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Abstract 

Yalkowsky’s General Solubility Equation (GSE), with its three fixed constants, is popular and easy to apply, 
but is not very accurate for polar, zwitterionic, or flexible molecules. This review examines the findings of a 
series of studies, where we have sought to come up with a better prediction model, by comparing the 
performances of the GSE to Abraham’s Solvation Equation (ABSOLV), and Random Forest regression (RFR) 
machine-learning (ML) method. Large, well-curated aqueous intrinsic solubility databases are available. 
However, drugs may be sparsely distributed in chemical space, concentrated in clusters. Even a large 
database might overlook some regions. Test compounds from under-represented portions of space may be 
poorly predicted, as might be the case with the ‘loose’ set of 32 drugs in the Second Solubility Challenge 
(2020). There appears to be still a need for better coverage of drug space. Increasingly, current trends in 
predictions of solubility use calculated input descriptors, which may be an advantage for exploring 
properties of molecules yet to be synthesized. The risk may be that overall prediction approaches might be 
based on accumulated uncertainty. The increasing use of ML/AI methods can lead to accurate predictions, 
but such predictions may not readily suggest the strategies to pursue in selecting yet-to-be-synthesized 
compounds. Based on our latest findings, we recommend predictions based on both ‘grouped’ ABSOLV(GRP) 
and ‘Flexible Acceptor’ GSE(Φ,B) models with the provided best-fit parameters, where Φ is the Kier 
molecular flexibility index and B is the Abraham H-bond acceptor strength. For molecules with Φ < 11, the 
prudent choice is to pick the Consensus Model, the average of ABSOLV(GRP) and GSE(Φ,B). For more flexible 
molecules, GSE(Φ,B) is recommended. 

©2023 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

The pursuit of accurate prediction of solubility of drugs from molecular structure is still evolving and 

continues to be challenging [1-7]. It had been proposed that shortfalls have been due to the lack of high-quality 

solubility data from the chemical space of drugs. But there has been some pushback to that view [6]. Since 

2011, we have been actively collating and harmonizing published values of pH-dependent aqueous solubility of 
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drug-like and drug-relevant molecules of importance in the discovery-to-development stages of pharmaceutical 

research, aggregated in the Wiki-pS0
TM database (in-ADME Research). A book tentatively entitled “Predicting 

Solubility of New Drugs - Handbook of Critically Curated Data for Pharmaceutical Research” is under review by 

a publisher [7]. It tabulates solubility data up to 2022. The collection comprises 3695 different substances, with 

7619 entries of intrinsic solubility (uncharged form). Considerable effort has been put into deciding that the data 

are of high quality, based on carefully selected published sources, guided in part by the best-practices ‘white 

papers’ recently published [8-12]. Just about all entries in the database are referenced to primary sources. 

The reproducibility of statistical methods to predict solubility at best has hovered around the root mean 

square error (RMSE) of 0.6 log unit but is typically RMSE > 1 in many studies [1-5]. On the other hand, it has 

been firmly estimated that the average interlaboratory reproducibility can be as low as 0.18 log unit in 

carefully curated databases, which includes correcting reported solubility for ionization (i.e. deriving intrinsic 

solubility, S0) and by normalizing for temperature (by transforming measurements performed in the range 

10-50 to 25 °C) [7,13-20]. Consistent solubility unit conversions, methods of phase separation, and 

procedures for measuring pH also play critical underpinnings in data quality [8-12].  

This review discusses a recent series of five interrelated publications [16-20], where the use of several 

computational methods to predict intrinsic solubility were explored: (a) Yalkowsky General Solubility Equation 

(GSE) [21-26], (b) Abraham solvation equation (ABSOLV) [27-29], (c) Avdeef-Kansy Flexible-Acceptor General 

Solubility Equation (a.k.a., GSE(Φ,B)) [18], (d) Consensus of ABSOLV and GSE(Φ,B) [19], and (e) Breiman Random 

Forest regression (RFR) statistical machine learning (ML) method [30-33]. The above data-driven methods were 

trained with the Wiki-pS0 database. The traditional GSE is often considered pre-trained. It is popular for its 

simplicity and ease of use. New prediction methods are often benchmarked against the GSE.  

This review concludes with the introduction of a new variant method induced from the above five studies, 

called the Exclusive Or (‘XOR’) Decision Tree model, drawing on ABSOLV and/or GSE(Φ,B) models, depending 

on the value of Φ. The method may be useful when a large diverse database of intrinsic solubility values of 

drug-like or drug-relevant molecules is available. It mirrors the Consensus model [19]. 

Analytic continuity of methods to predict solubility of drug-like molecules 

The solubility (intrinsic, log molarity units) calculated by GSE depends on the value of the octanol-water 

partition coefficient (measured log P or calculated clog P) and the measured (or calculated) melting point (mp / °C) 

of the molecule. No further training is required for this thermodynamically well-founded legacy equation. 

log S0
GSE = 0.5 - log P -0.01 (mp-25) (1)  

The Abraham and Le [28] ABSOLV equation to predict solubility takes the form: 

log S0
ABSOLV = a0 + a1A + a2B + a3Sπ + a4E + a5V + a6AB (2) 

In the multiple linear regression (MLR) equation, the log S0 is the dependent variable (measured log 

intrinsic molar solubility) and the independent variables are the five solute solvation descriptors accounting 

for the energy of transfer of solute from solid to the solution phase: A is the sum of H-bond acidity (donor 

potential), B is the sum of H-bond basicity (acceptor potential), Sπ is the dipolarity/polarizability (subscripted 

here, so as not to be confused with solubility), E is an excess molar refractivity in units of (cm3∙mol-1)/10, and 

V is the McGowan characteristic molar volume in units of (cm3∙mol-1)/100. The a0 - a6 constants in Eq. (2) are 

determined by regression based on the training database of intrinsic solubility values. The five solvation 

descriptors may be calculated from 2D structure (provided in SMILES notation or as coordinates in a ‘mol’ 

file) using the program ABSOLV [29] (cf. www.acdlabs.com).  

http://www.acdlabs.com/
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As detailed elsewhere [18-20], the Flexible-Acceptor model, GSE(Φ,B), was developed as a critical expansion 

of the legacy GSE, following an exhaustive search of descriptors in a principal components analysis. For the 

original three constants (0.5, -1.0, -0.01) in Eq. (1), the first two were fitted to an exponential function of the 

sum of two descriptors, Φ (Kier’s [34] molecular flexibility index) and B (Abraham’s [27-29] H-bond acceptor 

potential). The third crystal-lattice contribution term was best characterized as a linear function of Φ+B. 

log S0
GSE(Φ,B) = c0 + c1· clog P + c2· (mp-25)/100 = {b0 + b1·exp(b2(Φ+B))} +  

+ {b3 + b4(1 - exp(b5(Φ+B))} clog P + {b6 + b7·(Φ+B)}(mp-25)/100  (3) 

The molecular flexibility descriptor, Φ, has been defined [34] in terms of structural attributes (chains, rings, 

branches, atom counts) as Φ = 1κ· 2κ /NHA, where 1κ and 2κ are the first- and second-order topological shape 

indices, and NHA is the heavy atom count in the molecule (RDKit descriptors from http://www.rdkit.org). In the 

Wiki-pS0 database, Φ values ranged from 0.4 to 43. For molecules with molecular weight > 500 Da, the 630 Φ 

values range from 4.9 to 43, averaging 12. B (cf. Eq. 2) for the large molecules ranges from 0.4 to 12.9, averaging 

3.6. In the development of the SGE(Φ,B) model, several combinations of Φ and single Abraham descriptors 

were examined. The sum of Φ and B improved performance over just Φ in Eq. (3) [18-20]. 

The eight b0-b7 constants in the GSE(Φ,B) model were determined in two steps. (i) The log S0 values in the 

training set were sorted on Φ+B. The sorted data were then divided into 20 bins, each of near-equal values of 

Φ+B. Seven of the lowest-(Φ+B) bins contained an average of nearly 1000 log S0 values per bin. The data in each 

bin were then analyzed to find the best-fit c0, c1 and c2 constants in the first line of Eq. (3), using PLS regression. 

(ii) The resultant 20 c0, c1, and c2 constants from the bins were then displayed in three plots against (Φ,B) values, 

to suggest possible nonlinear fitting equations. From this, the analytical expressions for the c-coefficients were 

determined by standard nonlinear least-squares methods, as detailed elsewhere [18-20].  

Of the new ML statistical approaches, the RFR method is thought to be among the premier performers in 

prediction accuracy, although deep-learning neural network methods may be as good [3,4]. The RFR software 

is freely downloadable and is easy to use (cf. ’random forest’ library for the R statistical software [31-33]). 

The method works by constructing an ensemble of hundreds of decision trees based on a random selection 

of a portion of the training set of solubility measurements, using hundreds of randomly-grouped descriptors 

provided by the user. It is not possible to state a simple explicit equation, like Eqs. (1)-(3), for the RFR method. 

In this study, all metrics expressed as the coefficient of determinations (r2) and root-mean square errors 

(RMSE) are of the ‘validation type’ [35], unless otherwise indicated (see Abbreviations and definitions). Also, 

all logarithm functions are with reference to base 10. 

Random forest regression trained with the Wiki-pS0 Database 

In the first of our recent solubility prediction studies [16], four test sets were examined:  

• Test Set 1 – Yalkowsky-Banerjee [22] set of 21 organic nonelectrolytes (6 solid and 3 liquid poorly-soluble 
pesticides, 11 older drugs, and a dye/laxative molecule), with the test set mean log S0 = -3.85 (log molarity). 
This set has been widely tested by other investigators, to assess the effectiveness of prediction models. 

• Test Set 2 – Hopfinger et al. [2] set of 28 well-studied drugs (all ionizable), with mean log S0 = -4.03. This 
test was part of the first solubility challenge [1,2]. 

• Test Set 3 – Llinas-Avdeef [3] high-consensus ‘tight’ set of 100 drugs, with the mean log S0 = -4.03. This 
test was part of the second solubility challenge [3,4]. 

• Test Set 4 – Llinas-Avdeef [3] low-consensus ‘loose set’ set 32 drugs, with the mean log S0 = -5.24. This 
test was also used in the second solubility challenge [3,4]. 

It was found that all the predictions generated negative bias (-0.08 to -0.65), in many cases suggesting that 

solubility of low-soluble compounds was overestimated. RFR outperformed the GSE and ABSOLV methods on 

https://doi.org/10.5599/admet.1879
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all common metrics [35], averaged over the four test sets: r2
avg = (0.69, 0.47, 0.42), RMSEavg = (0.92, 1.17, 1.17), 

MPPavg (measure of prediction performance [2]) = (51, 38 and 32 %), for RFR, ABSOLV and GSE, respectively. It 

is interesting that the RFR method predicted Yalkowsky-Banerjee Set 1 only marginally well: r2 = 0.82, 

RMSE = 0.83, MPP = 57 %, bias = -0.23. When 115 practically-insoluble agrochemicals were added to the Wiki-

pS0 database (which had been devoid of such pesticides), the performance improved: r2 = 0.89, RMSE = 0.63, 

MPP = 71 %, bias = +0.02. This confirmed the importance of matching the chemical space of test molecules with 

those in the training set. However, the ability to predict the solubility of drugs to the level of the quality of 

measured data remained out of reach (RMSE 0.6 vs. 0.2). Improvements in the methods (e.g. more effective 

descriptors) [6] and better coverage of the clustered [36] chemical space of drugs were called for.  

The principal component analysis (PCA) based on the 30-most important descriptors identified in RFR 

yielded a scores plot of the first two principal components for the training set solubility, showing a very dense 

symmetrical distribution about the origin for molecules with molecular weights (MW<500 Da). Large 

molecules (MW>800 Da) were sparsely (but near diagonally) represented in the bottom-right quadrant, 

giving the overall distribution a ‘comet-like’ head-tail appearance [16]. Small molecules in the Lipinski [36] 

Rule of 5 (Ro5) chemical space, populating the ‘head,’ thus appeared to have very different distributions than 

those beyond the Ro5 (bRo5) space in the ‘tail.’ 

Small Ro5 molecules can predict the solubility of large bRo5 molecules, using the RFR method 

In our second study [17], the above ‘comet-like’ PCA distribution enticed us to explore whether small 

molecules (Ro5 space) in a training set could be used to predict the solubility of large molecules (bRo5 space), 

although at first, we were not optimistic of a good outcome. The molecules with MW>800 Da were selected 

as the test set, with the rest of the database molecules serving as the training set.  

• Test Set 5 – Avdeef-Kansy [17] - test set of 31 ‘big’ drug-like/drug molecules with MW 802 - 1882 Da (e.g. 
cyclosporine A, gramicidin A, leuprolide, nafarelin, oxytocin, vancomycin), with mean log S0 = -4.52.  

It was found the RFR method spectacularly distinguished itself from the simpler GSE and ABSOLV models: 

r2 = (0.37, -5.24, -3.82), RMSE = (1.07, 3.36, 2.95), MPP = (42, 10 and 16 %), bias = (+0.30, +2.64, +0.16), for RFR, 

ABSOLV and GSE, respectively. In probing this further, the first two normally-fixed parameters in the GSE(classic) 

model (+0.5 and -1.0) were ‘re-trained’, to yield log S0
GSE

SMALL = -0.28 -0.83 clogP -0.01·(mp - 25). The modified 

versions of the Yalkowsky’s equation used as the training set produced metrics comparable to those of the RFR 

method: r2 = 0.33, RMSE = 1.10, MPP = 30 %, and bias = +0.04. A similar treatment for the large molecules 

yielded log S0
GSE

BIG = -1.77 -0.40 clogP -0.01·(mp - 25). These modifications showed that c0 and c1 could be 

variable coefficients, rather than constants. It was this observation that pointed the way to the development of 

the Flexible-Acceptor model, GSE(Φ,B), which turned out to be quite an improvement over the classic equation, 

providing realistic coverage of the chemical space of drugs up to MW of about 2000 Da.  

Flexible-acceptor GSE(Φ,B) for predicting the solubility of large molecules 

When it became evident that the GSE might be beneficially re-trained to predict a broader class of 

compounds, especially large drug-like molecules, a search was made for analytical functions which could 

represent the three traditional constants in terms of meaningful property descriptors, guided by the PCA 

distribution mentioned above [16]. The novel Flexible-Acceptor model (cf. Eq. (3)), GSE(Φ,B), was the outcome 

of the effort [18].  

As the last section indicated, it had been a challenge to predict solubility of large molecules using simple but 

easily transparent and interpretable models such as GSE and ABSOLV (as indicated by r2 < 0 and RMSE ≥ 3). RFR 

showed promise, but this ML method can be opaque, given that over 200 calculated descriptors are often used 
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in the random mixing of portions of the learning set with randomly-selected subsets of descriptors. 

Nevertheless, there are good reasons to attempt the prediction of the solubility of large molecules. Many drugs 

(mostly derived from natural products) in immunosuppression, oncology, and for the treatment of 

infectious/viral diseases are large, lipophilic, and possess many H-bond acceptors. Literature discussions 

highlight the promise of therapeutic opportunities for ‘beyond the Rule of 5’ (bRo5) molecules [37-44]. Caron 

and colleagues [42-44] have paved the way for recognizing the importance of Kier’s molecular flexibility index, 

Φ, in predicting the physical properties of bRo5 molecules.  

Flexible molecules with the potential to form intramolecular H-bonds may possess enhanced solubility in 

polar media (i.e. water), by adopting hydrophilic ‘extended’ conformations, as well as enhanced permeability 

across apolar cell membranes, by adopting hydrophobic ‘folded’ conformations [37-44]. Given that large 

molecules may pose pharmacokinetic (PK) risks due to low solubility, the need for caution is especially 

important. So, reliable, and actionable in silico models to predict solubility before such molecules are 

prioritized for synthesis could be a valuable contribution in PK risk assessment. 

• Test Set 6 – Avdeef-Kansy [18] – One additional molecule was added to Set 5 to comprise Test Set 6 of 
32 drugs with MW from 802 to 1882 Da, MWavg = 1037 Da. Average log S0 = -4.61 (range -1.2 to -7.6); 
clogPavg = 3.3 (-3.6 to +17.9); Bavg = 5.8 (1.9 - 11.6); Φavg = 20 (11-41). 

Using all the database molecules with MW < 800 Da as the training set, the GSE(Φ,B) prediction of larger 

molecules yielded promising statistics: r2 = 0.40, RMSE = 1.10, MPP = 41 %, bias = -0.08. By contrast, the 

traditional GSE generated r2 < 0, RMSE = 3.0, and MPP = 16 %. RFR, the ‘gold standard’ of accuracy in the minds 

of some computational chemists, generated r2 = 0.37, RMSE = 1.07, MPP = 38 %, bias = +0.30. Overall, RFR and 

GSE(Φ,B) performances were about the same. This encouraging result became the segway to our study of a 

more diverse class of test molecules: recently FDA-approved drugs (2016-2022). 

GSE(Φ,B) works well for both big and small molecules, but the Consensus model, based on the average of 

GSE(Φ,B) and ABSOLV(GRP) can be even slightly better than the RFR Model 

The pharma R&D productivity trended downwards from a high point in 1996 to leveling off by 2010, 

judging by the count of new molecular entities (NMEs) approved each year [45]. From 2011 to 2020, an 

upward recovery trend, albeit bumpy, can be discerned. More recently, a trend reversal may be taking place. 

Of the drugs approved in 2020 and 2021, 72 % are considered ‘small molecule’ NMEs. But even these are 

getting larger, less soluble, more lipophilic, and possessing more H-bond acceptors, when compared to older 

drugs. Large molecules may be burdened with PK risks, as noted above.  

In our fourth [19] and fifth [20] studies, we directed our efforts to predict the solubility of newly-approved 

drugs, covering the period of 2016-2021. A few newly-approved drugs were added from 2022 [7]. It was of 

particular interest to see how the Flexible-Acceptor model, GSE(Φ,B), would perform, since many of the new 

drugs are large and draw on a diverse chemical space. In addition to predictions, the trends in 

physicochemical properties of these new drugs were quantitated [20] – property inflation was evident. To 

reduce method bias in ABSOLV prediction, the training set data were divided into six groups. The new 

operational variant [20], called ABSOLV(GRP), is described below.  

● Test Set 7 – The intrinsic solubility of 105 newly FDA-approved drugs (2016 to 2022) were added to the 
Wiki-pS0 database [7]. Average log S0 = -4.64 (ranging -8.5 to +0.6); MWavg = 465 Da (174 - 1215), 
clogPavg = 3.3 (-5.8 to +8.7); Bavg = 2.2 (0.8 - 7.7); Φavg = 6.7 (1.9 - 32.0). 

The GSE(Φ,B) was originally developed to predict the solubility of large flexible drug-like molecules. It was 

shown to predict the solubility of drugs beyond Lipinski’s ‘Rule of 5’ chemical space (bRo5) to a precision 

matching that of the Random Forest regression (RFR) machine learning method [18]. Surprisingly, the 

https://doi.org/10.5599/admet.1879
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GSE(Φ,B) appeared to work well also for Ro5 drugs [19]. As before, to add context to the GSE(Φ,B) model, 

GSE(classic), ABSOLV(GRP), and RFR models were also applied to predict log S0 of the newly-approve ‘small 

molecule’ NMEs, for which useable reported solubility values could be accessed (the majority from FDA New 

Drug Application published reports). The prediction models were retrained with an enlarged version of the 

Wiki-pS0 database. GSE(classic) was applied in its traditional form. 

RFR and GSE(Φ,B) outperformed the GSE(classic) and ABSOLV(GRP) models in most of the metrics [35]: 

r2 = (0.64, 0.59, 0.47, 0.41), RMSE = (1.09, 1.15, 1.33, 1.40), MPP = (37, 32, 29 and 31 %), and bias = (-0.11, -0.34, 

+0.01, -0.33) for RFR, GSE(Φ,B), ABSOLV(GRP), and GSE(classic), respectively, for the 105 new drugs. The 

Consensus model [19] (average of GSE(Φ,B) and ABSOLV(GRP)), performed just about as well as the RFR model, 

with the metrics: r2 = 0.63, RMSE = 1.10, MPP = 34 %, and bias = -0.16.  

The near zero bias of the ABSOLV(GRP) model in the most recent studies was largely achieved by dividing 

the training set into six sub-classes. Big molecules (MW > 800 Da) and quaternary ammonium compounds 

were first removed from the training set and were each analyzed separately, with the a0-a7 coefficients in 

Eq. (2) determined by PLS regression. The remaining training set molecules were divided into four classes, 

based on their net charge at pH 7.4 : acids (-), bases (+), zwitterions (±), and neutrals (0). Table 1 summarizes 

the results of the sub-class training. 

Table 1. ABSOLV(GRP) coefficients determined by PLS regression analysis of training seta 

log S0
ABSOLV = a0 + a1A + a2B + a3Sπ + a4E + a5V + a6AB 

Group a0 a1 a2 a3 a4 a5 a6 Pearson r2 RMSE n 

Acids -0.30 0.26 1.07 0.04 -0.91 -1.80 0.43 0.65 1.17 1578 

Bases -0.39 -0.61 1.95 0.25 -1.67 -1.37 0.09 0.64 1.11 945 

Zwitterions 1.52 -1.44 0.88 -0.23 -1.02 -1.08 0.38 0.71 0.88 641 

Neutrals -0.45 -0.18 1.73 0.10 -1.48 -1.36 0.26 0.63 1.12 4246 

Big (MW > 800 Da) -3.76 0.72 0.61 -0.03 -0.47 -0.38 -0.02 0.42 1.04 93 

Quaternaries 0.53 -1.23 0.74 -0.04 -0.62 -0.49 0.09 0.66 0.94 39 
aa0-a6 coefficients in Eq. (2). PLS open-source package from https://cran.r-project.org/web/packages/pls.  

The GSE(Φ,B) model was further re-trained, as more data had been added to the Wiki-pS0 database. For this 

step, the solubility data in the training set were sorted on Φ+B and grouped into twenty bins of increasing values 

[19]. In each Φ+B bin of about 700 solubility entries, the three GSE coefficients, c0-c2 in Eq. (3) were each 

determined by linear PLS regression. The resultant three groups of c-coefficients showed recognizable forms as 

a function of Φ+B. The trend in c0 was characteristic of a decreasing exponential function in Φ+B, suggesting 

that the solubility of a liquid solute in model lipid (octanol) [16-18] decreases as Φ+B increases. The trend in the 

c1 coefficients (lipophilicity factors) was that of an increasing exponential function, indicating a decreasing 

influence due to lipophilicity as Φ+B increases. The slightly increasing c2 coefficients (crystal lattice effect) could 

be fit to an ascending linear form as a function of Φ+B. Apparently, crystal lattice contributions are not 

appreciably altered by molecular flexibility and H-bond acceptor character, and trend near the traditional value 

(-0.01) in Eq. (1). Evidently, solubility dependence on flexibility and H-bond acceptor strength are mediated by 

solution-phase interactions [46]. Table 2 summarizes the most-recently trained GSE(Φ,B) parameters. 

Table 2. Flexible-acceptor model, GSE(Φ,B)a - log S0
GSE(Φ,B) = c0 + c1 clog P + c2 (mp-25)/100 

Coefficients Pearson r2 RMSE number of bins 

c0 = –4.456 + 6.049 e–0.0817(Φ,B) 0.93 0.41 20 

c1 = –1.326 + 1.058 (1 - e–0.1226(Φ,B) ) 0.89 0.09 20 

c2 = –0.941 + 0.0389(Φ,B) 0.55 0.27 20 
ab0-b7 coefficients in Eq. (3) determined for the Wiki-pS0 database, using PLS regression: open-source package from  
https://cran.r-project.org/web/packages/pls.  

https://cran.r-project.org/web/packages/pls
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The Consensus prediction equation is simple in form and can be easily incorporated into spreadsheet 

calculations (using the parameters in Tables 1 and 2), which is not the case for the RFR model.  

Aside from opaqueness, there are other limitations to RFR. Since the prediction is the average log S0 value of 

several training set molecules with descriptors most like those of the test compound, the RFR model, as it is 

currently implemented, cannot extrapolate beyond its training space. So, for molecules much less soluble than 

those in the training set, the prediction always overestimates the solubility. Consequently, if a test molecule is also 

inadvertently included in the training set, RFR will very likely present the experimental value as the prediction. 

Consensus vs. Exclusive Or (XOR) models 

In prediction of the solubility of newly-approved drugs [19,20], the RFR and GSE(Φ,B) models outper-

formed the GSE(classic) and ABSOLV(GRP) models in most of the metrics, as noted above. As a bonus, the 

Consensus model based on the average of GSE(Φ,B) and ABSOLV(GRP), slightly outperformed the RFR 

method in one study [19]. In this last section, we put the RFR aside, after having used it as a valuable 

benchmark. Instead, we focus on developing a decision tree to identify simple mechanistically transparent 

and easy-to-understand models based mainly on GSE(Φ,B) and ABSOLV(GRP) [5].  

As we checked specific molecules over the entire database ad hoc (or in the cases of outliers [5], discussed 

below), we found that the Consensus model was not always the best predictor. For example, we found that in 

cases of molecules with Φ < 1.66 (182 very rigid molecules), the Yalkowsky GSE(classic) was the best performing 

model, but just slightly so (cf. Table 3, and Fig. 2). Also, it is uncommon to find an example of a better simple 

predictor than the GSE(Φ,B) model for the space beyond Φ > 10.83 (342 very flexible molecules) (cf. Table 3, 

and Fig. 2). The span between Φ 1.66 and 10.83 (comprising 7144 entries– most of the database) revealed flip-

flop in performance between GSE(Φ,B) and ABSOLV(GRP). Either the latter or the former was the best 

performer, i.e. an ‘exclusive or’ (XOR) behavior. How could one justify choosing the individual models over the 

Consensus model? 

Insights to a possible answer to the above question may be revealed by further scrutinizing the 

performances of GSE(classic), ABSOLV(GRP) and GSE(Φ,B) models in the entire Wiki-pS0 database. To start, 

all the entries in the database were sorted on Φ into 19 bins of near similar values of Φ. In each bin for each 

of the models, the RMSE value was calculated. Table 3 shows the bin errors distributions. Figure 1 illustrates 

the distribution of Φavg counts in the bins. 

  
Figure 1. Distribution of the bin-average values of the molecular flexibility indices, Φavg (Table 3). 
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Figure 2 compares the RMSE values distribution of the three models: GSE(classic) as red curves with 

triangle symbols, ABSOLV(GRP) as blue dotted curves with square symbols, and GSE(Φ,B) as green curves 

with circle symbols. A decision tree constructed based on the crossings in Figure 2 is shown in Figure 3. 

Since the XOR Model in Figure 3 is dependent on the types of molecules within a particular bin of near 

constant flexibility, and since different databases may have molecules with differing properties in each range 

of Φ values, it may be prudent to select the Consensus model as the ‘best’ prediction. In our case of model 

training, the cross-over points may be sufficiently grounded to advance the XOR Model as the ‘best’ for the 

middle ‘Consensus Domain’ (cf. zoom view in Fig. 2). This is especially so, since this middle domain is 

comprised of many values of solubility, averaging over 1100 entries/bin for bins 2-7 (Table 3). 

Table 3. Model selection as a function of Kier flexibility, Φ 
Φavg in Bin Number of entries in bin RMSE (GSE) RMSE ABSOLV (GRP) RMSE GSE(Φ,B) ‘Best’ model 

1.0 182 1.42 1.57 1.50 GSE(classic) 

2.0 1882 1.03 0.987 0.990 ABSOLV(GRP) 

3.0 1245 1.11 0.99 1.03 ABSOLV(GRP) 

4.0 1928 1.06 1.00 0.95 GSE(Φ,B) 

5.0 539 1.37 1.04 1.17 ABSOLV(GRP) 

6.0 953 1.45 1.24 1.14 GSE(Φ,B) 

7.0 122 1.49 1.40 1.19 GSE(Φ,B) 

7.4 100 1.50 1.12 1.23 ABSOLV(GRP) 

7.8 100 1.68 1.50 1.26 GSE(Φ,B) 

8.3 100 2.10 1.37 1.68 ABSOLV(GRP) 

9.0 100 2.09 1.60 1.53 GSE(Φ,B) 

9.9 75 2.36 1.29 1.71 ABSOLV(GRP) 

11.0 75 1.75 1.22 1.15 GSE(Φ,B) 

12.7 75 2.12 1.88 1.64  

14.6 50 1.04 1.22 0.93  

15.7 50 1.12 1.28 0.91  

18.1 50 1.82 0.93 0.85  

23.6 25 2.55 2.30 1.01  

31.2 17 5.42 1.69 1.53  

 
Figure 2. Distribution of root-mean-square (RMSE) values calculated for each of the bins in Table 3, as a function of 
Kier molecular flexibility index, Φ. For Φ < 1.66, the GSE slightly outperforms the other two models (as demarked by 
the vertical dashed line). For Φ > 10.83, the best performing simple model is GSE(Φ,B) – the Flexible-Acceptor model 

fit for flexible molecules. The zoom view on the left side of the drawing illustrates the GSE(Φ,B)-ABSOLV(GRP) flip-flop 
Consensus Domain region. 
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Figure 3. Decision Tree for the selection of the ‘best’ simple method for the prediction of intrinsic solubility. Either the 
Consensus model may be sought for 1.95 ≤ Φ < 10.83 by taking the average of the two best values, or the XOR Model 

may be invokes, by picking best of ABSOLV(GRP) and GSE(Φ,B) models.  

Testing the decision tree model: Consensus vs. Exclusive Or (XOR) variants 

The above Decision Tree considers the prediction potential from the view of the entire database. 

However, it is the performance of the predictions of test set molecules that really counts. So, we selected a 

slightly-increased set of 108 newly-approved FDA drugs to examine this last point. 

• Test Set 8 – Three additional log S0 values were added to Test Set 7 of newly FDA-approved drugs as more 
approvals were announced in 2022.  

Table 4 summarizes the prediction metrics of the three simple models. Based on the properties of the newly-

approved drugs in the test set, the ranking of the various methods is suggested. For of r2 and RMSE, the 

ranking of best performers follows: Consensus > GSE(Φ,B) > XOR Decision Tree > ABSOLV(GRP) > GSE(classic). 

The model with the least bias is ABSOLV(GRP) and the model with the best MPP (more molecules within 

±0.5 log of the correlation identity line) is the XOR Decision Tree (cf. Fig. 3). Figure 4 illustrates the differences 

between the XOR Decision Tree and Consensus models for the new drug predictions. The general scatter in 

the Consensus model is evidently less than that in the XOR model. Other minor differences are evident. 

 
Figure 4. Prediction of newly-approved drugs (2016-2022). (a) XOR Decision Tree model predictions, 

compared to (b) Consensus model.  
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The summary in Table 4 may seem to be complicated, and different trends may be encountered for other 

test sets. In new test cases, the discussed simple models can be easily incorporated into an Excel spreadsheet 

(using the refined parameters in Tables 1 and 2) and compared for new cases. 

Table 4. Simple models for predicting solubility of newly-approved drugsa 
Model r2 RMSE bias MPP, % 

Consensus 0.64 1.08 -0.15 32.4 

GSE(Φ,B) Flexible-Acceptor 0.62 1.12 -0.32 33.3 

XOR Decision Tree 0.57 1.18 -0.18 35.2 

ABSOLV(GRP) 0.51 1.26 0.02 32.4 

GSE(classic) 0.42 1.38 -0.36 31.5 
aTest Set 8 with n = 108. The best metrics are highlighted in bold. 

Another test example in model selection based on outliers 

Oja et al. [5] responded to the Second solubility challenge [3,4] with three data-driven MLR models for 

predicting intrinsic aqueous solubility, which were mechanistically transparent and easily understandable. 

They discussed the challenges posed by outlier molecules. 

Table 5. Simple-model prediction of solubility of outliers in the Oja et al. [5] Study a 

Drug 
Φ 

log S0(Obs) 
[7] 

Consensus 
[5] 

Consensus [this 
work] 

XOR 
Model 

GSE(Φ,B) Flexible-
Acceptor 

ABSOLV 
(GRP) 

GSE 
(classic) 

Obs-Calc closest 
prediction 

Folic Acid 6.6 -5.91 ± 0.17 -3.88 -2.51 -4.07 -2.97 -2.05 -1.71 -1.84 

Cisapride 8.6 -6.78 ± 0.17 -4.21 -4.16 -2.97 -4.24 -4.07 -3.71 -2.54 

Amiodarone 9.2 -10.40 ± 0.50 -7.86 -7.21 -4.38 -6.48 -7.93 -7.75 -2.47 

Itraconazole 9.6 -8.71 ± 0.57 -7.27 -7.12 -7.93 -5.69 -8.54 -6.48 -0.17 

Rifabutin 13.1 -3.99 ± 0.43 -6.81 -5.05 -8.54 -5.21 -4.89 -5.63 0.90 

Cyclosporine A 31.5 -5.03 ± 0.16 -8.27 -4.49 -5.21 -4.38 -4.59 -4.03 -0.44 
aClosest predictions are highlighted in bold 

Table 5 shows a different pattern of performance ranking compared to that in Table 4. ABSOLV(GRP) 

performed consistently in the first position for the four most flexible molecules. For the least flexible 

molecules, folic acid and cisapride, the XOR and GSE(Φ,B) looked promising. Our Consensus model lagged 

the others in this outliers example. 

Conclusion 

Large, well-curated aqueous intrinsic solubility databases are available, with average interlaboratory 

reproducibility of less than 0.2 log unit. However, the distribution of drugs in the chemical space might not 

be uniform but may be sparsely populated in clusters [47]. Even a massive database might miss some clusters. 

Test compounds from such an under-represented portion of space may be poorly predicted, as the outliers 

in Table 5 could suggest. Also, the 32 ‘difficult-to-predict’ drugs in the Second Solubility Challenge [3,4] may 

be good examples of underpopulated cluster space, for which better representation is needed. It should also 

be noted that the 32 molecules are also ‘difficult-to-measure’ drugs. 

The increasing use of ML/AI methods can lead to accurate predictions, as we have seen. However, these 

results may not readily suggest the steps to take to improve the properties of tested compounds. Our five 

studies in solubility prediction have attempted to match the performance of the Random Forest regression 

method, using relatively simple, mechanistically transparent, and easily applied models [5].  

Increasingly, current trends in in-silico predictions of solubility use calculated input descriptors, which may 

be an advantage to explore properties of molecules yet to be synthesized. The risk may be that overall pre-

diction approaches might be based on accumulated uncertainty, something that is often not emphasized [47]. 
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The knowledge gained and predictive power applied to novel classes of test molecules can still be limited by 

the calculated descriptors. 

Based on our latest findings, we recommend that both ABSOLV(GRP) and GSE(Φ,B) be calculated (e.g., by 

taking advantage of the refined parameters in Tables 1 and 2). For molecules with Φ < 11, the prudent choice 

is to pick the Consensus Model, the average of ABSOLV(GRP) and GSE(Φ,B). For more flexible molecules, 

GSE(Φ,B) is recommended. 

Abbreviations and definitions 

S0 intrinsic aqueous solubility (i.e. solubility of the uncharged form of the compound, in molarity units) 
RMSE correlation root-mean-square error: RMSEbias = [ 1/(n-1) Σi (yi

obs - bias - yi
calc)2 ]1/2, where yobs or ycalc is 

the measured or calculated value of log S0 , n = number of measurements of log S0. Note: some 
statistical programs define RMSE slightly differently: see discussion in Ref. [35]. ‘Validation’ type 
RMSEval = [1/n Σi (yi

obs - yi
calc)2]1/2 

r2 correlation coefficient of determination, r2
bias = 1 - Σi(yi

obs - bias - yi
calc)2 / Σi(yi

obs - <yobs>)2 , where 
y = log S0, and <yobs> is the mean value of measured log S0. Note: some statistical programs define r2 
slightly differently. ‘Validation’ type [35] r2

val = 1 - Σi(yi
obs - yi

calc)2 / Σi(yi
obs - <yobs>)2 

bias intercept (a) in the correlation fit: yobs = a + bycalc, where the slope factor b is fixed at unity. 
SD standard deviation: SD = [1/n Σi(yi

obs - <y>)2]1/2, where n = number of measurements, <y> = mean 
value of log S0. 

MPP Measure of prediction performance [2]. It refers to the percent of ‘correct’ predictions, defined as 
the percentage of log residuals within 0.5 log unit of the identity line. MPP is represented as a pie 
chart in the correlation plots. 

Abraham solvation descriptors 

A H-bond total acidity (donor potential) 
B H-bond total basicity (acceptor potential) 
Sπ dipolarity/polarizability due to solute-solvent interactions between bond dipoles and induced dipoles 
E excess molar refraction (dm3 mol-1 / 10); which models dispersion force interaction arising from π- 

and n-electrons of the solute 
V McGowan molar volume (dm3 mol-1 / 100) 
A·B  acid-base H-bonding product descriptor used in ABSOLV solubility prediction 
 
Availability of the Wiki-pS0 database: A book tentatively entitled: “Predicting solubility of new drugs - 
Handbook of critically curated data for pharmaceutical research” is under review by a publisher. It is 
anticipated to be available in April 2024. 

Acknowledgment: Collaborations and in-depth discussions of the prediction of drugs with Dr. Manfred Kansy 
(Freiburg, Germany) are deeply appreciated. 
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