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INTRODUCTION

The interaction mechanism of molecules with surfaces
has been investigated extensively, due to its relevance to
a number of industrial applications. Especially, hydro-
gen-metal systems have been studied in detail owing to
their fundamental importance.!~” The main traditional
approach of the problem is determination of the sticking
coefficients for different experimental conditions.!> Un-
derstanding of the dynamics and energetics factors of the
dissociative chemisorption (DC) of the molecule on
metal surfaces is also important for the elucidation of
microscopic process involved in the DC mechanisms. In
the reactivity of the surface with the molecule, e.g., the
modes, such as; rovibrational states of the molecule, col-
lision energies, impact sites, efc., play important roles
and also some of these factors are strongly coupled.” In
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Dissociative chemisorption probabilities for H,(v, j) + Ni(100) collision systems have been es-
timated by using Artificial Neural Network (ANN). For training, previously determined proba-
bility values via molecular dynamics simulations have been used. Performance of the ANN, for
predicting any quantities in the molecule-surface interaction, has been investigated. Effects of
the surface sites and the rovibrational states of the molecule on the process are analyzed. The
results are in good agreement with the related previous studies.

our earlier works we studied, by molecular dynamics
(MD) simulation, the reactive and inelastic channels of
the D, (v, j) molecule (v and j are the vibrational and rota-
tional states of the molecule, respectively) at topologi-
cally different three impact sites on the Ni(100) surface,®
the reactive channels of the D,(v = 0, j = 0) on Ni(100),
Ni(110), Ni(111) low-index surfaces,” and the reaction
dynamics of H,(y, j) molecules at those three sites on the
Ni(100) surface.!® These investigations have provided
valuable information about the reactivity of the surfaces
and mode dependence of the DC. For instance, chemi-
sorptions of the molecules on the metallic surfaces show
that there can be large variations of the surface reactivi-
ties depending on the surface index, impact sites, and the
modes of the molecules. In addition, indirect dissocia-
tion mechanism, at about room temperature collision en-
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ergy,810 and its effect on the DC have been pointed out.
Similar trends were observed for different sites of the
surfaces.!1-13

In Ref. (10) a detailed quasiclassical trajectory study
of reactions of the H,(v, j) molecule with the Ni(100) sur-
face was reported at three target sites on the surface and
with different selected rovibrational states of the molecule
in order to reduce the scarcity in the literature. In that
work, DC probabilities have been computed for the (v =
0,7=0,1,3,10) and (v = 1, j = 0) modes. Additionally,
the DCs have been calculated for the j = 0 to j = 18 states,
for the H,(v = 0) at collision energies of 0.05, 0.10, 0.20,
0.30, 0.50, 0.75 and 1.00 eV. Detailed search for the DC
calculations, for all the rovibrational states of the mole-
cule at all the sites and within the full range of 0.0-1.0 eV
collision energy, can not be realized due to very long
computation time. Therefore, the previously calculated
DC values, using the conditions mentioned above!? via
MD simulation, have been used for training of the artifi-
cial neural network (ANN). In the present work, our goal
is to use this trained ANN to estimate the DC probabili-
ties of the H,(v, j) + Ni(100) collision systems for the en-
tire »spectrum« mentioned above which include v =0, j =
0-18 and v = 1, j = 0-18 rovibrational states, and the en-
tire range of the collision energies (0.0-1.0 eV) for the
atop, bridge and center sites of Ni(100). In our previous
work we have also successfully applied the ANN, a non-
linear parameterized method, for evaluation of the reac-
tive cross sections of the collisions of the D, molecule
with Ni;¢ and Niy clusters.'* In spite of much wider pa-
rameter space considered for the ANN than the DC, after
the training of the ANN, the ANN modeling can deter-
mine them much more quickly than the MD simulations.

The deterministic nature of a nonlinear system al-
lows extracting its functional structure from a time se-
ries using appropriate nonlinear techniques.!®> The ANN
is a nonlinear technique which extracts relationships be-
tween the input variables and the output of the system.
By analogy with the human brain, neural network (NN)
is a massively parallel system that relies on the simple
processors and dense arrangements of the individual in-
terconnections of the processing units through which in-
formation is passed.!® The NN can be trained efficiently
with random data. These networks have demonstrated
their ability to deliver simple and powerful solutions in
the areas that have challenged conventional computing.
Due to their proven ability to fit any data set, the ANNs
have become very popular.!” In the recent decade, the
ANNs have been widely and successfully used in many
fields.!7-22 This area has been developed to solve de-
manding pattern processing problems, which were in-
tractable or extremely cumbersome when implemented
using the traditional approaches.??

In this paper the performance of the ANN for predict-
ing the DC probabilities in the molecule-surface interac-
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tion (its scope is mentioned above) has been investigated.
The ANN results are compared to the previous MD stud-
ies. In the next Section, outlines of the theoretical back-
ground and that of the ANN procedure are given. The
analysis of the findings are presented in Section Results
and Discussion, and we conclude with a summary.

COMPUTATIONAL BACKGROUND
AND ARTIFICIAL NEURAL NETWORKS

The computational details of the MD simulations (to be
used here to train the ANN), and the concept of the
ANN are previously described in Refs. (10) and (14).
Therefore we will omit details of these here. However,
for the sake of completeness of the present paper we
briefly mention them here. In Ref. (10), the H, bombard-
ment of the surface at various impact sites has been per-
formed using a constant energy MD computer simula-
tion. Hamilton’s equations of motion were solved using
Hamming’s modified 4™ order predictor-corrector vari-
able step size propagator. The potential energy surface
(PES) used in that simulation was formed by a
four-body LEPS (London-Eyring-Polanyi-Sato) function
accounts for the H-H and H-Ni interactions (for details
see Ref. (24)). The surface consists of 74 rigid atoms.
For each set of initial conditions; the specified collision
energy and impact site on the surface, and a fixed
rovibrational state of the molecule, 1000 trajectories,
corresponding to different initial relative orientations of
the molecule with respect to the surface, were run in or-
der to determine the DC probabilities of the molecule.

The ANN is an important information processing
paradigm that was inspired how biological nervous sys-
tem works. In the biological systems, learning involves
adjustments of the synaptic connections that exist be-
tween the neurons. This is true for the ANN’s training
process as well. The NN is represented by weighted in-
terconnections between processing elements (PEs).
These synaptic weights are the parameters that actually
define the non-linear function performed by the NN. The
process of determining such parameters is called training
or learning,? relying on the presentation of many train-
ing patterns. The ability to find correlation among appar-
ently disconnected data and the tolerance to noisy data
are the main features of the ANN. For a real problem,
any ANN must be trained at the beginning. Here, we
have employed Back-Propagation (BP) training algo-
rithm.23-26 Thus, the NN is inherently adaptive; conform-
ing to the imprecise, ambiguous and faulty nature of the
real-world data. The BP algorithm is the most widely
used NN because of its relative simplicity and universal
approximation capacity.?’” The BP algorithm defines a
systematic way to update the synaptic weights of
multi-layer perceptron (MLP) networks. The supervised
learning is based on the gradient descent method, mini-
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mizing the global error on the output layer. The learning
algorithm is performed in two stages:?® feed-forward
and feed-backward. In the first phase, the inputs are
propagated through the layers of the processing ele-
ments, generating an output pattern in response to the in-
put pattern presented. In the second phase, the errors cal-
culated in the output layer are then back propagated to
the hidden layers where the synaptic weights are up-
dated to reduce the error. This learning process is re-
peated until the output error value, for all patterns in the
training set, are below a specified value. The definition
of the network size (the number of hidden layers and of
neurons in each layer) is a compromise between the gen-
eralization and convergence. The convergence is the ca-
pacity of the network to learn the patterns on the training
set, and the generalization is the capacity to respond cor-
rectly to the new patterns. The idea is to implement the
smallest network possible, so it is able to learn all pat-
terns, and at the same time, provide good generalization.
However, a very long training process with problems
such as; local minima and the restriction of learning only
with the static input-output mappings are two limitations
of the BP.2

In this study a four-layer ANN is used and trained
with the BP algorithm.?® Detailed information about the
ANNSs procedure has been given in Refs. (28)—(30) and
readers can find the related references therein. For the
training and the test MATLAB NN functions?' were used.

RESULTS AND DISCUSSIONS

The BP network used is composed of an input layer, two
hidden layers and an output layer (Figure 1). The num-
ber of neurons in the hidden layers has been determined
via experimentation. The experimental results show that

Input Hidden
Layer Layers Layer

Qutput

Figure 1. General structure of MLP neural network architecture
(X1 is the surface site, X2 and X3 are the vibrational and rota-
tional states, respectively, and X4 is the collision energy in eV, and
Y is the DC probability).
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Figure 2. Changing training error-rate versus epoch number.
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Figure 3. Estimated ANN results versus used MD data!® of DC
probabilities for training.

optimum numbers of the hidden neurons were ten and
fifteen in the first and in the second hidden layers, re-
spectively. In the present work the number of neurons is
equal to 1 in the output layer. The stopping criteria for
the network training are the sum of squared error (8.658
x 107) and the maximum number of epochs is 2000. As
shown in Figure 2 the error rate is lower than 10 for
the number of epochs greater than 1000.

In order to see the agreements of the ANN estimated
DC probabilities with the MD data, they are compared
in Figure 3. As seen in the figure, the ANN can learn
perfectly the relationships between the input variables
(X1: surface site, X2 and X3: vibrational and rotational
states, respectively, and X4: collision energy), and the
output (Y: DC probability). The number of MD data'®
and their ranges that are used as input for the training of
the ANN are presented in Table I. For each of the three
X1 values (atop, center, bridge) 246, 264 and 266 data,
respectively, have been used for two different vibrational
states (0 and 1) with the corresponding rotational states
of the molecule at various collision energies (X4), up to
1.0 eV. Totally 776 data members (features) have been
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TABLE I. The MD data ranges!© that used as input to train the ANN considered to develop the ANN and test with the same
MD data. It is understood, in this particular analysis, the

X1 X2 X3 X4 Number of data ANN is able to produce reliable values with 0.25 %
Atop 0 0-18 0.01-1.0 223 mean error, which was calculated over the deviation of
1 0 0.01-1.0 23 the linear regression slope from the ideal value 1. The
Center 0 0-18 0.01-1.0 242 implemented ANN model can estimate the DC probabil-
1 0 001-1.0 2 ities within much less computation time with a good per-
formance.

Bridge 0 0-18  0.01-1.0 243 o

The contour graphs in Figure 4 present the ANN pre-
1 0 0.01-1.0 23

dicted DC probabilities of the H,(v, j) molecule with the

Rotational State / j

LR B EEN ) 0875

0.875

0,850
/}950
10 02 04 086 os 10

Collision Energy / eV

Figure 4. Dissociative chemisorption probabilities for Hy(v,j) + Ni(100) as functions of rotational states and collision energies for two vi-
brational modes at three surface sites.
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Ni(100) surface as a function of the collision energy (up
to 1.0 eV) and rotational states (j = 0-18), for two vibra-
tional modes (v = 0 and 1) and for three surface sites. The
DC probabilities at the atop-site have quite different be-
havior compared to those of the other two sites. No
threshold energies are necessary to observe the reactivity
at almost all sites for the v = 0 state. This means that the
H, (v =0, j = 0) molecule is able to break its bond at all
energies. However, the threshold energy region is observ-
ed for the v = 1 to break the bond of the H, at very low
impact energies, i.e., in this energy range the rotational
excitation enhances the back scattering of the molecule
after the collision. In fact, this is the rotational hindering
of the DC, a well known effect in the dissociation of an
H, on the metal surfaces.’>3¢ However, this rotational
hindering is observed for the v = 0 state. In the contrary
(for the v = O state) the steering of the molecules’” to
more favorable orientations is playing a role to enhance
the DC. At the lower collision energies and j values, the
steering of the molecule to a more favorable orientation is
much easier than that at higher j values. This is the source
which forms the indirect mechanism.” At the higher j val-
ues, the steering effect for the molecule becomes less ef-
fective since rapidly rotating molecule cannot be guided
easily by the PES to a more favorable geometry for the
reaction. At the bridge-site, this phenomenon is clearly
seen below 0.1 eV, especially for the v = O state case. There
is another effect at the higher j values which is the loss of
the rotational energy to the translational motion to help
overcome the reaction barrier in the entrance channel.

This effect becomes significant for the higher j val-
ues. Therefore the rotational hindering is better visible for
the lower j values (3—6) (especially at the bridge-site for
the v = 0). On the other hand, the rotational hindering is
not seen at the higher collision energies since they are
much higher than the rotational energies. At the higher
collision energies, v and j dependences are much less pro-
nounced, however one may still say that the higher j
value, the higher the DC. However, vibrational excitation
of the impinging hydrogen molecule always promotes
dissociation at the bridge and center sites on the low in-
dex Ni surface, and the DC probabilities are higher al-
most at all energies than those of the rotationally exited
H,. However, the atop-site behaves very differently for
thev=1 state, e.g.,j>2andv=1at E<0.1 eV, and at E >
0.2 eV with high j and v = 1 the DC is zero. This typical
region has not been calculated with the MD simulation.

At the lower collision energies, about 0.1 eV, the
bridge and centre sites, for the v = 0, have a little bit simi-
lar reactivity. At higher energies the bridge-site is always
more reactive than the other two sites. The DC probabil-
ity gradually increases and reaches to a threshold value of
0.9 on the bridge. In contrast, the DC probabilities are de-
creasing slowly at the centre-site as the collision energy
increases.
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SUMMARY

The main goal of this study is to test the performance of
ANNSs for predicting any quantities in any molecule sur-
face interaction studies. It has been observed that it can
be used as an efficient tool to estimate the DC probabili-
ties for the H, + Ni(100) collisions within much shorter
run time. The DC probabilities strongly depend on the
impact sites, the collision energies, and on the
rovibrational states of the molecule. At the higher ener-
gies this dependence is weaker. The dynamics of the
DCs as functions of the v, j, and impact sites are compli-
cated in the low collision energy region. In general, the
rotational excitations and the surface sites hinder the re-
activity. This is more pronounced especially at the lower
energies on the atop-site. The initial vibrational excita-
tions of the molecule increase the probabilities more ef-
ficiently than the initial rotational excitations. In addi-
tion, the strong dependence of the DC probabilities on
the low collision energies is also observed within the
ANN estimations. Hence, the ANN results are in good
agreement with the previous MD studies.

It can be noticed that no extra effort is necessary to
compute the DCs for all the rovibrational states and the
initial collision energies. After getting a sufficient set of
data for the training process, the ANN can be used to
predict all the interested initial conditions of the system.
In conclusion, we believe that the ANN introduces new
ideas that may help researchers to tackle optimization
problems that, so far, have not been conveniently inves-
tigated.
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SAZETAK

Odredivanje vjerojatnosti kemisorpcije molekula vodika na povrsinu nikla
pomocu umjetne neuronske mreze

Mustafa Boyiikata, Yiicel Kocyigit i Ziya B. Giiveng

Disocijativne vjerojatnosti kemisorpcije za sudarne sustave H,(v, j) + Ni su procijenjene koriStenjem ANN
(Artificial Neural Network; umjetna neuronska mreZa). Za treniranje mreZe su se koristile prethodno (simulaci-
jama molekulske dinamike) odredene vrijednosti za vjerojatnosti. IstraZivano je koliko je ANN dobra u predvi-
danju raznih veli¢ina u medudjelovanju molekula s povr§inom. Analizirani su u¢inci raznih mjesta na povrsini i
utjecaj rovibronskih stanja molekule. Postignuti rezultati se dobro slaZu s prethodnim srodnim istraZivanjima.
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