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Abstract 

Background and purpose: Sensitive analytical determination of folic acid is important in clinical laboratories 
due to its versatile biological functions. Experimental approach: A simple folic acid sensor was successfully 
fabricated based on two-dimensional transition metal dichalcogenide MoS2 modified carbon ionic liquid 
paste electrode (MoS2-CILPE). The electrochemical properties of the fabricated electrode were investigated 
by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry. Key results: The 
fabricated sensor displayed excellent electroactivity towards folic acid using CV. Under optimal conditions 
(0.1 M PBS (pH 7.0)), the DPV oxidation peak current was proportional to folic acid concentration in the 
range from 5.0 μM to 100.0 μM with an estimated limit of detection of 1.0 µM and limit of quantification of 
5.0 µM. Conclusion: The ability of the sensor for routine analyses was demonstrated by the detection of folic 
acid present in folic acid tablets and urine samples with appreciable recovery values. 

©2023 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

Recently, significant progress has been made in the development of electrochemical sensors and their appli-

cation in point-of-care diagnostics, environmental studies, food safety, drug screening, and security [1-3]. Low 

cost, simplicity, high reproducibility, real-time measurements, rapid response, low detection limit and portable 

devices are some advantages that cause extensive interest in electrochemical methods. Particularly, 

voltammetric techniques are extremely sensitive and selective for the detection of easily oxidizable analytes [4-

7]. To achieve sensitivity and selectivity, the modification of the working electrode in voltammetry is a usual 

practice. These chemically modified electrodes gain considerable attention in electrochemical quantification 

studies due to the enhanced electron transfer rate as well as selectivity achieved due to modifications [8-11]. 

Carbon paste electrode (CPE) has been widely used in the determination of drugs, vitamins and other 

species because of its specific properties like easy preparation and wider potential window. The modifier has 

an important effect on the performance of modified CPEs for electrochemical measurement [12-15]. 
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Recent activity has focused on the development of nanoscaled particles applied in analytical chemistry to 

obtain special physicochemical characteristics of electrodes [16-21]. For example, nanomaterials with a large 

surface area, good conductivity, and excellent biological compatibility can be used as signal amplification 

elements in electrochemical sensors. Therefore, exploring new advanced nanomaterials is key to developing 

sensors with a high sensitivity and low detection limit [22-24]. 

2D layered nanomaterials are an emerging but important class of materials. They refer to materials with 

one dimension restricted to a single-atom layer, including monolayer and few-layer nanomaterials [25-27]. 

In the 2D family, layered transition metal dichalcogenides (TMDs), such as MoS2, WS2, TiS2, TaS2, MoSe2, and 

WSe2, are fundamentally and technologically intriguing [28]. 

Layer-structured transition-metal dichalcogenides possess an unique layered structure of similar structure 

to graphite and large surface areas, as well as outstanding physical, chemical, optical, and electronic 

properties, which holds great potential for applications in catalysis, sensing, optics, and energy [29-31]. 

Because of its ultra thin layer structure, specific electrochemical properties, band gap (1.9 eV), large active 

edges, and easy surface modification, MoS2 becomes one of the fascinating candidates to construct 

electrochemical sensors with high performance. As one of the layer-structured transition-metal 

dichalcogenides, MoS2 has an analogous structure to graphite, which is composed of three atom layers: a Mo 

layer sandwiched between two S layers, and the triple layers are stacked and held together by weak van der 

Waals interactions.  

There are recent reports on using ionic liquids to design high sensitive electrochemical sensors. Ionic 

liquids possess high ionic conductivity, high chemical and thermal stabilities, and high viscosity, and they are 

promising candidate materials for the fabrication of electrochemical sensors [32-34]. 

Folic acid (FA), (2S)-2-[(4-{[(2-amino-4-hydroxypteridin-6-yl) methyl]amino}phenyl)formamido]pentane-

dioic acid, also known as folate (the natural form in body), vitamin B9, vitamin Bc (or folacin), pteroyl-L-glu-

tamic acid, pteroyl-L-glutamate and pteroylmonoglutamic acid are essential for numerous bodily functions. 

Since humans cannot synthesize folate, the consumption of natural sources such as some green-leafy 

vegetables or fortified food and tablets is necessary [35-38]. Several chronic diseases, for example, 

gigantocytic anemia, leucopoenia, mentality devolution, psychosis, heart attack, and stroke, are related to 

the deficiency of FA. It has also been suggested that decreased folate concentration is associated with 

enhanced carcinogenesis as folic acid with vitamin B12 participates in the nucleotide synthesis, cell division 

and gene expression. Besides, it is an essential nutrient for pregnant women to prevent neural tube defects 

in the fetus [39-42]. So, a sensitive determination of FA from a clinical viewpoint is very important. 

In this study, MoS2 modified carbon ionic liquid paste electrode (MoS2-CILPE) sensor was fabricated as a 

highly sensitive voltammetric sensor to determine the FA. The MoS2-CILPE sensor showed an acceptable 

ability to determine the folic acid in folic acid tablets and urine samples. 

Experimental 

Chemicals and instrumentation 

All chemicals used were of analytical grade and were used as received without any further purification and 

were obtained from Sigma-Aldrich. Orthophosphoric acid was utilized to prepare the phosphate buffer solutions 

(PBSs), and sodium hydroxide was used to adjust the desired pH values (pH range between 2.0 and 9.0). 

All solutions were prepared with deionised water of Millipore Direct-Q® 8 UV (ultra-violet) (Millipore, 

Germany). The pH was also measured and a buffer solution was prepared using a digital pH meter (Metrohm, 
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pH Lab 713). Voltammetric measurements were carried out using an Autolab PGSTAT302N, 

potentiostat/galvanostat (made in Netherlands). The system was run on a PC using General Purpose 

Electrochemical System (GPES) 4.9 software. A three-electrode system was used, including a platinum wire 

as the auxiliary electrode, an Ag/AgCl/KCl (saturated) as the reference electrode, and the MoS2-CILPE as the 

working electrode. The synthesis and characterization of 2D MoS2 nanosheets has been reported in our 

previous work [43]. 

Preparation of MoS2-CILPE 

MoS2-CILPE was prepared by mixing 0.04 g of MoS2 nanosheets with 0.96 g graphite powder and the 

appropriate amount of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) and paraffin oil 

(30/70 (w/w)) with a mortar and pestle. The paste was then packed into the end of a glass tube (3.4 mm 

inner diameter and 15 cm long). A copper wire inserted into the carbon paste provided the electrical contact. 

For comparison, carbon ionic liquids paste electrode (CILPE) in the absence of MoS2 nanosheets, MoS2-CPE 

consistent of MoS2 nanosheets powder, graphite powder and paraffin oil, and bare CPE consisting of graphite 

powder and paraffin oil were also prepared in the same way.  

Preparation of real samples 

Five tablets of the FA purchased from a local pharmacy in Kerman, Iran (1 mg FA per tablet) were 

completely powdered in the mortar with a pestle. Then, an accurately weighed amount of the homogenized 

FA powder was transferred into 100 mL 0.1 M PBS (pH 7.0). For better dissolution, the solutions inside the 

flasks were sonicated (20 min). After that, the resulting samples were filtered. Finally, a specific volume of 

the prepared samples was transferred to volumetric flasks and diluted with 0.1 M PBS (pH 7.0). The diluted 

solutions were then put in the electrochemical cell for DPV analysis. 

The collected urine samples were stored in the refrigerator after collection. The urine sample was 

centrifuged for 5 minutes at 2000 rpm. Then, the supernatant solution was filtered after phase separation 

and diluted with 0.1 M PBS (pH 7.0). The diluted solution was then put in the electrochemical cell for DPV 

analysis. The analytical experiments were performed using the standard addition method. 

Results and discussion 

Electrochemical behavior of FA on the MoS2-CILPE 

Mechanism of the FA oxidation on MoS2-CILPE is suggested on the basis of the relationship between the 

oxidation potential and pH of supporting electrolyte. The effect of the electrolyte pH on the oxidation of 

100.0 μM FA was investigated at MoS2-CILPE using DPV measurements in the PBS in the pH range from 2.0 

to 9.0. According to the results, the oxidation peak current of FA depends on the pH value. It increases with 

increasing pH until it reaches the maximum at pH 7.0, then decreases with higher pH values. The optimized 

pH corresponding to the higher peak current was 7.0 (Fig. 1), indicating that protons are involved in the 

reaction of FA oxidation (2 electrons and 2 protons). 

The effect of MoS2 nanosheets and ILs in the modification process was investigated by recording cyclic 

voltammograms of 100.0 µM FA at the surface of CPE (curve a), MoS2-CPE (curve b), ionic liquid modified 

carbon paste electrode (IL-CPE) (curve c) and MoS2-CILPE (curve d). The results are shown in Figure 2. The 

oxidation current and potential for FA were detected at about 3.1 µA and 750 mV at the surface of CPE and 

4.8 µA and 732 mV at the surface of MoS2-CPE, respectively. On IL-CPE, the oxidation peak was located at 

725 mV with an oxidation peak height of 8.0 µA (curve c). It can be seen that the oxidation peak potential 

moved to the negative direction with a significant increase of the oxidation peak current attributed to the 
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presence of ionic liquid as the modifier in the carbon paste electrode. The modification of CPE with MoS2 

nanosheets and ILs improved the oxidation current of FA (11.7 µA) and decreased the oxidation potential of 

FA (700 mV) compared with the bare CPE. 

 
Figure 1. Plot of the oxidation peak current of 100.0 μM FA as a function of pH solution at MoS2-CILPE in 

0.1 M PBS at different pH value (2.0 - 9.0). 

 
Figure 2. Cyclic voltammetric response of 100.0 μM folic acid at (a) bare CPE, (b) MoS2-CPE, (c) IL-CPE and  

d) MoS2-CILPE in 0.1 M PBS of pH 7.0 (Scan rate = 50 mV s1) in the potential window of 350-820 mV. 

Effect of scan rate 

The effect of the potential scan rates (10-100 mV s-1) on the electrochemical oxidation of FA was studied 

by CV. Figure 3 shows the CV of 90.0 µM of FA in the 0.1 M PBS at the MoS2-CILPE. These results show that 

the anodic current increased with an increasing scan rate. The oxidation current of FA increased linearly with 

the square root of the scan rate (Figure 3, Inset), demonstrating a diffusion-controlled electrochemical 

process.  
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Figure 3. Cyclic voltammetric responses of 90.0 μM FA in 0.1 M PBS (pH 7.0) at scan rates of 10 to 100 mV s-1 

at MoS2-CILPE (a-h refers to 10, 20, 30, 40, 50, 60, 80, and 100 mV s-1) in the potential window of 280-800 mV. 
Inset: Plot of the square root of the scan rate vs. the oxidation peak current of FA. 

Chronoamperometric analysis 

The chronoamperometric measurements of FA at the MoS2-CILPE surface were done to estimate the 

apparent diffusion coefficient. Figure 4 shows the current-time profiles obtained by setting the working 

electrode potential at 750 mV for different concentrations of FA.  

 
Figure 4. The chronoamperograms obtained at MoS2-CILPE in 0.1 M PBS at pH 7.0 for different concentrations of 
FA at step potential = 750 mV. Noted that a–d related to 0.1, 0.5, 1.0, and 1.5 mM of FA. Inset A: The I plot ver-
sus t-1/2 observed by chronoamperograms a to d. Inset B: Slope plot of the straight line vs. concentration of FA. 
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At long enough experimental times (t = 0.3 to 3 s), where the electron transfer reaction rate of FA is more than 

its diffusion rate toward the working electrode surface, the current is diffusion controlled. Figure 4, inset A, shows 

the experimental plots of I versus t-1/2 with the best fit for different concentrations of FA employed. The slopes of 

the resulting straight lines were then plotted versus the FA concentration (Figure 4, inset B). Based on the Cottrell 

equation (The Cottrell equation is I = nFAC (D/πt)1/2, where D is the diffusion coefficient (cm2 s-1), C is the con-

centration in bulk solution (mM), A is the surface area of the electrode  (cm2), F is Faraday’s constant, t is the time 

(s), and n is the number of electrons transferred), the slope of this plot (Figure 4 inset B) can be used to estimate 

of the diffusion coefficient of FA. From the slope of this plot, the value of D was found to be 5.7×10-6 cm2s-1 for FA. 

Calibration plot and limit of detection 

Since DPV has a much higher current sensitivity and better resolution than CV, DPV was used for the 

determination of FA. Figure 5 shows the DPV curves of MoS2-CILPE in the PBS with variable FA levels (Step 

potential = 0.01 V and pulse amplitude =0 .025 V). It was found that the electrocatalytic peak currents of FA 

oxidation at the MoS2-CILPE surface linearly depended on FA concentrations above the range of 5.0 to 

100.0 µM. The limit of detection is estimated by using the following equation, LOD = 3Sb/m. In this equation, 

m is the slope of the calibration plot (0.0829 μA μM-1) and Sb is the standard deviation of the blank response, 

obtained from 8 replicate measurements of the blank solution. The limit of detection was 1.0 μM and the 

limit of quantification (LOQ) was obtained 5.0 µM. A comparison of FA detection using various sensors is 

presented in Table 1.  

 
Figure 5. DPV response of FA at MoS2-CILPE in the concentration range 5.0 to 100.0 μM in 0.1 M PBS of 

pH 7.0 (a-k refers to 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, and 100.0 µM). Inset: the peak 
current plot as a function of the FA concentration ranging from 5.0 to 100.0 μM. 
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Table 1. Comparison of different DPV sensors for FA detection, . 

Electrochemical sensor Linear range, µM LOD, µM Ref. 

MoS2-reduced graphene oxide hybrid/glassy carbon electrode 0.01-100 0.010 [44] 

Ferrocene dicarboxylic acid/carbon nanotube paste 4-152 1.1 [45] 

Methylene blue-reduced graphene oxide/glassy carbon electrode 4-167 0.500 [46] 

ZrO2 nanoparticles-carbon paste electrode 20–2500 9.86 [47] 

Multi-walled carbon nanotubes-Pt nanoparticles/glassy carbon electrode 0.2-100 0.050 [48] 

MoS2-CILPE 5.0-100.0 1.0  This work 

Interference studies 

To evaluate the selectivity of MoS2-CILPE for FA, an investigation of the influence of potential interfering 

substances was performed under the optimized conditions. The DPV responses after adding interfering 

substances into 0.1 M PBS (pH 7.0) containing 50.0 µM FA were recorded. The tolerance limit was defined as 

the ratio of the concentration of the interfering species to the analyte, which led to a relative error of less 

than ±5.0 %. It was found that the 500-fold excess of glucose, glycine, methionine, histidine, alanine, glutamic 

acid, glycine, phenylalanine, 400-fold excess of Ca2+, Na+, Mg2+, NH4
+, Cl-, SO4

2-, 70-fold excess of urea, uric 

acid, and 10-fold of ascorbic acid did not remarkable interfere for FA determination.  

Stability, reproducibility, and repeatability of the MoS2-CILPE sensor 

For evaluation of the reproducibility of the prepared sensor, five MoS2-CILPE were prepared 

independently and used in the determination of FA through DPV in PBS (0.1 M, pH 7.0). Under the same 

experimental conditions, the calculated relative standard deviation (RSD) of peak currents was only about 

4.1 %, indicating reliable reproducibility of the sensing platform.  

The storage stability of the MoS2-CILPE was further examined by measurement of the FA oxidation peak 

current over the time interval of 12 days. No obvious decrease in the initial current value of FA was observed 

after 12 days, implying acceptable storage stability. 

The repeatability of the MoS2-CILPE sensor was studied by 5 consecutive measurements of 50.0 μM FA 

with RSD of 3.5 %, indicating good repeatability of the sensor. 

Analysis of real samples  

The real samples for the analysis were prepared and quantified by the DPV method. The developed sensor 

was applied to detect FA in folic acid tablets and urine samples. The results are summarized in Table 2. Each 

measurement was repeated five times. The FA acid content of each tablet was obtained at 1.003 mg. The 

recovery and relative standard deviation (RSD) values confirmed that the MoS2-CILPE sensor has great 

potential for analytical application.  

Table 2. Determining FA in folic acid tablets and urine through MoS2-CILPE. All the concentrations are in μM (n = 5). 

Sample 
FA concentration, μM 

Recovery, % 
Spiked Found 

Folic Acid Tablet 

0 3.5±0.01 - 

1.0 4.4±0.015 97.8 

2.0 5.6±0.02 101.8 

3.0 6.7±0.012 103.1 

4.0 7.4±0.01 98.7 

Urine 

0 - - 

5.0 4.9±0.011 98.0 

6.0 6.1±0.016 101.7 

7.0 6.8±0.013 97.1 

8.0 8.3±0.019 103.7 
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Conclusion 

A sensitive and reliable electrochemical method based on MoS2-CILPE was proposed for the determination 

of FA. Due to the large surface area of MoS2, high conductivity and catalytic activity of ionic liquid, the modified 

electrode exhibited good catalytic activity to FA with enhanced oxidation peak current and decreased oxidation 

overpotential. The voltammetric current response increased linearly with increasing FA concentration in the 

range of 5.0 to 100.0 μM and the detection limit of 1.0 μM was obtained. Moreover, the MoS2-CILPE sensor 

may provide a facile and effective analysis approach for the determination of FA in real samples. 
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