz,(G)),

(i) Sz(G") = HVP"(VI*S(G) + 2(n-1) V|[EISz,,(G) +
(n—1)7E2Sz,(G).

We now apply our result to compute the edge Szeged
index of some well-known graphs. Following Imrich and
KlavZar,!! consider the graph G whose vertices are the
r-tuples b1b,...b, with b; € {0, 1, ..., n—~1}, n; > 2, and
let two vertices be adjacent if the corresponding tuples
differ in precisely one place. Such a graph is called a
Hamming graph. It is well-known fact that a graph G is
a Hamming graph if and only if it can be written in the
form G = @Y, K, . In the following example, the edge
and edge-vertex Szeged indices of a Hamming graph are
computed.

Example 1. — Consider the complete graph K,. Then
Sz,(K,) = n(n-1)/2, Sz,(K,) = n(n—1)(n-2)%2 and Sz,(K,) =
n(n—1)(n-2)/2.

r+4 1

.
SzeoHon) = Ll 3 = 2
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Example 2. — Consider the hypercube Q,. It is easy to
see that Sz,(Q,,) = n23"3. Also, by Corollary of Theorem
3, 52,Q,) = n(n-1y2%"5 and §z,,(Q,) = n(n-1)23"*.

Example 3. — In this example the edge Szeged index of a
C,4 nanotube R is computed. By definition of Cartesian
product of graphs R = P, x C,,, where P, is a path on n
vertices and C,, denotes the cycle on n vertices and m, n
are positive integers. To compute the edge Szeged index
of R, we first compute the verted, edge and edge-vertex
Szeged indices of P, and C,,. On can see that, Sz,(P,) =

n+1 n+l )
3 ’SZe(Pn)= 3 —(l’l—l),
n+1 n+l
SZ(ZU(PH) = 3 - K

3

n
7 n is even
SC) =1 ity
T n is odd
(n—4)(n—1)2 .
T n is even
Sze(cn) = n(n_2)2 ) and
T n is odd
n2(n-2) .
74 n is even
Szev(cn) = n(n_l)Z )
4 n is odd
Therefore by Theorem 3,
Sz.(R !
Ze( ) = 12
16n3m3=26n3m? +27nm—-12n3- .
24n2m3+23nm3—12m3—-16nm? n1s even
23nm3-12n’m—12m3+3nm+12n’m? — .
n is odd

26n3m? + 21n3m+16n3m3—-24n’m3-22nm?

Example 4. — Suppose H, ,, ., denotes the Hamming
graph with parameters ny, ny, ..., n,. By Theorem 3, one
can compute a formula for computing edge Szeged in-

dex of H, ,, .., For the edge-vertex Szeged index of this

o

r+3 1 1 ni e ni
PR 2 7 12,]1*]—421-’- 2| &)
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SAZETAK

Bridni Segedinski indeks produkta grafova

Mohammad Hosein Khalifeh, Hasan Yousefi-Azari, Ali Reza Ashrafi i Ivan Gutman

Bridni Segedinski indeks molekuskog grafa G je definiran kao zbroj produkata m, (¢ G)m,(e|G) preko svih
bridova e = uv grafa G, gdje je m,(¢|G) broj bridova ¢ija je udaljenost od vrha ¥ manja nego udaljenost od vrha
v, i gdje je m,(¢|G) definiran analogno. U ovom radu odreden je bridni Segedinski indeks za Kartezijev produkt
grafova. Pomocu ovog rezultata izracunati su bridni Segedinski indeksi Hammingovih grafova te C4-nanocijevi.
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