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This paper presents two novel spectral soil area indices to identify bare soil 
area and distinguish it more accurately from the urban impervious surface area 
(ISA). This study designs these indices based on medium spatial resolution re-
mote sensing data from Landsat 8 OLI dataset. Extracting bare soil or urban 
ISA is more challenging than extracting water bodies or vegetation in multi-
spectral Remote Sensing (RS). Bare soil and the urban ISA area often were 
mixed because of their spectral similarity in multispectral sensors. This study 
proposes Normalized Soil Area Index 1 (NSAI1) and Normalized Soil Area Index 
2 (NSAI2) using typical multispectral bands. Experiments show that these two 
indices have an overall accuracy of around 90%. The spectral similarity index 
(SDI) shows these two indices have higher separability between soil area and 
ISA than previous indices. The result shows that percentile thresholds can ef-
fectively classify bare soil areas from the background. The combined use of both 
indices measured the soil area of the study area over 71 km2. Most importantly, 
proposed soil indices can refine urban ISA measurement accuracy in spatiotem-
poral studies.
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1. Introduction

Spectral confusion among soil area and impervious surface area (ISA) is a 
major classification problem in optical remote sensing (RS) which affects both 
soil and urban-related studies (Waqar et al., 2012). Soil indexing is important 
for mapping global barren land, sandy areas, land use land cover (LULC) studies, 
forest health monitoring, agricultural activities, geological crust, drought-prone 
area, and so on. More importantly, refinement of soil area indexing has particu-
lar application for better urban impervious surface area (ISA) classification. Bare 
soil and ISA have similar spectral characteristics (Qiu et al., 2017). Therefore, 
better soil area measurement will assist with more refined urban ISA classifica-
tion. Bareness Index (BI2014) (Li and Chen, 2014), Normalized Difference Bare 
Land Index (NBLI) (Li et al., 2017) and Modified Normalized Difference Soil 
Index (MNDSI) (Piyoosh and Ghosh, 2017) are three such examples. 

Earlier, many urban spectral indices, such as normalized difference built-up 
index (NDBI) (Zha et al., 2003), Urban index (UI) (Kawamura et al., 1997), en-
hanced built-up and bareness index (EBBI) (As-syakur et al., 2012), index based 
built-up index (IBI) (Waqar et al., 2012) and NDBI of Bhatti and Tripathi (2014) 
did not differentiate bare soil areas and urban area. Besides, normalized differ-
ence built-up index (NDBI) (Zha et al., 2003) and normalized difference soil index 
(NDSI) (Rogers and Kearney, 2010) are essentially the same index with different 
names and purposes. The same index is sometimes used for urban and soil area 
mapping.

Later, Demattê et al. (2009) examine soil area detection methods from Land-
sat TM image. This study examines soil colour composite, soil line information 
using Red-NIR feature space, absence of vegetation index value and comparing 
the spectral curve characteristics of soil area. In conclusion, the study suggests 
using spectral patterns and other soil information to detect soil pixel areas for 
accurate soil classification.

A significant advancement came in separating Urban ISA from soil area with 
Biophysical Composition Indices (BCI) (Deng and Wu, 2012). It can extract urban 
ISA while suppressing bare soil signature using tasseled cap transformed (TCT) 
bands. However, the separability of bare soil and ISA using BCI is mild. Besides 
BCI, modified normalized difference soil index (MNDSI) (Hua et al., 2017), ratio 
normalized difference soil index (RNDSI) (Deng et al., 2015) are a few significant 
studies that dealt with spectral confusion of soil areas and ISA. 

Although Modified Normalized Difference Soil Index (MNDSI) separates 
bright soil areas using Panchromatic (PAN) bands quite efficiently, the PAN 
band is a recent addendum and unavailable among all Landsat missions. Fur-
thermore, Landsat ETM+ and Landsat OLI have different spectral ranges for 
the PAN band. Therefore, any temporal studies beyond Landsat 7 ETM+ will 
not be feasible with PAN bands. The same issue prohibits us from using thermal 
and coastal bands too.
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The soil had higher reflectivity in all the infrared multispectral bands than 
visible bands, especially in the SWIR1 spectral region than the NIR wavelength 
region. Based on that, Rogers and Kearney (2010) introduced a soil index named 
Normalized Difference Soil Index (NDSI). Similarly, soil shows slightly higher 
reflectivity in the thermal region than the SWIR1 region, used in the normalized 
difference bareness index (NDBaI) (Zhao and Chen, 2005). NDBaI also utilizes 
thermal (TIR) bands since the soil area reflects higher in the TIR spectral region. 
Similarly, Waqar et al. (2012) proposed a new soil index (SI) using a TIR band 
and SWIR2 band from Landsat TM and claimed that SI increases the soil extrac-
tion accuracy by 11% more than all previous soil indices. Later, Li et al. (2017) 
proposed Normalized Difference Bare Land Index (NBLI) using TIR and Red 
bands. This study is also significant because they aim to classify urban LULC 
classes with NBLI. This study claims that it got closer to supervised SVM clas-
sification results and applied in temporal applications too. However, their soil 
mapping is too poor and works best with bright soil areas.

In addition, BCI, TCT bands are also used in RNDSI (Deng et al., 2015). In 
TCT, the first band is dedicated to brightness or whiteness. It is attributed to 
bright land features, soil, white bare land, sands etc. It is often called TC1, TCB 
or brightness (Baig et al., 2014). More importantly, TCT coefficients have been 
developed for all the major multispectral sensors making TCT bands compatible 
with multi-sensorial studies. On the other hand, soil areas are highly heterog-
enous in colour and composition. Therefore, any single-colour dependency is 
unrealistic for the soil area index. 

Furthermore, lack of vegetation or absence of greenness is also used in spec-
tral soil area indexing. Such as NDSI2015, Modified Bare Soil Index (MBSI) and 
Biological Soil Crust Index (BSCI); all three of the indices subtract the Green 
bands in their indices (Chen et al., 2005; Deng et al., 2015; Zhang et al., 2018). 
Additionally, the NIR band, which is highly sensitive to chlorophyll, is sub-
tracted from Normalized Difference Soil Index (NDSI2010) and Bare Soil Index 
(BI2002) (Rikimaru et al., 2002; Rogers and Kearney, 2010). More distinctly, in 
DBSI, NDVI is also subtracted after the Green band has been subtracted from 
SWIR1 (Rasul et al., 2018). Similarly, the second TCT band or greenness is used 
in deduction to formulate BCI (Deng and Wu, 2012). On the contrary, the Par-
tially Normalized Sandy Barren Index (PNSBI) took the opposite approach and 
the Coastal band was deducted from the Green band (Zhao et al., 2019).

Wetness or soil moisture is also sensitive and highly absorbent of all the 
infrared multispectral bands. But soil indices are highly dependent on infrared 
bands such as NIR, SWIR1 & SWIR2. Dry soil and wet soil are indexed differ-
ently due to this sensitivity. Any moisture or water particles in air or soil sig-
nificantly influence soil indexing outcome. Therefore, the RS image’s season and 
time are also considered for better soil indexing results. Similarly, the shadow 
of clouds, mountains and tall buildings also adversely affects soil area indexing. 
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In microwave remote sensing, soil mapping mostly focuses on soil moisture 
mapping or sub-surface soil mapping. L-band microwave imaging can penetrate 
vegetation and is good for soil surface mapping. C-band microwave imaging deals 
more with atmosphere and weather patterns. X-band microwave imaging can 
offer higher resolution and more details imaging. Soil characteristics with sand, 
silt and clay with their moisture content were studied with X-band microwave 
imaging (Srivastava and Mishra, 2004). Duel frequency radar imaging is also 
common for soil moisture studies (Balenzano et al., 2013; Prevot et al., 1993; 
Taconet et al., 1994). In another study, a new method based on Dubois for mea-
suring soil moisture and roughness uses a wide range of incidence angles and 
radar wavelengths, including L, C, and X bands (Baghdadi et al., 2016). Besides 
frequency, different type of radar remote sensing has application in soil studies. 
Such as, synthetic aperture radar (SAR) can provide accurate soil moisture map-
ping in non-destructive ways (Boisvert et al., 1996). Ground penetrating radar 
(GPR) is also potent in measuring soil water content (Huisman et al., 2003; 
Klotzsche et al., 2018; Liu et al., 2019). But, GPR is focused on sub-surface soil 
studies, such as characterizing soil and peat stratigraphy and detecting tree roots 
(Zajícová and Chuman, 2019). Advanced synthetic aperture radar (ASAR) can 
also map soil tillage and moisture (McNairn and Brisco, 2004). Combining opti-
cal and microwave remote sensing has potential applications in agricultural soil 
studies, such as soil tillage and irrigation channels (Hadria et al., 2009). There 
is a lack of studies on classifying bare soil from the impervious surface area us-
ing microwave remote sensing. Although microwave remote sensing is good at 
measuring some soil characteristics, it cannot generalize soil areas as optical 
remote sensing do. Optical remote sensing also studies soil moisture or lack of 
it and can index them. 

Lack of moisture, low vegetation, and dried soil is considered drought (Mishra 
and Singh, 2010). In soil indexing, droughts are essential in measuring the lack 
of water and vegetation. Ghulam et al. (2006) developed a simple and effective 
drought monitoring index using the spectral space of NIR and Red band. It is 
named perpendicular drought index (PDI), which was later upgraded as modified 
PDI (MPDI) developed to monitor real-time drought by using scaled NDVI (Gh-
ulam et al., 2007). Later, Li and Tan (2013) combined vegetation and water to 
develop Second Modified Perpendicular Drought Index (MPDI1).

In similar studies, BI2002, BI2014, MBSI, MNDBaI and PNSBI indices are all 
focused on indexing the bareness or brightness of the soil area. Crust Index (CI) 
and Biological Soil Crust Index (BSCI) is emphasized in indexing soil crust. All 
these indices are well-fitted for desert-related studies. Except PNSBI, all these 
indices use Red spectral bands to deduct from to formulate their indices. CI is 
important for studying soil characteristics, such as stability, fertility, moisture, 
soil composition and more. BSCI is also important in the desert context to clas-
sify biological soil crust, bare ground, vegetation and dried plant materials.
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In this study, our first objective is to develop soil area indices from Landsat 
imagery with better separability of soil areas and urban ISA; secondly, to make 
these indices applicable for temporal applications, which means these indices 
only use frequent multispectral bands from Landsat missions. In addition, for 
better enhancement of soil areas for soil related studies, these two indices will 
also help refine urban ISA measurements. Moreover, the indices design is formed 
so that these indices remain applicable for temporal, multi-sensorial, and large-
scale regional studies.

2. Materials and methods

In the study of spectral soil indexing, various keywords are used within the 
optical RS domain, such as bare soil areas, bare soil, bare land, barren lands, 
sandy barren land, bareness index, dryness index, drought index, soil crusts, 
crust index etc. This study used ‘Soil Area’ or ‘soil’ to refer to all kinds of bare 
soil and sandy areas.

2.1. Study area
Dhaka is a megacity situated in a hot and humid tropical climate (Fig. 1). 

The city has an annual mean temperature of 25.5 °C (Yamane et al., 2014), aver-
age annual precipitation of 2148 mm, and average humidity of 75%. It has a 
history of remaining the region’s capital for its strategically secure location sur-
rounded by water bodies, rivers and wetlands. Many water bodies are disappear-

Figure 1. Study area of Dhaka city in false colour composition using SWIR1, NIR and Green mul-
tispectral bands from Landsat OLI. The light pink colour indicates the presence of soil area, ma-
genta is ISA, green is vegetation, and black is water.
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ing in recent encroachments because the sand filling of wetlands and river en-
croachments reclaim new lands.

Dhaka has shown rapid growth in recent decades. Hence developing newer 
satellite cities, large landfilled areas, deforestation, and surrounding river and 
water bodies has made Dhaka city a good case study for the urban soil area index.

2.2. Data source

The study uses Google Earth Engine (GEE) for data preparation, index for-
mulation, measuring soil area, extracting indexed comparison maps and so on. 
The study also used google earth imagery for its higher spatial resolution during 
accuracy assessment. The study used USGS Landsat 8 level 2, Collection 2, Tier 
1 dataset. It is a surface reflectance product of Landsat 8 and has been atmo-
spherically corrected by the GEE team.

All the spectral bands are stored in 16-bit information. It is apparent that 
unlike USGS Landsat 8 Collection 1 Tier 1 dataset, this dataset does not 
contain PAN (0.52–0.90 µm), Cirrus (1.36–1.38 µm) and thermal band 11 
(11.50–12.51 µm).

Table 1. Spectral bands details of USGS Landsat 8 Level 2, Collection 2, Tier 1.

Band 
name

Wavelength
(mm) Description Name in 

the text
SR_B1 0.435–0.451 Band 1 (ultra-blue, coastal aerosol) surface reflectance Coastal
SR_B2 0.452–0.512 Band 2 (blue) surface reflectance Blue
SR_B3 0.533–0.590 Band 3 (green) surface reflectance Green
SR_B4 0.636–0.673 Band 4 (red) surface reflectance Red
SR_B5 0.851–0.879 Band 5 (near infrared) surface reflectance NIR
SR_B6 1.566–1.651 Band 6 (shortwave infrared 1) surface reflectance SWIR1
SR_B7 2.107–2.294 Band 7 (shortwave infrared 2) surface reflectance SWIR2
ST_B10 10.60–11.19 Band 10 surface temperature. TIR

2.3. Construction of NSAI1 and NSAI2

The study proposes two novel soil indices; Normalized Soil Area Index 1 
(NSAI1) and Normalized Soil Area Index 2 (NSAI2). NSAI1 normalized the 
difference between the square of SWIR1 band and the multiplication of Green 
and NIR bands (Eq. 1). NSAI2 normalized the difference between the multipli-
cation of SWIR1 & Blue bands and the multiplication of Green and NIR bands 
(Eq. 2).
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Both of the indices utilize Green, NIR and SWIR1 bands. In NSAI2, addition-
ally, Blue band is used to increase soil sensitivity toward different areas.

The study used only four bands of the pre-processed Landsat 8 surface re-
flectance image using GEE. All the bands remain unmodified while used in the 
index’s calculation. Later on, the study used one percent trimming from both 
ends to reduce outliers.

2.4. Related earlier Indices
In Tab. 2, indices have slightly modified their expression to maintain a gen-

eral representation. All the indices are shown with Landsat missions spectral 
bands naming style. Additionally, the same acronym differentiates using their 
respective published year.

Table 2. Description of soil area indices.

Index Full Name Expression Purpose Classifica-
tion Reference Eq.

NDSI2010

Normalized 
Difference 
Soil Index

SWIR1 – NIR
SWIR1 NIR+

Coastal 
marsh 
mapping

Simple Soil 
Index

Rogers and 
Kearney 
(2010)

(3)

TC1
Tasseled 
Cap One or 
Brightness

Blue*0.3029 Green*0.2786+
+SWIR1*0.508 SWIR2*0.1872+
+SWIR1*0.508 SWIR2*0.1872+

White area 
mapping

Composite 
Soil Index

Kauth and 
Thomas 
(1976)

(4)

NDSI2015

Normalized 
Difference 
Soil Index

SWIR2 – Green
SWIR2 Green+

Soil map-
ping

Simple Soil 
Index

Deng et al. 
(2015) (5)

RNDSI
Ratio 
Normalized 
Difference 
Soil Index

2015NNDSI
NTC1

where, NNDSI2015 is normalized 
NDSI2015 and NTC1 is normalized 

TC1

Improved 
soil map-
ping

Composite 
Soil Index

Deng et al. 
(2015) (6)

NDBaI
Normalized 
Difference 
Bare-soil 
Index

SWIR1 – TIR
SWIR1 TIR+

Soil map-
ping

Simple Soil 
Index

Zhao and 
Chen 
(2005)

(7)
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Index Full Name Expression Purpose Classifica-
tion Reference Eq.

BI2014
Bareness 
Index

(NTC1,NNDBaI)∫
where, NTC1 is normalized TC1 and 

NNDBaI is normalized NDBaI

Soil index 
for improv-
ing urban 
mapping

Composite 
Soil Index

Li and 
Chen 
(2014)

(8)

BI2002
Bare soil 
Index

( ) ( )
( ) ( )
SWIR2+Red – NIR+Blue
SWIR2+Red NIR+Blue+

Forest bare 
land map-
ping

Composite 
Soil Index

Riki-
maru et al. 

(2002)
(9)

SI Soil Index
TIR – SWIR2
TIR SWIR2+

Soil map-
ping

Simple Soil 
Index

Waqar et 
al. (2012) (10)

NBLI
Normalized 
Difference 
Bare Land 
Index

Red – TIR
Red TIR+

Soil map-
ping

Simple Soil 
Index

Li et al. 
(2017) (11)

MNDSI
Modified 
Normalized 
Difference 
Soil Index

SWIR2 – PAN
SWIR2 PAN+

Soil index 
for improv-
ing urban 
mapping

Simple Soil 
Index

Piyoosh 
and Ghosh 

(2017)
(12)

DBSI Dry Bare 
Soil Index

SWIR1 – Green – NDVI
SWIR1 Green+

Drought 
mapping

Composite 
Dry Soil 
Index

Rasul et al. 
(2018) (13)

PDI
Perpendicu-
lar Drought 
Index

( )
2

1 Red 1.40426*NIR
1.4042 1

+
+

Drought 
mapping

Simple Dry 
Soil Index

Ghulam et 
al. (2006) (14)

MBSI
Modified 
Bare Soil 
Index

( )
( )
Red – Green * 2
Red Green – 2+

Soil map-
ping

Simple Soil 
Index

Zhang et 
al. (2018) (15)

PNSB
Partially 
Normalized 
Sandy Bar-
ren Index

Green – Coastal
Green Coastal+

when, NIR-Red>0

Sand map-
ping

Simple Dry 
Soil Index

Zhao et al. 
(2019) (16)

CI Crust Index
( )

( )
1 – Red – Blue
Red Blue+

Sand map-
ping

Simple Dry 
Soil Index

Karnieli 
(1997) (17)

BSCI
Biological 
Soil Crust 
Index

( )
( )

1 – 2* Red – Green
1 * Red Green NIR3 + +

Sand map-
ping

Composite 
Dry Soil 
Index

Chen et al. 
(2005) (18)

MNDI

Modified 
Normalized 
Difference 
Barren 
Index

Red – Blue
Red Blue+

Soil index 
for improv-
ing urban 
mapping

Simple Soil 
Index

Hua et al. 
(2017) (19)

Table 2. Continued.
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2.5. Accuracy assessment
Both of the indices have been tested for a handful of thresholds. But the study 

presented only two thresholds for each index which are more accurate. For ac-
curacy assessment, randomly selected 500 points were checked against higher 
resolution google earth images. For higher accuracy, the study used visual in-
terpretation from Google Earth Imagery and threshold-based pixel information 
of soil area or no soil area in binary from GEE.

The assessment presented NSAI1 with 85%, 87.5% and NSAI2 with 90%, 
92.5% percentile threshold. The assessment also shows the combination of NSAI1 
with 85% threshold and both NSAI2 thresholds. These threshold applications 
resulted in a binary image where ‘1’ refers to the soil area, and ‘0’ refers to the 
non-soil area.

These random points were manually checked with the help of Google Earth 
image and a natural RGB compilation of raw images. Thus, the accuracies are 
calculated with the respective formula.

2.6. Calculation of Spectral difference index (SDI)
The study used the spectral difference index (SDI) (Radeloff et al., 1999) 

between urban ISA and soil area to see which indices have the highest value in 
separating them. This study considers popular soil indices with typical multi-
spectral spectral bands and newly proposed soil indices for SDI calculation. SDI 
provides the positive value of the mean difference of two classes divided by the 
standard deviation addition of two classes (Eq. 20). In this study, two LULC 
classes refer to urban ISA and soil classes.

	 1 2

1 2
SDI�=�| |,−

+
m m
s s

	 (20)

where, 1m  and 2m  refers to the mean index value of urban ISA and soil classes, 
respectively. Similarly, 1s  and 2s  refers to the standard deviation of urban ISA 
and soil classes respectively. For SDI calculation, manually digitized sample 
areas for each LULC classification were used. Google Earth image and Landsat 
RGB combination were used for digitizing LULC classes.

The BCI is also measured in the SDI calculation with other soil indices. 
Because, it is a crucial urban index that attempts to suppress soil signature dur-
ing urban ISA indexing. The study examines how it fits the study area. BCI 
normalized the mean of TC1 and TC3 values and the TC2 value difference. The 
index calculation is shown below.

	 ( )
( )
H+L / 2 V

BCI�=� �,
H+L / 2 V

−
+

	 (21)

where H, V and L are normalized forms of TC1, TC2 and TC3 bands (Deng and 
Wu, 2012). H comes from ‘High albedo’, V comes from ‘Vegetation’, and L comes 
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from ‘Low albedo’. H, V and L have used the normalization function shown (eq.22) 
below:

	 MIN

MAX MIN

TC – TC �Normalized�TC�=�
TC  – TC

	 (22)

Normalized TC formula made all three TC bands normalized within 0–1. 
Therefore, the value of BCI also remain within –1 to +1.

3. Result

3.1. Soil area of Dhaka city

NSAI1 and NSAI2 effectively enhance soil characteristics from the back-
ground. NSAI1 shows more sensitivity towards older reclaimed lands, whereas 
NSAI2 shows more sensitivity towards newly reclaimed lands. Here, only two 
combinations of both indices are presented. However, other combinations with 
different thresholds are also possible. 

Eastward land reclamation by wetland encroachment is the main reason 
for Dhaka’s unusual and concentrated soil area. An early study identified the 
newly reclaimed land as ‘Sub-flood Zone’ (Khaleda et al., 2017). These two in-
dices marked the sand-filled encroached land area in the agglomerated condi-
tion. These low-lying wetlands of Eastern Dhaka are almost lost because of 
landfilling. 

Table 3. shows that with each 2.5% threshold change, every index is reduced 
to more than 10 km2. Contrary, instances E and F show more stable results with 
the same 2.5% changes.

Figure 2 shows that NSAI1 is better sensitive to soil areas that are fellow 
land, slightly wet and have slight greenness. It also cannot detect very obvious 
bright sand. In contrast, NSAI2 is better sensitive to brightness, whiteness and 
newly sand-filled area. Additionally, Soil areas are distinguished from deep wa-
ter with NSAI1 and shallow water with NSAI2. Combining both indices can bring 
better results (Fig. 2, E and F). 

Table 3. Measurement of soil area for respective indices with specific thresholds.

Instance Index with threshold Soil area (km2)
A NSAI1 T 85% 68.36
B NSAI1 T 87.5% 57.14
C NSAI2 T 90% 45.10
D NSAI2 T 92.5% 34.87
E Combination of A OR C 75.49
F Combination of A OR D 71.78
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3.2. Indices performance
3.2.1. Accuracy assessment

This study applied both indices on Landsat OLI satellite images with differ-
ent percentile thresholds to measure which threshold produces better results. A 
combination of NSAI1 T 85% OR NSAI2 T 92.5% shows the best result among 
the tested indices.

It is important to consider the aim of the study while using these indices. 
For soil mapping studies, a combination of A OR D provides the best overall ac-

Figure 2. Extracted soil areas shown in white.
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curacy and Kappa coefficient results. On the contrary, if the study intends to use 
it to refine urban ISA areas, indices with lower commission errors should be 
prioritized. NDSI2, with a 92.5% threshold provides the least commission error 
in this case.

3.2.2. Spectral difference index (SDI) value
SDI value above 1 refers to reasonable separation, and above 2 refer good 

separation.

Table 4. Accuracy assessment of proposed soil indices.

Instance Index with 
threshold

User 
accuracy

Producers 
accuracy

Overall 
accuracy

Kappa 
coefficient

Commission 
error

Omission 
error

A NSAI1 T 
85% 0.690 0.723 0.900 0.646 0.310 0.277

B NSAI1 T 
87.5% 0.769 0.602 0.904 0.620 0.231 0.398

C NSAI2 T 
90% 0.750 0.542 0.894 0.569 0.250 0.458

D NSAI2 T 
92.5% 0.867 0.470 0.900 0.558 0.133 0.530

E Combination 
of A OR C 0.646 0.771 0.892 0.638 0.354 0.229

F Combination 
of A OR D 0.692 0.759 0.904 0.666 0.308 0.241

Table 5. SDI of selected soil indices between soil and urban.

Index SDI of Urban vs. Soil
MBSI 0.3101
BCI 0.4167

BI2002 0.7143
TC1 0.9269

DBSI 1.021
CI 1.0357

NDSI2010 1.3346
NDSI2015 1.5544
RNDSI 1.6358
NSAI2 1.8044
NSAI1 2.3204

4. Discussion

The proposed NSAI1 and NSAI2 indices have better separability of bare soil 
area and impervious surface area than previous indices, making it easier to 
extract bare soil area using a threshold. These indices also can be applied to 
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temporal studies using long collections of Landsat datasets and are compatible 
with temporal, fusion, and urban studies. This discussion section will further 
explore these novel indices’ potential applications and implications in soil area 
enhancement and classification.

4.1. Significance of the indices
The proposed NSAI1 and NSAI2 are more effective in soil area enhancement 

using raw multispectral RS. These indices can be applied with imagery contain-
ing water bodies. Besides, both indices show bare soil area in the highest value, 
followed by ISA, vegetation and water bodies. These novel indices show signifi-
cantly better soil and urban ISA separability from SDI results than previously 
developed indices. Combinedly, these indices can increase accuracy further. 
These indices used commonly available multispectral bands and are therefore 
applicable to temporal studies using a historical collection of multispectral 
datasets.

The significance of NSAI1 and NSAI2 is their separability of bare soil and 
impervious surface areas. Both indices have higher SDI values than other soil 
indices (Tab. 5). Therefore, extracting bare soil area using a threshold is easier 
without removing other LULC classes in pre-processing steps.

4.1.1. Multispectral soil index
Landsat multispectral imagery has been used for its popularity, free access, 

stable and long global archive. We wanted to utilize the spectral bands from 
Landsat to maintain replicability globally. In the literature review, we observed 
that NDSI2010 is a popular soil indices (Rogers and Kearney, 2010) which is also 
familiar as normalized difference of built-up index (NDBI) (Zha et al., 2003). We 
wanted to improve the index further to make it more sensitive to bare soil and 
less sensitive to the urban built-up area. This index uses SWIR1 and NIR bands.

Additionally, NDSI2015 uses SWIR2 and Green bands. We tried to compile 
these two soil indices to improve their soil sensitivity. But, we found that SWIR1 
generalizes the soil area better than SWIR2 bands. SWIR1 bands differentiate 
bare soil and urban built-up area better than other bands. Therefore, we used 
only SWIR1 and did not use the SWIR2 band. Additionally, multiplication of 
Green and NIR bands make a good composite bands for soil indices. We also 
found that, Blue bands with SWIR amplify bare soil area and suppress vegeta-
tion and water areas. Therefore, we have used multiple versions of composite 
indices similar to NSAI1 and NSAI2. Only the proposed two indices have sig-
nificant SDI values for bare soil and urban built-up area.

The benefit of multispectral soil indices is coverage availability and higher 
temporal resolution. A hyperspectral dataset may help better classify soil area 
from other LULCs, but does not have global coverage like Landsat or sentinel-2 
datasets. Microwave or Radar imaging also has some strength in soil moisture 
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and subsurface soil condition mapping. Radar remote sensing is also sensible 
surface roughness. But, these imaging techniques cannot generalize soil area 
and distinguish soil from other LULC classes based on roughness and moisture.

4.1.2. Temporal study compatibility
These indices used commonly available multispectral bands. They are Blue, 

Green, NIR and SWIR1 spectral band regions. These bands are available in Land-
sat; therefore, temporal studies are more meaningful with these two proposed 
indices. We specifically avoid some useful but recently available spectral bands to 
maintain these characteristics, such as Panchromatic and Coastal spectral bands.

4.1.3. Fusion study compatibility
Popular multispectral optical sensors all have some common and compatible 

spectral bands. Our proposed soil indices used only those common bands to be 
compatible with other multispectral sensors. Especially, Sentinel-2/MSI, ASTER, 
MODIS TERRA and similar sensors. Fusing NSAI1 and NSAI2 from multiple 
multispectral datasets is also feasible.

4.1.4. Urban study compatibility
The proposed indices are compatible to use alongside urban studies. In urban 

optical classification, urban built-up areas are often mixed up with bare soil 
areas due to their spectral similarity. Our proposed indices have higher separa-
bility compared to other indices in distinguishing them. Therefore, urban studies 
can refine urban area classification using these novel soil area indices.

4.2. Comparing with previous soil indices
The study found that eight indices, including two proposed indices, have an 

SDI value of more than one between soil area and urban ISA. To these eight 
indices, SDI values with soil and other LULC classes have been measured. It is 
found that NSAI1 has the highest SDI value, followed by NSAI2.

SDI value greater than 1 indicates reasonable separability among soil and 
urban areas. Compared to previous urban and soil area indices, NSAI1 and NSAI2 
significantly increase the separability of urban and bare soil area classes (See 
Tab. 5). Also, the soil area enhancement is significantly improved. The results 
show how the sand has been used to fill the low-lying wetlands of eastern Dhaka.

BCI was significant in pursuing the efforts of extracting urban areas free 
from bare soil area. That required removing the water bodies pixels in the image 
pre-processing stage. Although, SDI shows BCI achieves mild separability in 
between urban and bare soil area classes. In contrast, NSAI1 and NSAI2 achieve 
better SDI values while applying on the image, including water pixels.

Additionally, higher accuracy in soil area extraction is possible using TCT 
bands, such as RNDSI (Deng et al., 2015). Though different sensors have differ-
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ent TCT coefficients, most multispectral sensors’ TCT coefficients have already 
developed. A similar study is possible with Ratio Index for Bright Soil (RIBS) 
(Qiu et al., 2017), which is also very similar to RNDSI. They both use normalized 
first TCT bands as the denominator. But, RIBS uses the normalized form of 
Normalized Difference Snow Index (NDSI2004) (Salomonson and Appel, 2004) 
instead of Normalized Difference Soil Index (NDSI2015) (Deng et al., 2015). RIBS 
has a higher SDI value than RNDSI, which is lower than NSAI1. The study also 
found that RIBS shows water bodies are the highest value and amplify widely. 
Though the authors claim that RIBS indexing does not require water bodies 
removal, experiments show otherwise. Furthermore, soil area and ISA shows in 
very low value which is difficult to separate with thresholds. 

Most importantly, indices (BI2014, RNDSI, RIBS) used in normalized TC1 
bands are susceptible to outliers. In practice, all the TCT bands have irregular 
minimum and maximum values. Therefore, it is wise to trim these bands with 
1 or 2 percent from both ends before normalizing them. Figure 3 compares nine 
existing soil indices and two proposed novel indices.

4.3. Future research directions

Hyperspectral remote sensing is useful for mapping detailed soil characteris-
tics, as Gomez et al. (2012) demonstrated. Such as organic carbon (Gomez et al., 
2008), heavy metals (Wang et al., 2018), nutrients (Song et al., 2018), salinization 
(El-Hamid et al., 2020), and moisture (Ge et al., 2019). But, there is a lack of spec-
tral soil indices based on hyperspectral data. A short-wave infrared fine particle 
index (SWIR FI) is used for soil clay content indexing (Liu et al., 2018). Similar 
indices may develop for better LULC classification. Urban trends or prediction 
studies can increase accuracy using this soil indices by minimizing false urban ISA 
signature (Ahmad et al., 2023). Besides, fusion studies are also compatible with 
NSAI indices because of their simple band mathematics. Diverse data types can 
be incorporate with NSAI indices for fusion studies (Shao et al., 2021).

These two indices used the SWIR1 band, which is sensitive to wetness. Mi-
crowave remote sensing is better at measuring soil moisture content and related 
properties. Active microwave remote sensing and passive multispectral remote 
sensing have potential in soil related studies (Hasan et al., 2014; Periasamy and 
Shanmugam, 2017). SAR data can easily distinguish buildings and infrastruc-
ture from the background (Zhao et al., 2013). The problem would be to differen-
tiate flat impervious surfaces, such as, roads, parking lots, and similar urban 
features. Hopefully, newer indices can utilize the microwave sensing of soil prop-
erties and permeability to distinguish bare soil from impervious surface areas. 
It may be possible to combine multispectral, hyperspectral and microwave re-
mote sensing for better soil indexing like Lausch et al. (2019) try to do in addition 
to LiDAR (light detection and ranging) dataset. 
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Thresholding is also crucial if the study intends to classify soil areas. As the 
study shows, small changes in percentile threshold largely change the outcome 
value. This indexed value could easily be normalized into 0 to 1. After that, suit-
able thresholds can be tested against different regions with various soil condi-
tions to determine better regional thresholds for these indices.

Figure 3. Soil Indices comparison: (A) RGB, (B) MBSI, (C) BCI, (D) BI2002, (E) TC1, (F) DBSI, (G) CI, 
(H) NDSI2010, (I) NDSI2015, (J) RNDSI, (K) NSAI2, (L) NSAI1.
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5. Conclusion

This study developed two novel soil indices that can automatically map soil 
areas from Landsat OLI imagery (30 m) on the GEE platform. NSAI1 and NSAI2 
have SDI values, respectively, 2.32 and 1.80 for urban and soil areas. SDI values 
of developed indices are higher than all the comparing indices (Tab. 5). All of these 
indices have an overall accuracy of around 90%. Additionally, soil mapping re-
vealed that a large part of the study area’s eastern wetlands had been encroached 
(Fig. 2). These indices require no manual sample selection or removal of water 
bodies for soil area mapping. Therefore, these are free from human errors and map 
soil areas rapidly. Additionally, NSAI1 and NSAI2 indices are critical for refining 
urban ISA extraction results. Furthermore, regular and common multispectral 
bands made these two indices useful for temporal RS studies. Temporal studies 
included soil area-related studies, urban studies and so on.
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SAŽETAK

Razvoj normaliziranog indeksa tla za urbane studije upotrebom 
podataka daljinskih mjerenja

Akib Javed, Zhenfeng Shao, Bin Bai, Zhuoyang Yu, Jiabing Wang, Iffat Ara, 
Md. Enamul Huq, Md. Yeamin Ali, Nayyer Saleem, Muhammad Nasar Ahmad, 

Neema Simon Sumari i Mardia

Ovaj rad prikazuje dva nova spektralna indeksa tla kako bi se identificiralo golo tlo 
te kako bi se bolje  razlikovalo od urbanih nepropusnih površina (ISA). Ti indeksi su 
definirani na temelju srednje prostorne rezolucije daljinskih podataka Landsat 8 OLI 
skupa podataka. U multispektralnim daljinskim mjerenjima (RS) prepoznavanje golog 
tla ili urbane ISA podloge je složenije od prepoznavanja  vodenih tijela ili podloge s veg-
etacijom. Zbog sličnosti spektara dobivenih multispektralnim senzorima golo tlo i urbana 
ISA površina često se ne razlučuju. Ova studija predlaže dva normalizirana indeksa tla 
(NSAI1 i NSAI2) korištenjem tipičnih multispektralnih pojaseva. Eksperimenti poka-
zuju da ta dva indeksa imaju sveukupnu točnost od približno 90%. Indeks spektralne 
sličnosti (SDI) pokazuje da ta dva indeksa razlikuju golo tlo od urbane ISA podloge bolje 
nego dosadašnji indeksi. Rezultati pokazuju da percentilni pragovi mogu efikasno razlučiti 
površine s golim tlom od pozadine. Kombiniranom upotrebom oba indeksa izmjerena je 
površina tla veća od 71 km2. Najznačajniji rezultat je taj da predloženi indeksi tla mogu 
poboljšati točnost mjerenja urbanih ISA u u prostorno-vremenskim studijama.

Ključne riječi: indeks tla, NSAI1, NSAI2, LULCC, Dhaka
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