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Abstract. A lattice path in Zd is a sequence ν1, ν2, . . . , νk ∈ Zd such that the steps
νi − νi−1 lie in a subset S of Zd for all i = 2, . . . , k. Let Tm,n be m × n table in the first
area of the xy-axis and put S = {(1, 1), (1, 0), (1,−1)}. Accordingly, let Im(n) denote the
number of lattice paths starting from the first column and ending at the last column of
T . We will study the numbers Im(n) and give explicit formulas for special values of m
and n. As a result, we prove a conjecture of Alexander R. Povolotsky involving In(n).
Finally, we present some relationships between the number of lattice paths and Fibonacci
and Pell-Lucas numbers, and pose several problems and conjectures.
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1. Introduction

A lattice path L in Zd is any sequence ν1, ν2, . . . , νk of points of Zd (see [36, 37]).
The vectors ν2 − ν1, ν3 − ν2, . . . , νk − νk−1 are called the steps of L. Lattice paths
are studied by fixing a set of steps and an area U ⊆ Zd, where the paths live. A
typical problem to carry out is to count possible lattice paths of a given length in
the given area U with steps in a given set S ⊆ Zd.

Lattice paths and more generally lattice animals have deep roots in physics and
appear in the study of thermodynamic models, phase transitions, statistical physics,
lattice gas models, river networks, etc. (for example, see [29]). A typical problem
there is modeling physical phenomena, say motion of gas molecules, as paths inside
a (triangular, square, hexagonal, etc.) lattice and study the behavior of the paths.
The main question to address is to give exact formulas or asymptotic results for the
number of lattice paths (animals) satisfying some constraints. For example, it is
shown that the number an of directed animals of size n satisfies

an ∼ µnn−θ
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for some constants µ and θ in various models. For a thorough study of 2-dimensional
lattices in physics we refer the interested reader to [1, 13, 14, 18, 19, 23, 25, 26, 30,
32, 41, 44, 53], and to [24, 33, 40, 43, 42, 41, 52, 53] for higher dimensions. We
also refer to [2, 10, 12, 28, 39, 46, 48, 51] for further results. Gouyou-Beauchamps
and Viennot [30] give a bijection between compact-rooted directed lattice animals
on a two-dimensional square lattice with some lattice paths in the plane. Later,
Bousquet-Mélou and Conway [15] and Corteel, Denise, and Gouyou-Beauchamps [21]
give bijective proofs to obtain algebraic equations satisfied by the area generating
function of directed lattice animals on infinite families of two-dimensional lattices.
Recall that a lattice animal is a set of points in a lattice, which is a union of some
lattice paths starting from a single point (or a set of points in some contexts).

Lattice paths also arise naturally in various problems in mathematics and are
well-studied in the literature. The general theory studies the analytic behavior of
the complex generating function of the paths and gives estimations of the number
of paths of a given length, etc. (see e.g. [3, 27, 45]). Particular lattice paths have
received much attention and have been studied extensively. Very important paths
be mentioned are Dyck paths and Motzkin paths. A Dyck path is a lattice path in Z2

starting from (0, 0) and ending at a point (2n, 0) (n > 0) consisting of up-steps (1, 1)
and down-steps (1,−1) that never passes below the x-axis. The Catalan numbers
Cn = 1

n+1

(
2n
n

)
, a ubiquity in various combinatorial problems, count the number of

Dyck paths of length 2n (for details, see [31, 34, 35, 47, 50]). Allowing the right
steps (1, 0) in addition to those of a Dyck path, we get Motzkin paths starting from
(0, 0) and ending at a point (n, 0) that never pass below the x-axis.

Throughout this paper, Tm,n stands for the m × n table in the first quadrant
composed of mn unit squares whose (x, y)-cell is located in the xth-column from
the left side and the yth-row from the bottom side of Tm,n. Furthermore, for a
set S ⊆ Zd of steps, l((i, j) → (s, t);S) denotes the number of all lattice paths in
Tm,n starting from the (i, j)-cell and ending at the (s, t)-cell with steps in S, where
1 6 i, s 6 n and 1 6 j, t 6 m.

The paths we shall study in this paper use the same set S = {(1, 1), (1, 0), (1,−1)}
of steps as Motzkin paths but live in a bounded rectangular area, which we may
assume to be Tm,n. Notice that the number l((1, 1) → (n, 1);S) of all lattice paths
in the table Tm,n starting from the (1, 1)-cell and ending at the (n, 1)-cell using
Motzkin steps is the nth-Motzkin number provided that m > n. The number of all
lattice paths starting from the first column, and ending at the last column of Tm,n
is denoted by Im(n). Indeed,

Im(n) =

m∑
i,j=1

l((1, i)→ (n, j);S).

Figure 1 shows the number of all lattice paths for m = 2 and n = 3. Clearly,
l((1, i)→ (n, j)) = l((1, i′)→ (n, j′)) when i+ i′ = m+ 1 and j + j′ = m+ 1.

We intend to evaluate Im(n) for special cases of (m,n). In Section 2, we give
general formulas for Im(n) when m > n − 1. In Section 3, we compute Im(n)
explicitly for small values of m, namely m = 1, 2, 3, 4, and present some results
for I5(n). In Section 4, we use Fibonacci and Pell-Lucas numbers to prove some
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Figure 1: All lattice paths in T2,3.

relations concerning lattice paths. Section 5 is devoted to the proof of the following
conjecture of Povolotsky in OEIS sequence A081113. This identity first appeared in
[11].

Conjecture 1 (Alexander R. Povolotsky, 2011). The following identity holds for
the numbers In(n):

(n+ 3)In+4(n+ 4) = 27nIn(n) + 27In+1(n+ 1)

− 9(2n+ 5)In+2(n+ 2) + (8n+ 21)In+3(n+ 3).

Utilizing a recurrence relation for Cn(n, n) due to Michael Somos and the above
conjecture involving In(n), we compute generating functions of these numbers as
well. Finally, in the last section, we give some open problems for future research.

2. Formulas for Im(n)

Let S := {(1, 1), (1, 0), (1,−1)}. For positive integers 1 6 i, t 6 m and 1 6 s 6 n, the
number of all lattice paths from the (1, i)-cell to the (s, t)-cell in the table T = Tm,n
is denoted by Cim,n(s, t), that is, Cim,n(s, t) = l((1, i) → (s, t);S). Furthermore, we
put Cm,n(0, t) = 1 and

Cm,n(s, t) =

m∑
i=1

Cim,n(s, t)

for all 1 6 s 6 n and 1 6 t 6 m. We usually use the notation C(s, t) for Cm,n(s, t)
when there is no confusion. Also, we put Cn(s, t) := Cn,n(s, t). Clearly, Cn(s, t) is
the number of all lattice paths from first column to the (s, t)-cell of T . It is easy to
see, for n > 2, that

Cn(n, n) = Cn(n− 1, n) + Cn(n− 1, n− 1),

where C1(1, 1) = 1, C2(2, 2) = 2, C3(3, 3) = 5, C4(4, 4) = 13, . . .. The values of Cn(n, n)
are given in the OEIS sequence A005773, where T is a square table. Notice that the
diagram for C4(4, 4) = 13 is

1 2 5 13
1 3 8 21
1 3 8 21
1 2 5 13

,
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where each entry is the sum of two or three entries in the preceding column.
Table 1 illustrates the values of C6(6, t), for all 1 6 t 6 6, where the number in

the (s, t)-cell of T determines the number C6(s, t). By symmetry of the table T , we
have C6(s, t) = C6(s, t′) when t+ t′ = 7.

C6(6, t)
1 2 5 13 35 96
1 3 8 22 61 170
1 3 9 26 74 209
1 3 9 26 74 209
1 3 8 22 61 170
1 2 5 13 35 96

Table 1: Values of C6(6, t)

It is worth mentioning that the numbers Cn(n, n) coincide with the number of
directed animals of size n starting from a single point (see [30]). The numbers
Cn(n, n) appear is various other results, see e.g. [14, 16, 17, 20, 25]. Note also
that Krattenthaler and Yaqubi [38] compute determinants of some Hankel matrices
involving Cn(x, y), which is of independent interest.

Theorem 1. Inside the m× n table we have

Im(n) = m3n−1 − 2

n−1∑
s=1

3n−s−1Cm,n(s, 1). (1)

In particular,

Im(n) = m3n−1 − 2

n−1∑
s=1

3n−s−1Cn(s, 1). (2)

when m > n− 1,

Proof. Let T := Tm,n. The number of all lattice paths from the first column to the
last column is simply m3n−1 if they are allowed to get out of T . Now we count all
lattice paths that get out of T in some steps. First, observe that the number of lattice
paths that leave T from the bottom row for the first time equals those that leave T
from the top row. Suppose a lattice path gets out of T from the bottom row in the
column s for the first time. The number of all partial lattice paths from the first
column to the (s− 1, 1)-cell is simply Cm,n(s− 1, 1), and every such path continues
in 3n−s ways until it reaches the last column of T . Thus, we have 3n−sCm,n(s−1, 1)
paths leaving the table T from the bottom in the column s for any s = 2, . . . , n.
Hence, the number of lattice paths is simply

Im(n) = m3n−1 − 2

n∑
s=2

3n−sCm,n(s− 1, 1)

= m3n−1 − 2

n−1∑
s=1

3n−s−1Cm,n(s, 1).
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The second formula follows from the fact that Cm,n(s, 1) = Cn(s, 1) for all s < n,
provided that m > n− 1.

Corollary 1. Inside the m× n table (m > n− 1) we have

Im+1(n) = 3Im(n− 1)− 2Cn−1(n− 1, n− 1) + 3n−1.

In particular,

In(n) = 3In−1(n− 1)− 2Cn−1(n− 1, n− 1) + 3n−1.

Example 1. Let T be the square 6 × 6 table. In Table 1, every cell represents the
number of all lattice paths from the first column to that cell. Summing up the last
column yields

I6(6) = 96 + 170 + 209 + 209 + 170 + 96 = 950.

Now, utilizing Theorem 1, we calculate I6(6) in another way as follows:

I6(6) =6 · 36−1 − 2
(
36−1−1C6(1, 1) + 36−2−1C6(2, 1) + 36−3−1C6(3, 1)

+36−4−1C6(4, 1) + 36−5−1C6(5, 1)
)

=1458− 2
(
34 · 1 + 33 · 2 + 32 · 5 + 31 · 13 + 30 · 35

)
= 950.

Theorem 2. Inside the m× n table (m > n− 1) we have that

Im+1(n)− Im(n) =

n−1∑
i=0

C(i, 1)C(n− i, 1) = 3n−1

is constant.

Proof. Consider the table T := Tm,n. We construct the table T ′ by adding a new
row m + 1 at the top of T . Now, to count the number of all lattice paths in T ′,
it is sufficient to consider lattice paths that reach to the row m + 1. Assume a
lattice path reaches to the row m+ 1 at column i for the first time. Then its initial
part from column 1 to column i − 1 is a lattice path from the first column of T to
the (i − 1,m)-cell. Furthermore, its terminal part from column i to column n is a
lattice path from the (i,m + 1)-cell of T ′ to its last column, which is in one-to-one
correspondence with a lattice path from the (i,m)-cell of T to its last column as
m > n. Hence, the number of such paths is simply C(i− 1,m)C(n− i+ 1,m), which
is equal to C(i− 1, 1)C(n− i+ 1, 1) by symmetry. Therefore,

Im+1(n)− Im(n) =

n∑
i=1

C(i− 1, 1)C(n− i+ 1, 1)

=

n−1∑
i=0

C(i, 1)C(n− i, 1).

The fact that Im+1(n)− Im(n) = 3n−1 follows from equation (2) of Theorem 1.
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Theorem 2 gives formulas for the (convolution) product of a specific row with
itself. Regarding columns, we get the following (more) general result.

Theorem 3. Inside the m× n table, we have

Im(n) =

m∑
i=1

C(a, i)C(b, i)

for all a, b > 1 such that a+ b = n+ 1. In other words, the inner product of columns
a and b equals Im(n). In particular, if n = 2k − 1 is odd, then

Im(n) =

m∑
i=1

C(k, i)2.

Proof. Every lattice path crosses the column a at some row, say i. The number of
such paths equals the number C(a, i) of paths from the first column to the (a, i)-cell
multiplied by the number C(n − (a − 1), i) = C(b, i) of paths from the last column
to that cell, from which the result follows.

Let us recall that the number l(1, 1;n+ 1, 1 : S) of lattice paths in Z2 that never
slide below the x-axis is the nth-Motzkin number Mn (n > 0). Motzkin numbers
begin with 1, 1, 2, 4, 9, 21, . . . (see OEIS sequence A001006) and can be expressed in
terms of binomial coefficients and Catalan numbers via

Mn =

bn2 c∑
k=0

(
n

2k

)
Ck

(see [22]). The trinomial triangle is defined by the same steps (1, 1), (1,−1), and
(1, 0) (in our notation) with no restriction by starting from a fixed cell. The number
of ways to reach a cell is simply the sum of three numbers in the adjacent previous
column. The kth-entry of the nth column is denoted by

(
n
k

)
2
, where columns start by

0. The middle entries of the trinomial triangle, namely 1, 1, 3, 7, 19, . . . (see A002426)
are studied by Euler. Analogously, the Motzkin triangle is defined by the recurrence
sequence

T (n, k) = T (n− 1, k − 2) + T (n− 1, k − 1) + T (n− 1, k),

for all 1 6 k 6 n− 1 and satisfy

T (n, n) = T (n− 1, n− 2) + T (n− 1, n− 1)

for all n > 1 (see A026300).
Table 2 illustrates initial parts of the above triangles with the Motzkin triangle

in the left and trinomial triangle in the right. For a positive integer 1 6 s 6 n, each
entry of the column Cs(s, 1) is the sum of all entries in the sth-row in the rotated
Motzkin triangle, that is, Cs(s, 1) =

∑s
i=1 T (s, i). For example,

C4(4, 1) = T (4, 1) + T (4, 2) + T (4, 3) + T (4, 4) = 4 + 5 + 3 + 1 = 13.

The entries in the first column of the rotated Motzkin triangle are indeed Motzkin
numbers.



Lattice paths inside a table 187

Cs(s, 1)
1 1
2 1 1
5 2 2 1
13 4 5 3 1
35 9 12 9 4 1
96 21 30 25 14 5 1

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

Table 2: Motzkin triangle (left) and trinomial triangle (right) rotated by 90◦ clockwise

Lemma 1. Inside the square n× n table we have

C(s, 1) = 3C(s− 1, 1)−Ms−2,

for all 1 6 s 6 n.

Proof. Let T := Tn,n. By definition, C(s, 1) is the number of all lattice paths from
the first column to the (s, 1)-cell. This number equals the number of lattice paths
from the (s, 1)-cell to the first column with reverse steps that lie inside the table T
that is 3s−1 minus those paths that leave T at some point. Consider all those lattice
paths starting from the (s, 1)-cell with reverse steps leaving T at (i, 0) for the first
time, where 1 6 i 6 s− 1. Clearly, the number of such paths is 3i−1Ms−i−1. Thus,

C(s, 1) = 3s−1 −
s−1∑
i=1

3i−1Ms−i−1.

Since

C(s− 1, 1) = 3s−2 −
s−2∑
i=1

3i−1Ms−i−1,

it follows that C(s, 1)− 3C(s− 1, 1) = −Ms−2, as required.

Example 2. Consider Table 2. Using Lemma 1 we can compute C6(6, 1) as

C6(6, 1) = 3C6(5, 1)−M4 = 3 · 35− 9 = 96.

Corollary 2. Inside the n× n table (m > n− 1) we have

Im(n) = (3m− 2n+ 2)3n−2 + 2

n−3∑
k=0

(n− k − 2)3n−k−3Mk.
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Proof. By Lemma 1,

n−1∑
s=1

3n−s−1C(s, 1) = C(n− 1, 1) +

n−2∑
s=1

3n−s−1C(s, 1)

= 2 · 3C(n− 2, 1) +

n−3∑
s=1

3n−s−1C(s, 1)−Mn−3

= 3 · 32C(n− 3, 1) +

n−4∑
s=1

3n−s−1C(s, 1)− 2 · 3Mn−4 −Mn−3

...

= (n− 1)3n−2C(1, 1)−
n−3∑
k=0

(n− k − 2)3n−k−3Mk

= (n− 1)3n−2 −
n−3∑
k=0

(n− k − 2)3n−k−3Mk.

Now the result follows from equation (2) of Theorem 1.

Lemma 2. Inside the n× n table we have

C(n, k + 2)− C(n, k) =

n−1∑
i=1

(C(i, k + 3)− C(i, k − 1))

for all 1 6 k 6 n.

Proof. For n = 2, the result is trivially true. For any l < n we have

C(l + 1, k + 2) = C(l, k + 3) + C(l, k + 2) + C(l, k + 1)

C(l + 1, k) = C(l, k + 1) + C(l, k) + C(l, k − 1),

which implies that

C(l + 1, k + 2)− C(l + 1, k) = C(l, k + 3)− C(l, k − 1) + (C(l, k + 2)− C(l, k)) .

Thus,

C(n, k + 2)− C(n, k) =

n−1∑
i=1

(C(i, k + 3)− C(i, k − 1))

as C(1, k + 2)− C(1, k) = 0. This completes the proof.

3. Tables with few rows

In this section, we shall compute Im(n) for m = 1, 2, 3, 4 and arbitrary positive
integers n.Furthermore, we obtain some properties of Im(n) for m = 5. Some values
of I3(n) and I4(n) are already given in A001333 and A055819, respectively.
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Lemma 3. I1(n) = 1 and I2(n) = 2n for all n > 1.

Let x and y be arbitrary real numbers. By the binomial theorem, we have the
following identity:

xn + yn = (x+ y)n +

bn2 c∑
k=1

(−1)k
[(
n− k
k

)
+

(
n− k − 1

k − 1

)]
(xy)k(x+ y)n−2k,

where n > 1. This identity can also be rewritten as follows:

xn + yn =

bn2 c∑
k=0

(−1)k
[(
n− k
k

)
+

(
n− k − 1

k − 1

)]
(xy)k(x+ y)n−2k, (3)

where
(
r
−1
)

= 0. Pell-Lucas sequence [35] is defined as Q1 = 1, Q2 = 3, and
Qn = 2Qn−1 + Qn−2 for all n > 3. It can also be defined by the so-called Binet
formula as Qn = (αn + βn)/2, where α = 1 +

√
2 and β = 1 −

√
2 are solutions of

the quadratic equation x2 = 2x+ 1.

Lemma 4. For all n > 1 we have I3(n) = Qn+1.

Proof. The number of lattice paths to cells in columns n− 2, n− 1, and n of T3,n
looks like

n− 2 n− 1 n

x x+ y 3x+ 2y
y 2x+ y 4x+ 3y
x x+ y 3x+ 2y

which implies that I3(n− 2) = 2x+ y, I3(n− 1) = 4x+ 3y, and I3(n) = 10x+ 7y.
Thus, the following linear recurrence exists for I3:

I3(n) = 2I3(n− 1) + I3(n− 2). (4)

Since I3(1) = Q2 = 3 and I3(2) = Q3 = 7, it follows that I3(n) = Qn+1 for all
n > 1, as required.

Corollary 3. Let n be a positive integer. Then

I3(n) =

bn+1
2 c∑

k=0

[(
n− k + 1

k

)
+

(
n− k
k − 1

)]
2n−2k.

Proof. It is sufficient to put x = α and y = β in (3).

The Fibonacci sequence A000045 starts with the integers 0 and 1, and every
other term is the sum of the two preceding ones, that is, F0 = 0, F1 = 1, and
Fn = Fn−1 +Fn−2 for all n > 2. This recursion gives Binet’s formula Fn = ϕn−ψn

ϕ−ψ ,

where ϕ = 1+
√
5

2 and ψ = 1−
√
5

2 .
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Lemma 5. For all n > 1 we have I4(n) = 2F2n+1.

Proof. The number of lattice paths to cells in columns n− 2, n− 1, and n of T4,n
looks like

n− 2 n− 1 n

x x+ y 2x+ 3y
y x+ 2y 3x+ 5y
y x+ 2y 3x+ 5y
x x+ y 2x+ 3y

which implies that I4(n−2) = 2x+ 2y, I4(n−1) = 4x+ 6y, and I4(n) = 10x+ 16y.
Hence, we get the following linear recurrence for I4:

I4(n) = 3I4(n− 1)− I4(n− 2). (5)

On the other hand,

F2n+1 = F2n + F2n−1

= 2F2n−1 + F2n−2

= 3F2n−1 −F2n−3

= 3F2(n−1)+1 −F2(n−2)+1.

Now, since I4(1) = 2F3 and I4(2) = 2F5, it follows that I4(n) = 2F2n+1 for all
n > 1. The proof is complete.

Corollary 4. For all n > 1 we have

I4(n) =

n∑
k=0

(−1)
k

[
2n+ 1

k

(
2n− k
k − 1

)]
5n−k. (6)

Proof. It is sufficient to put x = ϕ and y = ψ in (3).

In the sequel, we obtain some properties of Cm,n(s, t) and Im(n), when m = 5.

Proposition 1. Inside the 5× n table we have

C(s+ 2, 1) = I5(s) and C(s+ 2, 3) = 2I5(s)− 1

for all 1 6 s 6 n.

Proof. From the table in Example 3, it follows simply that I5(s) = C(s + 2, 1) for
all s > 1. From the table, it also follows that

2C(s+ 1, 1)− C(s+ 1, 3) = 2C(s, 1)− C(s, 3)

for all s > 1, that is, 2C(s, 1) − C(s, 3) is constant. Since 2C(1, 1) − C(1, 3) = 1, we
get 2C(s+ 2, 1)− C(s+ 2, 3) = 1, from which the result follows.
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Proposition 2. Inside the 5× n table we have

C(s, 1)× C(s+ t, 3)− C(s, 3)× C(s+ t, 1) =

s+t−1∑
i=s

C(i, 2)

for all 1 6 s, t 6 n.

Proof. From Proposition 1, we know that C(s, 3) = 2C(s, 1) − 1 for all 1 6 s 6 n.
Then

C(s, 1)C(s+ t, 3)− C(s, 3)C(s+ t, 1)

=C(s, 1)(2C(s+ t, 1)− 1)− (2C(s, 1)− 1)C(s+ t, 1)

=2C(s, 1)C(s+ t, 1)− C(s, 1)− 2C(s, 1)C(s+ t, 1) + C(s+ t, 1)

=C(s+ t, 1)− C(s, 1).

On the other hand,

C(s+ t, 1)− C(s, 1) = C(s+ t− 1, 1) + C(s+ t− 1, 2)− C(s, 1)

= C(s+ t− 2, 1) + C(s+ t− 2, 2) + C(s+ t− 1, 2)− C(s, 1)

...

=

s+t−1∑
i=s

C(i, 2) + C(s, 1)− C(s, 1)

=

s+t−1∑
i=s

C(i, 2),

from which the result follows.

4. Further results on lattice paths by using Fibonacci and Pell-
Lucas numbers

In this section, we apply Fibonacci and Pell-Lucas sequences to obtain some further
relations and properties for lattice paths inside a table.

Proposition 3. Inside the 4× n table we have

C(s, 1) = F2s−1 and C(s, 2) = F2s

for all s > 1. As a result,

C(s, 1)× C(s+ t, 2)− C(s, 2)× C(s+ t, 1) = C(t, 2).

for all s, t > 1.

Proof. Clearly C(1, 1) = C(1, 2) = F1 = F2 = 1. Now since

C(s, 1) = C(s− 1, 1) + C(s− 1, 2),

C(s, 2) = 2C(s− 1, 2) + C(s− 1, 1),
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we may prove by induction that C(s, 1) = F2s−1 and C(s, 2) = F2s for all s > 1. The
second claim follows from the fact that

F2s−1F2s+2t −F2sF2s+2t−1 = F2t.

The proof is complete.

Proposition 4. Inside the 4× n table we have

I4(2s+ 1) =
1

4
I4(s+ 1)2 + C(s, 2)2

for all 1 6 s 6 n.

Proof. Following Lemma 5 and Proposition 3, it is enough to show that

2F4s+3 = F2
2s+3 + F2

2s.

First, observe that the equation F2n−1 = F2
n + F2

n−1 yields F4s+1 = F2
2s+1 + F2

2s+2

and F4s+5 = F2
2s+3 + F2

2s+2. Now, by combining these two formulas, we obtain

F2
2s+3 + F2

2s = F4s+5 + F4s+1 − (F2
2s+1 + F2

2s+2)

= F4s+4 + F4s+3 + F4s+1 −F4s+3

= F4s+3 + F4s+2 + F4s+1

= 2F4s+3,

as required.

Pell numbers Pn are defined recursively as P1 = 1, P2 = 2, and Pn = 2Pn−1 +
Pn−2 for all n > 3. Binet’s formula corresponding to Pn is Pn = αn−βn

α−β , where

α = 1 +
√

2 and β = 1−
√

2.

Proposition 5. Inside the 3× n table we have

C(s, 1) = Ps and C(s, 2) = Qs

for all s > 1. As a result,

C(s, 1)× C(s+ t, 2)− C(s, 2)× C(s+ t, 1) = (−1)s+1C(t, 1),

for all s, t > 1.

Proof. From the table in Lemma 4, we observe that

C(s, 1) = 2C(s− 1, 1) + C(s− 2, 1),

C(s, 2) = 2C(s− 1, 2) + C(s− 2, 2)

for all s > 3. Now, since C(1, 1) = P1 = 1, C(2, 1) = P2 = 2, C(1, 2) = Q1 = 1, and
C(2, 2) = Q2 = 3, one can show by induction that C(s, 1) = Ps and C(s, 2) = Qs for
all s. To prove the second claim, we use the following formula:

PsQs+t −QsPs+t = (−1)s+1Pt

that can be proved simply by using Binet’s formulas.
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5. Alexander R. Povolotsky’s conjecture and generating func-
tions for Cn(n, n) and In(n)

In this section, we prove Conjecture 1 of Alexander R. Povolotsky involving In(n).
First, we need to find the generating function for Cn(n, n).

Theorem 4. Th generating function of Cn := Cn(n, n) is given by

∞∑
n=1

Cnxn =
1

2

√
1 + x

1− 3x
− 1

2
.

Proof. Let F (x) :=
∑∞
n=1 Cnxn be the generating function of Cn. Theorem 2 yields

Cn(n, 1) = 3n−1 −
n−1∑
i=1

Cn(i, 1)Cn(n− i, 1)

Since Ck(k, k) = Ck(k, 1), we get Ck = Cn(k, 1) for all k = 1, . . . , n. Hence

Cn = 3n−1 −
n−1∑
i=1

CiCn−i,

for all n > 1. It follows that

F 2(x) =

∞∑
n=2

( n−1∑
i=1

CiCn−i
)
xn

=

∞∑
n=2

(3n−1 − Cn)xn

= 3x2
∞∑
n=0

(3x)2 + C1 −
∞∑
n=1

Cnxn

=
3x2

1− 3x
+ x− F (x).

Therefore

F (x) =

∞∑
n=1

Cnxn =
1

2

√
1 + x

1− 3x
− 1

2
,

as required.

Using Theorem 4, we can prove the following recurrence relation of Michael
Somos for Cn(n, n) posted in OEIS sequence A005773.

Theorem 5 (Somos’ relation). Inside the square n× n table we have

Cn(n, n) = 2nCn(n− 1, n− 1) + 3(n− 2)Cn(n− 2, n− 2).
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Proof. Let

F (x) =

∞∑
n=1

Cnx
n =

1

2

√
1 + x

1− 3x
− 1

2

be the generating function of Cn := Cn(n, n) obtained in Theorem 4. Differentiation
gives us

F ′(x) =

∞∑
n=1

nCnx
n−1 =

1

(1− 3x)3/2
√

1 + x
.

One can easily see that

F ′(x)(1− 2x− 3x2) = F ′(x)(1 + x)(1− 3x) = 1 + 2F (x).

Finally, comparing the coefficients on both sides yields Somos’ recurrence

nCn = 2nCn−1 + 3(n− 2)Cn−2,

as required.

Now, we are ready to prove Conjecture 1 of Alexander R. Povolotsky.

Proof of Conjecture 1. Put

A = (n+ 3)In+4(n+ 4),

B = (8n+ 21)In+3(n+ 3),

C = 9(2n+ 5)In+2(n+ 2),

D = 27In+1(n+ 1),

E = 27nIn(n).

Using Theorem 1, we can write

A =(3n+ 9)In+3(n+ 3) + (n+ 3)3n+3 − (2n+ 6)Cn+3(n+ 3, n+ 3)

=(8n+ 21)In+3(n+ 3)− (5n+ 12)In+3(n+ 3) + (n+ 3)3n+3

− (2n+ 6)Cn+3(n+ 3, n+ 3)

=B + (n+ 3)3n+3 − (5n+ 12)In+3(n+ 3)

− (2n+ 6)Cn+3(n+ 3, n+ 3). (7)

Utilizing Theorem 1 once more for In+3(n+ 3) and In+2(n+ 2) yields

A =B + (n+ 3)3n+3 − (5n+ 12)3n+2

− (18n+ 45)In+2(n+ 2)− (2n+ 6)Cn+3(n+ 3, n+ 3)

+ (10n+ 24)Cn+2(n+ 2, n+ 2) + (3n+ 9)In+2(n+ 2) + (n+ 3)3n+3

=B − C − (5n+ 12)3n+2 − (2n+ 6)Cn+3(n+ 3, n+ 3)

+ (10n+ 24)Cn+2(n+ 2, n+ 2) + 9nIn+1(n+ 1)

+ 27In+1(n+ 1) + (3n+ 9)3n+1 − (6n+ 18)Cn+1(n+ 1, n+ 1).
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It can be easily shown that

A =B − C +D

+ (n+ 3)3n+3 − (2n+ 6)Cn+3(n+ 3, n+ 3)− (5n+ 12)3n+2

+ (10n+ 24)Cn+2(n+ 2, n+ 2) + 9nIn+1(n+ 1)

+ (3n+ 9)3n+1 − (6n+ 18)Cn+1(n+ 1, n+ 1). (8)

Replacing 9nIn+1(n+ 1) by 27nIn(n) + n3n+2 − 18nIn(n) in 8 gives

A = B − C +D + E

− (2n+ 6)Cn+3(n+ 3, n+ 3) + (10n+ 24)Cn+2(n+ 2, n+ 2)

− 18nCn(n, n)− (6n+ 18)Cn+1(n+ 1, n+ 1).

Since the coefficient of Cn+3(n+ 3, n+ 3) is 2(n+ 3), it follows from Theorem 5 that

A =B − C +D + E − (4n+ 12)Cn+2(n+ 2, n+ 2)− 18nCn(n, n)

+ (10n+ 24)Cn+2(n+ 2, n+ 2)− (6n+ 6)Cn+1(n+ 1, n+ 1)

− (6n+ 18)Cn+1(n+ 1, n+ 1)

=B − C +D + E − (4n+ 12)Cn+2(n+ 2, n+ 2)

− (6n+ 6)Cn+1(n+ 1, n+ 1) + 18nCn(n, n)− 18nCn(n, n)

− (12n+ 24)Cn+1(n+ 1, n+ 1) + (6n+ 18)Cn+1(n+ 1, n+ 1)

=B − C +D + E,

as required.

Even though we have given a proof of Povolotsky’s conjecture, it is still of interest
to find a more intuitive proof not only of Povolotsky’s recurrence relation but also
of that of Somos.

Problem 1. Give bijective proofs of Somos’ and Povolotsky’s recurrence relations.

In Theorem 4, we have obtained a generating function for Cn := Cn(n, n) to prove
Somos’ relation in Theorem 5. Actually, we can reverse the procedure and drive the
generating function of Cn from Somos’ relation as follows: Let F (x) :=

∑∞
n=1 Cnxn

be the generating function of Cn. Somos’ relation

nCn = 2nCn−1 + 3(n− 2)Cn−2

yields
(n+ 2)Cn+2 = 2Cn+1 + 2(n+ 1)Cn+1 + 3nCn

for all n > 1. Thus,

∞∑
n=1

(n+2)Cn+2x
n+2 = 2x

∞∑
n=1

Cn+1x
n+1+2x

∞∑
n=1

(n+1)Cn+1x
n+1+3x2

∞∑
n=1

nCnxn.
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Now, the fact that xF ′(x) =
∑∞
n=1 nCnxn implies

−x− 4x2 + xF ′(x) = 2x(−x+ F (x)) + 2x(−x+ xF ′(x)) + 3x2 · xF ′(x)

for C1 = 1 and C2 = 2. Thus,

(3x2 + 2x− 1)F ′(x) + 2F (x) + 1 = 0.

Solving this linear differential equation yields

F (x) =
1

2

√
1 + x

1− 3x
− 1

2
.

An analogous argument applied to Povolotsky’s recurrence relation shows that the
generating function F (x) of In(n) satisfies the differential equation

(27x5 − 18x3 + 8x2 − x)F ′(x) + (27x3 − 9x2 − 3x+ 1)F (x) + 9x3 − x2 = 0,

from which we obtain an explicit formula for F (x).

Theorem 6. The generating function of In := In(n) is given by

∞∑
n=1

Inxn =
−x

1− 3x

√
1 + x

1− 3x
+

x

1− 3x
+

x

(1− 3x)2
.

6. Further work

We end our paper by posing few open problems of the determinant of matrices
arising from lattice paths as well as strings encoding them.

First, consider the m × n table T with 2n > m. For suitable positive integers
`1, `2, . . . , `dm2 e, we can write Im(n) as

Im(n) = `1Im(n− 1) + `2Im(n− 2) + · · ·+ `dm2 eIm(n− dm
2
e).

Furthermore, for 0 6 s 6 dm2 e and a suitable positive integer k1,s, k2,s, . . . , kdm2 e,s,
we can write

Im(n− s) = k1,sx1 + k2,sx2 + · · ·+ kdm2 e,sxd
m
2 e,

where xt = C(n−dm2 e, t) =
∑m
i=1 Ci(n−d

m
2 e, t) is the number of all lattice paths from

the first column to the (n− dm2 e, t)-cell of T , for each 1 6 i 6 m and 1 6 t 6 dm2 e.
Utilizing the above notation, we observe that

Im(n) =k1,0x1 + k2,0x2 + · · ·+ kdm2 e,0xd
m
2 e

=`1In−1 + `2In−2 + · · ·+ `dm2 eIn−dm2 e
=`1(k1,1x1 + k2,1x2 + · · ·+ kdm2 e,1xd

m
2 e)

+ `2(k1,2x1 + k2,2x2 + · · ·+ kdm2 e,2xd
m
2 e)

...

+ `dm2 e(k1,d
m
2 ex1 + k2,dm2 cx2 + · · ·+ kdm2 e,d

m
2 exd

m
2 e).

(9)
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From (9), we obtain the following system of linear equations:
k1,1`1 + · · · + k1,dm2 e`d

m
2 e = k1,0,

k2,1`1 + · · · + k2,dm2 e`d
m
2 e = k2,0,

...
...

. . .
...

...
...

...
kdm2 e,1`1 + · · · + kdm2 e,d

m
2 e`d

m
2 e = kdm2 e,0.

(10)

Now, consider the following coefficient matrix A of system (10)

A =


k1,1 k1,2 · · · k1,dm2 e
k2,1 k2,2 · · · k2,dm2 e

...
...

. . .
...

kdm2 e,1 kd
m
2 e,2 · · · kdm2 e,dm2 e

 ,
which we call the coefficient matrix of the table T and denote it by C(T ).

Conjecture 2. For a given m× n table T (2n > m), we have det(C(T )) = −2b
m
2 c.

Example 3. Let T be a 5× n table. The columns n− 3, n− 2, n− 1, and n of T
are given by

n− 3 n− 2 n− 1 n

x1 x1 + x2 2x1 + 2x2 + x3 4x1 + 6x2 + 3x3
x2 x1 + x2 + x3 2x1 + 4x2 + 2x3 6x1 + 10x2 + 6x3
x3 2x2 + x3 2x1 + 4x2 + 3x3 6x1 + 12x2 + 7x3
x2 x1 + x2 + x3 2x1 + 4x2 + 2x3 6x1 + 10x2 + 6x3
x1 x1 + x2 2x1 + 2x2 + x3 4x1 + 6x2 + 3x3

from which it follows that

I5(n− 3) = 2x1 + 2x2 + x3,

I5(n− 2) = 4x1 + 6x2 + 3x3,

I5(n− 1) = 10x1 + 16x2 + 9x3,

I5(n) = 28x1 + 44x2 + 25x3.

Clearly,
I5(n) = `1I5(n− 1) + `2I5(n− 2) + `3I5(n− 3)

for some `1, `2, `3, and the coefficient matrix of the table T is C(T ) =

10 4 2
16 6 2
9 3 1

. It

is obvious that det(C(T )) = −2b
5
2 c = −4.

Our second problem is to compute the determinant of special Hankel matrices.
Recall that a Hankel matrix (or catalecticant matrix) of a numerical sequence C =
{ci}, named after Hermann Hankel, is a matrix defined as follows:

Ht
n(C) =


ct ct+1 ct+2 . . . ct+n−1
ct+1 ct+2 ct+3 . . . ct+n

...
...

...
. . .

...
ct+n−1 ct+n ct+n+1 . . . ct+2n−2

 .
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In [38, theorems 3 and 4], the authors use a sequence of ideas to reduce the prob-
lem to a previous paper of Cigler and Krattenthaler [9] (the first paper of this
series), which describes the Hankel determinants detH1

n(C) and detH2
n(C) of some

similar sequences C. Now, consider the sequence C = {Cn(n, n)} with elements
1, 1, 2, 5, 13, 35, 96, . . .. In what follows, we suggest the values of the determinant of
the Hankel matrix H0

n(C)

Conjecture 3. For positive integers n, consider the Hankel matrix

H0
n(C) =


1 1 2 5 . . . cn
1 2 5 13 . . . cn+1

...
...

...
. . .

...
cn cn+1 cn+2 cn+3 . . . c2n

 .
Then

detH0
n(C) =


1, n ≡ 1, 2 (mod 6),

0, n ≡ 0, 3 (mod 6),

−1, n ≡ 4, 5 (mod 6).

In the rest of this section we give some general questions concerning lattice paths
inside a table.

Most lattice paths can be stated in terms of strings over a given alphabet, say
{−1, 0, 1} in our case, admitting some constraints like forbidden patterns (see e.g.
[7]). It is natural to ask the same question for lattice paths studied in this paper.

Problem 2. Which are the strings encoding the paths inside the m× n table?

In [4, 8], the authors present a Gray code for the q-ary k-generalized Fibonacci
strings and particular regular languages. If the answer to the above problem is
positive, one may ask if a Gray code exists for the given strings.

Problem 3. Is there a possibility to list the encoded paths (strings over {−1, 0, 1})
in a Gray code sense?

Lattice paths using the same steps as ours are studied extensively in the liter-
ature. In [5, 6], the authors study prefixes of such paths, namely Dyke, Motzking,
and Schröder paths, and give algorithms for their generation and enumeration. The
same problem arises in relation to our lattice paths as well.

Problem 4. Enumerate the prefixes of certain length of lattice paths inside a table.
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