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Abstract. This paper is devoted to studying the Cauchy problem and a standing wave
for a class of nematic liquid crystal system. This system appears in the recent studies of
the propagation of a laser beam in a nematic liquid crystal. The above system couples
the Schrödinger evolution equation to a nonlinear elliptic equation which describes the
response of the director angle to the laser beam electric field. The global well-posedness
will be established by using the Banach fixed point theorem and the continuity argument.
Secondly, the existence of standing wave solution is established by using the constrained
minimization approach.
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1. Introduction

In this paper, we consider the Cauchy problem of the following nematic liquid crystal
system: {

i∂tu+ 1
2∆u+ u sin 2θ = µ|u|p−2u, x ∈ R2,

−ν∆θ + q sin 2θ = 2|u|2 cos 2θ, x ∈ R2,
(1)

where 2 < p < ∞, u(t, x, y) and θ(t, x, y) depend on the optical axis coordinate
t ∈ R and the transverse coordinate (x, y) ∈ R2, ∆ = ∂2x + ∂2y , is the Laplacian
in the transverse directions, and µ, ν, q are positive constants. System (1) models
the interaction between u and θ, where u represents the complex amplitude of the
electric field of the polarized laser beam passing through the nematic liquid crystal
sample, and θ represents the director angle of the macroscopic orientation of the
liquid crystal molecule. In particular, system (1) can be described by the saturation
effect in liquid crystal optics. When µ = 0, system (1) can be simplified to the
following nematic liquid crystal system with the saturation effect:{

i∂tu+ 1
2∆u+ u sin 2θ = 0, x ∈ R2,

−ν∆θ + q sin 2θ = 2|u|2 cos 2θ, x ∈ R2.
(2)

In [2], Borgna et al. considered the well-posed and solitary wave solutions of the
above system (2), and proved the existence of global solutions via the Banach fixed
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point theorem, and presented that the pointing vector angle is bounded for any
electric field, and additionally, normalized solutions were studied for the steady-
state problems corresponding to system (2). For the arbitrary adviation angle case,
in [3], Borgna et al. studied the well-posedness, decay and constrained minimizers
of the Hamiltonian of the following coupled nonlinear Schrödinger system:{

∂zu = 1
2 i∆u+ iγ(sin2(ψ + θ0)− sin2(θ0))u,

ν∆ψ = 1
2E0

2 sin(2θ0)− 1
2 (E0

2 + |u|2) sin(2(ψ + θ0)),
(3)

where E0, ν, γ are positive constants, θ0 ∈ (π4 , and
π
2 ) is a constant. Model (3) arises

in the study of optical beam propagation in nematic liquid crystals and models a
set of experiments by Assanto and collaborators [5, 14, 15].

By using the small angle approximation sin θ ≈ θ, cos θ ≈ 1, system (2) reduces
to the following model: {

i∂tu+ 1
2∆u+ 2uθ = 0, x ∈ R2,

−ν∆θ + 2qθ = 2|u|2, x ∈ R2.
(4)

The directorial angle of system (4) has a unique solution θ = G∗ |u|2, where G(x) =
2ν−1N0(

√
2q
ν |x|), and N0 is the modified Bessel function. Replacing it in the first

equation of system (4), it can be written as the Schrödinger equation with a Hartree-
type nonlinearity

i∂tu+
1

2
∆u+ 2

(
G ∗ |u|2

)
u = 0, (5)

which describes the physical effect that a local electric field u can produce a deformed
direction-vector angle θ over longer distances. As recognized by some authors [9, 16],
this nonlocal effect regularizes the dynamics of the electric field and avoids the finite-
time explosions that occur in two-dimensional cubic NLS (see [19]). In [11], Simon
Louis et al. via the Newton conjugate gradient method calculated solitary waves of
nematic liquid crystals. In 2004, Panayotars and Marchant ([12]) proved for the first
time the existence and stability results of single spatial optical solitary waves of (5).
In 2015, Wang and Li ([17]) discussed the propagation of two-color solitary waves
with exponential-decay response by using a variational approach. In particular,
Horikis and Frantzeskakis ([7]) were able to experimentally or numerically observe
solitary waves pairs.

For some general forms of system (2), in [21], Zhang et al. have recently studied
the existence of local and global solutions for the following Cauchy problems i∂u∂z + d1

2 4u+ g1u sin(2θ) = 0, x ∈ R2, z ∈ R,
i∂v∂z + d2

2 4v + g2v sin(2θ) = 0, x ∈ R2, z ∈ R,
−ν4θ + q sin(2θ) = 2(g1|u|2 + g2|v|2) cos(2θ), x ∈ R2, z ∈ R,

and proved the existence of positive radial ground state vector solitary wave solutions
by using the symmetric decreasing rearrangement method and the minimization
approach. Moreover, the experimental setup has been studied by physicists (see
[7, 8]) who were able to experimentally or numerically observe solitary wave pairs
which form bound state spinning about each other. Zhang et al. ([20]) studied a



Nematic liquid crystal system 259

class of two-dimensional Hartree-type nonlinear Schrödinger systems with the Bessel
potential kernel, i∂u∂z + 1

2Du4u+Auu sin(2θ) = 0, (x, y) ∈ R2, z ∈ R,
i∂v∂z + 1

2Dv4v +Avv sin(2θ) = 0, (x, y) ∈ R2, z ∈ R,
−ν4θ + q sin(2θ) = 2(Au|u|2 +Av|v|2) cos(2θ), (x, y) ∈ R2, z ∈ R,

established the global well-posedness and obtained the existence and orbital stabil-
ity of ground state vector solitary waves by applying variational methods and the
concentration-compactness lemma.

Compared with (2), there is a perturbation term |u|p−2u appearing in system
(1); naturally, it is interesting to discuss the influence of the perturbation term
on the existence of the global solution of system (1), even the ground state for
the corresponding steady equations. To the best of our knowledge, there are few
results about the existence of global solutions and a solitary wave for system (1) in
the literature. The main purpose of this paper is to establish the local and global
well-posedness of Cauchy problem (1) by using Banach fixed point theorem, the
conservation law and the Gagliardo-Nirenberg inequality, we will prove the existence
of the ground state solution for the steady equation of system (1) by using the
constrained minimization approach.

The rest of this paper is organized as follows. In Section 2, we list some elemen-
tary results. Section 3 is devoted to proving the global existence of the solution of
the initial problem (1). In Section 4, the existence of ground state solutions will be
proved.

2. Preliminaries

Let Lp(R2) (p ≥ 1) represent the usual Lebesgue space, for given m ∈ N, and let
Hm(R2) represent the Sobolev space. For I ⊆ R and Banach space X, we have
Lp(I,X) = {u : I → X| ‖u‖X ∈ Lp(I)}.

Consider the following Schrödinger equation:{
i∂tu+ 1

2∆u+ f = 0, t ∈ R, x ∈ R2,
u(0) = u0,

(6)

where u0 ∈ L2(R2), the integral equation equivalent to (6) is

u(t) =W (t)u0 + i

∫ t

0

W (t− s)f(s)ds,

where W (t) = ei
t
2∆, and {W (t) : t ∈ R} is the unitary group generated by i

2∆ in
L2(R2). For any s ∈ R, W (t) is an isomorphism in Hs(R2). Suppose h(t) =W (t)u0,

g(t) = i
∫ t

0
W (t−s)f(s)ds, then u(t) = h(t)+g(t). The following Strichartz estimates

hold.

Lemma 1 (see [4]). Let 1 < r ≤ 2 ≤ p < ∞, q = 2p
p−2 , γ = 2r

3r−2 ; there exists
Cp, Cp,r > 0 such that {

‖h‖Lq(I,Lp) ≤ Cp‖u0‖L2 ,
‖g‖Lq(I,Lp) ≤ Cp,r‖f‖Lγ(I,Lr),

(7)
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for any interval I ⊂ R.

Lemma 2 (Gagliardo-Nirenberg inequalities [4]).

‖v‖Lq ≤ Cp,q,r‖∇v‖αLp‖v‖1−α
Lr , (8)

where 1
q − 1

r =
(

1
p − 1

2 − 1
r

)
α, 0 ≤ α ≤ 1, 1 ≤ q, r ≤ ∞, p > 2.

For system (1), the Hamiltonian H is given by the following form:

H(u, θ) =
1

4

∫
R2

(
|∇u|2 + ν|∇θ|2 − 2|u|2 sin(2θ) + q(1− cos(2θ))

)
dx− 1

p

∫
R2

|u|pdx.

Now we show that ‖u(x, t)‖L2 and energy H(u, θ) are conserved.

Lemma 3. Let u be the solution of system (1); then the conservation law holds.

‖u(x, t)‖L2 = ‖u0‖L2 , H(u, θ) = H(u0, θ). (9)

Proof. Let u be the solution of system (1); then multiply both sides of the first
equation of (1) by u, and we have

i∂tuu+
1

2
∆uu+ u sin(2θ)u = |u|p−2uu.

Then integrating over R2,

i

2

d

dt

∫
R2

|u|2dx− 1

2

∫
R2

|∇u|2dx+

∫
R2

|u|2 sin(2θ)dx =

∫
R2

|u|pdx,

we have d
dt

∫
R2 |u|2 = 0. Therefore ‖u(x, t)‖L2 = ‖u0‖L2 , and

‖u‖pLp +
1

2
‖∇u‖2L2 =

∫
R2

|u|2 sin(2θ) ≤ ‖u‖2L2 = ‖u0‖2L2 .

Since

∂uH =
1

2
∆u− u sin(2θ)− |u|p−2u, ∂θH = −ν

2
∆θ − |u|2 cos(2θ) + q

2
sin(2θ),

by simple calculation, we have

∂H

∂t
(u, θ) = 〈∂uH, ∂tu〉+ 〈∂θH, ∂tθ〉 = 〈i∂tu, ∂tu〉 = 0,

that is, H(u, θ) = H(u0, θ). Moreover, we see that

‖∇u‖2L2 + ‖u‖2L2 ≤ 4H(u, θ) + 3‖u‖2L2 +
4

p
‖u‖pLp .
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Let N(x, θ) : R2 × R → R be a Carathéodory function, that is, for every θ ∈ R,
N(x, θ) is measurable with respect to x, and for almost all x ∈ R2, N(x, θ) is
continuous with respect to θ ∈ R. We write the second equation in system (1) as

−∆θ = N(u, θ), N(u, θ) = − q
ν
sin(2θ) +

2

ν
|u|2 cos(2θ). (10)

Obviously, N(u, θ) decreases in the interval [0, π4 ]. For any u ∈ C and θ ∈ [0, π4 ], the
function N(u(x), θ), x ∈ R2, satisfies the Carathéodory condition and |N(u, θ)| ≤
C(|θ| + |u|2). Therefore N(u(x), θ) := N(x, θ) is a Carathéodory function, and
Nemytskii operator θ → N(x, θ) is a bounded continuous mapping on L2(R2).

In [2], the existence and uniqueness of equation (10) have been established, we
list some results which will be used in the sequel.

Lemma 4. Let u ∈ L4(R2) ∩ L∞(R2); then 0 ≤ θ(x) ≤ θmax <
π
4 for all x ∈ R2,

where θmax = 1
2 arctan

2∥u∥2
L∞

q .

Lemma 5. Let u ∈ L4(R2) ∩ L∞(R2); then equation (1) has a unique solution
θ ∈ H2(R2), and 0 ≤ θ(x) ≤ π

4 , ∀x ∈ R2. Moreover, ‖θ‖H2 ≤ C‖u‖2L4 .

3. Well-posedness of the problem

We now consider the initial value problem for system (1), written as{
u(t) =W (t)u0 + i

∫ t

0
W (t− s)(u(s)[sin(2(θ(s))− |u(s)|p−2)]ds, t ∈ R,

−∆θ = N(u, θ), x ∈ R2,
(11)

where N(u, θ) = − q
ν sin(2θ) + 2

ν |u|
2 cos(2θ), and W is the unitary group generated

by i
2∆.
Given ζ > 0, define the set

Xζ = {u ∈ C([0, ζ],H1(R2)) : ∇u ∈ L
2p

p−2 ([0, ζ], Lp(R2))},

endowed with the norm

‖u‖Xζ
= ‖u‖C([0,ζ],H1(R2)) + ‖∇u‖

L
2p

p−2 ([0,ζ],Lp(R2))
.

Clearly, Xζ is a Banach space and if u ∈ Xζ , then u ∈ L
4(p−1)
p−2 ([0, ζ], L∞(R2)). In

fact, in Lemma 2, taking q = ∞, r = 2, α = p
2(p−1) ,

‖u‖L∞ ≤ C‖∇u‖
p

2(p−1)

Lp ‖u‖
1− p

2(p−1)

L2 = C‖∇u‖
p

2(p−1)

Lp ‖u‖
p−2

2(p−1)

L2 .

Therefore, in view of u ∈ C([0, ζ],H1(R2)), we have

‖u‖γLγ([0,ζ],L∞(R2)) ≤C
∫ ζ

0

‖∇u‖
p

2(p−1)
γ

Lp ‖u‖
p−2

2(p−1)
γ

L2 ≤ C

∫ ζ

0

‖∇u‖
p

2(p−1)
γ

Lp ‖u‖
p−2

2(p−1)
γ

H1

≤C‖u‖
p−2

2(p−1)
γ

L∞([0,ζ],H1(R2))

∫ ζ

0

‖∇u‖
p

2(p−1)
γ

Lp .
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Taking γ = 4(p−1)
p−2 in the above inequality, we obtain that

‖u‖
4(p−1)
p−2

L
4(p−1)
p−2 ([0,ζ],L∞(R2))

≤ C‖u‖2L∞([0,ζ],H1(R2))‖∇u‖
p−2
2p

L
2p

p−2 ([0,ζ],Lp(R2))
.

Define the mapping η : H1(R2)
⋂
L∞(R2) → H2(R2), η(u) = θ, where θ is the

solution of equation (10). Lipschitz continuity of the mapping η was proved (see
Proposition 4.1 in [2]). We recall it as follows.

Lemma 6.

‖η(u1)− η(u2)‖H2 ≤ Cν,q(‖u1‖H1 + ‖u2‖H1)(1 + ‖u1‖2L∞ + ‖u2‖2L∞)‖u1 − u2‖H1 .

From Strichartz estimates, i.e., Lemma 1, we can easily deduce the following
estimates.

Lemma 7. Let f ∈ L1([0, ζ],H1(R2)), and let g be defined by

g(t) = i

∫ t

0

W (t− s)f(s)ds.

Then g ∈ Xζ and satisfies ‖g‖Xζ
≤ C‖f‖L1([0,ζ],H1(R2)).

Proof. SinceW (t) is a unitary operator, we have ‖g‖C([0,ζ],H1) ≤ ‖f‖L1([0,ζ],H1(R2)).
By virtue of the fact that

∇g(t) = i

∫ t

0

W (t− s)∇f(s)ds,

and Lemma 1 (taking r = 2, γ = 1), we obtain

‖∇g‖
L

2p
p−2 ([0,ζ],Lp(R2))

≤ C1,2‖∇f‖L1([0,ζ],L2(R2)),

which leads to

‖g‖Xζ
= ‖g‖C([0,ζ],H1(R2)) + ‖∇g‖

L
2p

p−2 ([0,ζ],Lp(R2))
≤ C‖f‖L1([0,ζ],H1(R2)).

Lemma 8. Let u0 ∈ H1(R2) and h(t) =W (t)u0, therefore, ‖h‖Xζ
≤ C‖u0‖H1(R2).

Proof. By (7), we have ‖∇h‖
L

2p
p−2 ([0,ζ],Lp(R2))

≤ C‖u0‖L2 . Using the property of

W , we have

‖h(t)‖C([0,ζ],H1)=‖W (t)u0‖C([0,ζ],H1)= sup
t∈[0,ζ]

‖W (t)u0‖H1 = sup
t∈[0,ζ]

‖u0‖H1 = ‖u0‖H1 ,

which yields that

‖h‖Xζ
≤ C‖u0‖H1 + ‖u0‖H1 ≤ C‖u0‖H1 .
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Lemma 9. Let B(u) = u sin(2η(u)) − |u|p−2u. Then the map B : Xζ → L1([0, ζ],
H1(R2)) is bounded. Moreover, for any R > 0 there exists C > 0 such that u ∈ Xζ

and ‖u‖Xζ
≤ R imply ‖B(u)‖L1([0,ζ],H1(R2)) ≤ Cζ ‖u‖Xζ

.

Proof. Let θ = η(u); then B(u) = u sin(2θ) − |u|p−2u. By the Sobolev embedding
inequality, we have that ‖B(u)‖L2 ≤ ‖u‖L2 + ‖u‖p−1

H1 . Since ∇B(u) = ∇u sin(2θ) +
2u cos(2θ)∇θ − (p− 1)|u|p−2 · ∇u, by Lemma 4 and Hölder inequalities, we deduce
that

‖∇B(u)‖L2 ≤‖∇u‖L2 + 2‖u‖L4‖∇θ‖L4 + (p− 1)‖|u|p−2∇u‖L2

≤‖∇u‖L2 + C1‖u‖L4‖θ‖H2 + (p− 1)

(∫
R2

|u|2(p−2)|∇u|2dx
) 1

2

≤C3(‖∇u‖L2 + ‖u‖3H1) + C2

(∫
R2

|∇u|p
) 1

p
(∫

R2

|u|2p
) p−2

2p

≤C(‖u‖H1 + ‖u‖3H1) + C3‖u‖(p−2)
H1 ‖∇u‖Lp .

Integrating over [0, ζ], we get∫ ζ

0

‖B(u)‖H1dt ≤
∫ ζ

0

(‖B(u)‖L2 + ‖∇B(u)‖L2) ds

≤
∫ ζ

0

(
‖u‖H1 + ‖u‖3H1 + ‖u‖p−1

H1 + C3‖u‖(p−2)
H1 ‖∇u‖Lp

)
ds

≤C
(
‖u‖L∞([0,ζ],H1(R2))+‖u‖3L∞([0,ζ],H1(R2))+‖u‖p−1

L∞([0,ζ],H1(R2))

)
ζ

+ ‖u‖p−2
L∞([0,ζ],H1)

∫ ζ

0

‖∇u‖Lpds

≤C
(
‖u‖L∞([0,ζ],H1(R2))+‖u‖3L∞([0,ζ],H1(R2))+‖u‖p−1

L∞([0,ζ],H1(R2))

)
ζ

+ ‖u‖p−2
L∞([0,ζ],H1)

(∫ ζ

0

‖∇u‖
2p

p−2

Lp

) p−2
2p

ζ
p+2
2p

≤C
(
‖u‖L∞([0,ζ],H1(R2))+‖u‖3L∞([0,ζ],H1(R2))+‖u‖p−1

L∞([0,ζ],H1(R2))

)
ζ

+ ‖u‖p−2
L∞([0,ζ],H1)‖∇u‖L

2p
p−2 ([0,ζ,Lp])

ζ
p+2
2p

≤
(
Cζ(1 +R2 +Rp−2) + ζ

p+2
2p Rp−2

)
‖u‖L∞([0,ζ],H1(R2)).

In view of the above estimates, we can obtain Lipschitz continuity of the mapping
B(u).

Lemma 10. The mapping B defined in Lemma 9 is locally Lipschitz continuous,
that is, for any R > 0, there exists C(R) > 0 such that when u1, u2 ∈ Xζ and
‖u1‖Xζ

, ‖u2‖Xζ
≤ R, we have

‖B(u1)−B(u2)‖L1([0,ζ],H1(R2) ≤ C(R)(ζ + ζ
p2−2p+4

p2 + ζ
p+2
2p )‖u1 − u2‖Xζ

.
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Proof. Let u1, u2 ∈ Xζ satisfy ‖u1‖Xζ
, ‖u2‖Xζ

≤ R. Since

||u1|p−2u1 − |u2|p−2u2| ≤Cp|u1 − u2|(|u1|+ |u2|)p−2

≤Cp|u1 − u2|(|u1|p−2 + |u2|p−2),

we deduce that

|B(u1)−B(u2)| ≤|u1 sin(2θ1)− |u1|p−2u1 − u2 sin(2θ2) + |u2|p−2u2|
≤|u1 − u2|+ 2|u2||θ1 − θ2|+ ||u2|p−2u2 − |u1|p−2u1|
≤|u1 − u2|+ 2|u2||θ1 − θ2|+ Cp|u1 − u2|(|u1|p−2 + |u2|p−2),

where θj = η(uj). By Hölder’s inequality, we have

‖B(u1)−B(u2)‖L2 ≤‖u1 − u2‖L2 + 2‖u2‖L4‖θ1 − θ2‖L4

+ C3(‖u1‖p−2
L2p + ‖u2‖p−2

L2p )(‖u1 − u2‖Lp)

≤C4(‖u1 − u2‖H1 + ‖u2‖H1‖θ1 − θ2‖H1

+ C5(‖u1‖p−2
H1 + ‖u2‖p−2

H1 )(‖u1 − u2‖H1).

(12)

On the other hand, by a simple calculation, one has

|∇B(u1)−∇B(u2)| ≤|∇(u1 − u2)|+ 2|∇u2||θ1 − θ2|+ 2|u1 − u2||∇θ1|
+ 2|u2||∇θ2 −∇θ1|+ 4|u2||θ2 − θ1||∇θ2|
+ (p− 1)|u1|p−2|∇(u1 − u2)|
+ (p− 1)|∇u2||u1|p−2 − |u2|p−2|

=I1 + I2 + I3 + I4 + I5 + I6 + I7.

By using the Sobolev embedding inequality and Hölder’s inequalities, we have

‖I1‖L2 ≤ ‖∇(u1 − u2)‖L2 ≤ ‖u1 − u2‖H1 ,

‖I2‖L2 ≤ C‖∇u2‖L2‖θ1 − θ2‖L∞ ≤ C‖u2‖H1‖θ1 − θ2‖H2 ,

‖I3‖L2 ≤ C‖∇θ1‖L4‖u1 − u2‖L4 ≤ C‖θ1‖H2‖u1 − u2‖H1 ,

‖I4‖L2 ≤ C‖u2‖L4‖∇θ2 −∇θ1‖L4 ≤ C‖u2‖H1‖θ1 − θ2‖H2 ,

‖I5‖L2 ≤ C‖u2‖L4‖∇θ2‖L4‖θ1 − θ2‖L∞ ≤ C‖u2‖H1‖θ2‖H2‖θ2 − θ1‖H2 ,

‖I6‖2L2 ≤ Cp

(∫
R2

|∇(u1 − u2)|pdx
) 2

p
(∫

R2

|u1|2pdx
) p−2

p

= Cp‖∇(u1 − u2)‖2Lp‖u1‖2(p−2)
H1 ,



Nematic liquid crystal system 265

and

‖I7‖2L2 =

∫
R2

(p− 1)2|∇u2|2
∣∣|u1|p−2 − |u2|p−2

∣∣2 dx
≤
∫
R2

(p− 1)2|∇u2|2
∣∣|u1|p−3u1 − |u2|p−3u2

∣∣2 dx
=

∫
R2

(p− 1)2|∇u2|2
∣∣∣|u1 − u2| ||u1|+ |u2||p−3

∣∣∣2 dx
≤ Cp

∫
R2

|∇u2|2|u1 − u2|2
∣∣∣|u1|2(p−3) + |u2|2(p−3)

∣∣∣ dx
= Cp

∫
R2

|∇u2|2|u1 − u2|2|u1|2(p−3)dx+ Cp

∫
R2

|∇u2|2|u1 − u2|2|u2|2(p−3)dx

≤ Cp

(∫
R2

|∇u2|pdx
) 2

p
(∫

R2

|u1 − u2|2pdx
) 1

p
(∫

R2

|u1|2pdx
) p−3

p

+Cp

(∫
R2

|∇u2|pdx
) 2

p
(∫

R2

|u1 − u2|2pdx
) 1

p
(∫

R2

|u2|2pdx
) p−3

p

= Cp‖∇u2‖2Lp‖u1 − u2‖2L2p

(
‖u1‖2(p−3)

L2p + ‖u2‖2(p−3)
L2p

)
≤ C‖∇u2‖2Lp‖u1 − u2‖2H1

(
‖u1‖2(p−3)

H1 + ‖u2‖2(p−3)
H1

)
. (13)

In view of Lemma 4, we know that ‖θj‖H2 ≤ C‖uj‖2H1 . By Lemma 2 and (8), we
get that

‖u‖L∞ ≤ C‖∇u‖
2
p

Lp‖u‖
p−2
p

Lp ≤ C‖∇u‖
2
p

Lp‖u‖
p−2
p

H1 .

Therefore, according to (12), (13) and Lemma 6, we deduce that

‖B(u1)−B(u2)‖H1

≤C‖u1 − u2‖H1 + C‖u2‖H1‖θ1 − θ2‖H1 + C(‖u1‖p−2
H1

+ ‖u2‖p−2
H1 )(‖u1 − u2‖H1) + ‖u1 − u2‖H1 + C‖u2‖H1‖θ1 − θ2‖H2

+ C‖u1−u2‖H1‖θ1‖H2+C‖u2‖H1‖θ1−θ2‖H2+C‖u2‖H1‖θ1−θ2‖H2‖θ2‖H2

+ C‖∇(u1 − u2)‖Lp‖u1‖p−2
H1 + C‖u1 − u2‖H1‖∇u2‖Lp

(
‖u1‖p−3

H1 + ‖u2‖p−3
H1

)
≤(C + ‖u1‖p−2

H1 + ‖u2‖p−2
H1 + ‖u1‖2H1 + 1 + C‖∇u2‖Lp(‖u1‖p−3

H1 + ‖u2‖p−3
H1 )

+ C(‖u2‖H1+‖u2‖3H1)(‖u1‖H1+‖u2‖H1)(1+‖u1‖2L∞+‖u2‖2L∞))‖u1−u2‖H1

+ C‖∇(u1 − u2)‖Lp‖u1‖p−2
H1

≤(C + ‖u1‖p−2
H1 + ‖u2‖p−2

H1 + ‖u1‖2H1 + 1 + C‖∇u2‖Lp(‖u1‖p−3
H1 + ‖u2‖p−3

H1 )

+ C(‖u2‖H1 + ‖u2‖3H1)(‖u1‖H1 + ‖u2‖H1)(1 + C‖∇u1‖
4
p

Lp‖u1‖
2(p−2)

p

H1

+ C‖∇u2‖
4
p

Lp‖u2‖
2(p−2)

p

H1 ))× ‖u1 − u2‖H1 + C‖∇(u1 − u2)‖Lp‖u1‖p−2
H1 .

From ‖ui‖Xζ
≤ R, we see that ‖ui‖H1 ≤ R(i = 1, 2), for ∀t ∈ [0, ζ]. Thus, integrating
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over [0, ζ], and using Hölder’s inequality, we get∫ ζ

0

‖B(u1)−B(u2)‖H1ds

≤C(R)
∫ ζ

0

[
(1 + ‖∇u1‖

4
p

Lp + ‖∇u2‖
4
p

Lp + ‖∇u2‖Lp)‖u1 − u2‖H1

+ ‖∇(u1 − u2)‖Lp

]
ds

≤C(R)
[
sup
[0,ζ]

‖u1 − u2‖H1

∫ ζ

0

(1 + ‖∇u1‖
4
p

Lp + ‖∇u2‖
4
p

Lp + ‖∇u2‖Lp)ds

+

∫ ζ

0

‖∇(u1 − u2)‖Lpds
]
,

(14)

where C(R) is a positive constant that only depends on R. By Hölder’s inequality
and ‖ui‖Xζ

≤ R, we have∫ ζ

0

‖∇u1‖
4
p

Lpds ≤
(∫ ζ

0

‖∇u1‖
p 2

p−2

Lp ds
) 2(p−2)

p2
(∫ ζ

0

1
p2

p2−2p+4 ds
) p2−2p+4

p2

≤ R
4
p ζ

p2−2p+4

p2 ,

(15)

∫ ζ

0

‖∇u2‖Lpds ≤ (

∫ ζ

0

‖∇u2‖
2p

p−2

Lp ds)
p−2
2p (

∫ ζ

0

1
2p

p+2 ds)
p+2
2p ≤ Rζ

p+2
2p , (16)

and ∫ ζ

0

‖∇(u1 − u2)‖Lpds ≤

(∫ ζ

0

‖∇(u1 − u2)‖
2p

p−2

Lp ds

) p−2
2p
(∫ ζ

0

1ds

) p+2
2p

≤ ζ
p+2
2p ‖u1 − u2‖Xζ

.

(17)

Therefore, by (14), (15), (16), (17), we get

‖B(u1)−B(u2)‖L1([0,ζ],H1) ≤ C(R)(ζ + ζ
p2−2p+4

p2 + ζ
p+2
2p )‖u1 − u2‖Xζ

,

where C(R) is a positive constant that only depends on R.

Theorem 1. Let u0 ∈ H1(R2); then there exist ζ = ζ(‖u0‖H1) > 0, problem (11)
has a unique solution (u, θ) ∈ Xζ × L∞([0, ζ],H2(R2)) on the interval [0, ζ], and
θ ∈ [0, π/4]. Moreover, the mapping u0 7→ u is continuous from H1(R2) to Xζ .

Proof. Define a mapping Γ : Xζ → Xζ given by the following form:

(Γu)(t) =W (t)u0 + i

∫ t

0

W (t− s)B(u(s))ds, t ∈ [0, ζ].

In view of Lemma 4, we have θ = η(u) ∈ L∞([0, ζ],H2(R2)) if u ∈ Xζ . From
u0 ∈ H1(R2) and Lemma 8, we see that h(t) =W (t)u0 ∈ Xζ , t ∈ [0, ζ].
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Now let us consider a closed ball BR(h) ⊂ Xζ , where R > 0. For any u ∈ BR(h),
by virtue of Lemma 7 and Lemma 9, taking ζ sufficiently small, we have

‖Γ(u)− h‖Xζ
= ‖

∫ t

0

W (t− s)B(u(s))ds‖Xζ
≤ C‖B‖L1([0,ζ],H1) ≤ Cζ‖u‖Xζ

≤ R,

that is, Γ : BR(h) → BR(h) is well defined.

Next, we show that Γ is a contraction mapping on BR(h). In fact, let u1, u2 ∈
BR(h) ⊂ Xζ ; then

Γ(u1)(t)− Γ(u2)(t) = i

∫ t

0

W (t− s)(B(u1(s))−B(u2(s)))ds.

Thus, by Lemma 7 and Lemma 10, we have

‖Γ(u1)− Γ(u2)‖Xζ
≤ C‖B(u1(s))−B(u2(s))‖L1([0,ζ],H1)

≤ C(R)(ζ + ζ
p2−2p+4

p2 + ζ
p+2
2p )‖u1 − u2‖Xζ

.
(18)

Taking ζ sufficiently small such that C(R)(ζ + ζ
p2−2p+4

p2 + ζ
p+2
2p ) < 1

2 leads to

‖Γ(u1)− Γ(u2)‖Xζ
≤ 1

2
‖u1 − u2‖Xζ

,

which means that Γ possesses the contraction property on BR(h).

Applying the Banach contraction mapping theorem, there exists a unique u ∈
BR(h), such that Γ(u) = u, that is;

u(t) = Γ(u)(t) =W (t)u0 + i

∫ t

0

W (t− s)B(u(s))ds, t ∈ [0, ζ].

Thus the first equation of system (11) has a unique local solution u(x, t) on the
interval [0, ζ].

Finally, we prove the continuous dependence of the solution on the initial con-
ditions. For this reason, let the solution corresponding to initial conditions vj ∈
H1(R2) be uj , j = 1, 2. Obviously, uj = Γvj (uj), j = 1, 2. Thus, by (18) and
Lemma 8, we have

‖u1 − u2‖Xζ
≤ ‖Γv1(u1)− Γv2(u2)‖Xζ

= ‖W (t)v1−W (t)v2‖Xζ
+‖i

∫ t

0

W (t−s)× (B(u1(s))−B(u2(s))) ds‖Xζ

≤ ‖W (t)v1−W (t)v2‖Xζ
+C(R)(ζ+ζ

p2−2p+4

p2 +ζ
p+2
2p )‖u1−u2‖Xζ

(19)

= ‖W (t)(v1 − v2)‖Xζ
+ C(R)(ζ + ζ

p2−2p+4

p2 + ζ
p+2
2p )‖u1 − u2‖Xζ

≤ C‖v1 − v2‖H1 + C(R)(ζ + ζ
p2−2p+4

p2 + ζ
p+2
2p )‖u1 − u2‖Xζ

.
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Let us take ζ sufficiently small such that C(R)(ζ+ ζ
p2−2p+4

p2 + ζ
p+2
2p ) < 1

2 . Thus, (19)
implies

‖u1 − u2‖Xζ
≤ C‖v1 − v2‖H1 ,

which implies the continuous dependence property of the solution on the initial
data.

Theorem 2 (Global existence). Let u0 ∈ H1(R2); then the problem has a unique
solution (u, θ) ∈ C(R,H1(R2)) × L∞(R,H2(R2)), such that θ ∈ [0, π/4], ∇u ∈
L

2p
p−2

loc (R, Lp(R2)).

Proof. Assume that (u, θ) is a solution of system (1). By Lemma 3, we get that

‖u(x, t)‖L2(R2) = ‖u0‖L2(R2), H(u(x, t), θ(x, t)) = H(u0, θ0), θ0 = η(u0).

Since

H(u, θ) ≥ 1

4
‖∇u‖2L2 −

1

2
‖u‖2L2 −

1

p
‖u‖pLp ,

and

‖u‖2H1 ≤ 4H(u, θ) + 3‖u‖2L2 + Cp‖u‖pLp ≤ C‖u0‖2H1 , (20)

we deduce that ‖u‖H1(R2) is bounded, and its bounds are controlled by ‖u0‖H1 .

For t ∈ [0, ζ], (1) has a unique solution on the interval [0, ζ], which satisfies
equation (9). From (20), we have ‖u(x, ζ)‖H1 ≤ ‖u0‖H1 . Let ũ0 = u(x, ζ), similarly
to the proof of Theorem 1, a weak solution ũ(x, t + ζ) of (1) exists on [0, ζ], and
satisfies (9). Define

u(x, t) =

{
u(x, t), 0 ≤ t ≤ ζ,
ũ(x, t− ζ), 0 ≤ ζ ≤ t ≤ 2ζ.

(21)

Obviously, u(x, t) defined by (21) is the solution of system (1) on the interval [0, 2ζ],
and for ζ ≤ t ≤ 2ζ, we have

‖u(x, t)‖L2 = ‖ũ(x, t− ζ)‖L2 = ‖ũ0‖L2 = ‖u(x, ζ)‖L2 = ‖u0‖L2 ,

and

H(u, θ) = H(ũ(x, t− ζ), θ) = H(ũ0, θ) = H(u, θ) = H(u0, θ0).

Therefore, for all t ∈ [0, 2ζ], u(x, t) satisfies the conservation law (9). In addition,
from (20), we have ‖u(x, 2ζ)‖H1 ≤ C‖u0‖H1 . Next, repeating the discussion above,
constructing a solution of (1) on [0,+∞) for all t > 0. In the same way, we can
discuss the case of t ≤ 0 and obtain the global solution of (1) on R, which satisfies (9).
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4. Existence of ground state solution

In this section, we will prove the existence of the ground state solution (u, θ) for a
steady-state problem related to system (1).

Let u(x, t) = eiσtv(x), where σ ∈ R+, θ(x, t) = ϕ(x), system (1) becomes the
following system: {

−∆v + 2σv = 2v sin(2ϕ) + 2|v|p−2v, in R2,
−ν∆ϕ+ q sin(2ϕ) = 2v2 cos(2ϕ), in R2.

(22)

The energy function J : H1(R2) × H1(R2) → R corresponding to system (22) is
defined as follows:

J(v, ϕ) =
1

4

∫
R2

(
|∇v|2 + 2σ|v|2 + ν|∇ϕ|2 + q(1− cos(2ϕ))

)
dx

− 1

2

∫
R2

|v|2 sin(2ϕ)dx− 1

p

∫
R2

|v|pdx.

From ϕ ∈ [0, π4 ], we have∫
R2

|v|2 sin(2ϕ)dx ≤
∫
R2

|v|2dx,
∫
R2

ϕ2dx ≤
∫
R2

[1− cos(2ϕ)]dx ≤ 2

∫
R2

ϕ2dx.

Therefore, J(v, ϕ) is well defined on H1(R2) × H1(R2). By a standard argument,
J ∈ C1(H1(R2)×H1(R2),R), and ∀(w,ψ) ∈ H1(R2)×H1(R2),

〈J ′(v, ϕ), (w,ψ)〉 =1

2

∫
R2

(
∇v∇w + 2σvw − 2vw sin(2ϕ)

)
dx−

∫
R2

|v|p−2vwdx

+
1

2

∫
R2

(
ν∇ϕ∇ψ − 2|v|2 cos(2ϕ)ψ + q sin(2ϕ)ψ

)
dx.

Obviously, if (v, ϕ) ∈ H1(R2) × H1(R2) is a critical point of J , then (u, θ) is
a weak solution of system (22). Let V (x) = 2σ − 2 sin(2ϕ), from ϕ ∈ [0, π4 ] and
assuming σ > 1 + α0, where α0 > 0, V (x) is a bounded potential on R2 with
positive and lower bounds. Using Lemma 1 in [13], we see that the solution v is a
continuous function on R2, and v ∈ L∞(R2), lim

|x|→∞
v(x) = 0. By virtue of Lemma 4

in Section 2, we have ϕ ∈ [0, θmax], where θmax = 1
2 arctan

2∥v∥2
L∞

q , θmax <
π
4 . From

Lemma 5 in Section 2, we know that ‖ϕ‖H2 ≤ C‖v‖2L4 .
Let φ∗ denote the symmetric decreasing rearrangement of φ : Rn → R+, which

is the measurable function such that |{x ∈ Rn : φ(x) > t}| <∞, for all t > 0. From
[10], we have the following lemma.

Lemma 11. Let f : R+ → R+ be a increasing continuous function such that f(0) =
0; then for all φ : Rn → R+, (f ◦ φ)∗ = f ◦ φ∗.

The symmetric properties of functional J(v, ϕ) can be obtained according to
Lemma 11.
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Proposition 1. Let (v, ϕ) ∈ H1(R2) × H1(R2), and v ≥ 0, 0 ≤ ϕ ≤ π
4 , i.e.

in R2. Then J(v∗, ϕ∗) ≤ J(v, ϕ), where v∗ and ϕ∗ are the symmetric decreasing
rearrangements of v and ϕ, respectively.

Proof. By the Pólya-Szegö inequality, we have

1

4
‖∇v∗‖2L2 +

ν

4
‖∇ϕ∗‖2L2 ≤ 1

4
‖∇v‖2L2 +

ν

4
‖∇ϕ‖2L2 . (23)

The functions 1−cos(2ϕ), sin(2ϕ) are increasing continuous on [0, π/4] and vanishes
at the origin, and Lemma 11 implies (1 − cos(2ϕ))∗ = 1 − cos(2ϕ∗), (sin(2ϕ))∗ =
sin(2ϕ∗). Therefore,∫

R2

q

4
(1− cos(2ϕ))dx =

∫
R2

q

4
(1− cos(2ϕ))∗dx =

q

4

∫
R2

(1− cos(2ϕ∗))dx. (24)

By the Riesz inequality for the rearrangement inequality in [10], we have∫
R2

v2 sin(2ϕ)dx ≤
∫
R2

v∗2 sin(2ϕ)∗dx =

∫
R2

v∗2 sin(2ϕ∗)dx, (25)

and
‖v‖2L2 = ‖v∗‖2L2 , ‖v‖pLp = ‖v∗‖pLp . (26)

Therefore, from (23), (24), (25), (26), we have J(v∗, ϕ∗) ≤ J(v, ϕ).

We introduce the Nehari manifold

N = {(v, ϕ) ∈ H1(R2)×H1(R2) : v 6= 0, ϕ 6= 0, 〈J ′(v, ϕ), (v, ϕ)〉 = 0}.

Lemma 12. Let p > 2; then the Nehari manifold N 6= ∅.

Proof. Let (v, ϕ) ∈ H1(R2) × H1(R2), and v 6= 0, ϕ 6= 0. Let vt = tv(t−
1
2x),

ϕt = ϕ(t−
1
2x), where t > 0. By calculation, we have

γ(t) = 〈J ′(vt, ϕt), (vt, ϕt)〉 =
1

2
t2
∫
R2

|∇v|2dx+ σt3
∫
R2

|v|2dx− t3
∫
R2

v2 sin(2ϕ)dx

− t2p+1

∫
R2

|v|pdx+
ν

2

∫
R2

|∇ϕ|2dx

− t3
∫
R2

v2 cos(2ϕ) · ϕdx+
q

2
t

∫
R2

sin(2ϕ) · ϕdx.

Clearly, γ(t) → ν
2

∫
R2 |∇ϕ|2dx > 0 for t → 0+, and γ(t) → −∞ for t → +∞.

Then there exists t1 > 0, such that γ(t1) = 0, that is, 〈J ′(vt1 , ϕt1), (vt1 , ϕt1)〉 = 0.
Obviously, vt1 6= 0, ϕt1) 6= 0. We conclude that (vt1 , ϕt1) ∈ N , and N 6= ∅.

From Lemma 12, we can consider the following minimum problem:

inf
(v,ϕ)∈N

J(v, ϕ) := m. (27)

Lemma 13. It holds that m > 0.
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Proof. By (v, ϕ) ∈ N , we deduce that

J(v, ϕ) = J(v, ϕ)− 1

2
〈J ′(v, ϕ), (v, ϕ)〉

=
1

4

∫
R2

[|∇v|2 + 2σv2 + ν|∇ϕ|2 − 2v2 sin(2ϕ) + q(1− cos(2ϕ))]dx

− 1

p

∫
R2

|v|pdx− 1

4

∫
R2

|∇v|2dx− σ

2

∫
R2

v2dx+
1

2

∫
R2

v2 sin(2ϕ)dx

+
1

2

∫
R2

|v|pdx− ν

4

∫
R2

|∇ϕ|2dx+
1

2

∫
R2

v2 cos(2ϕ) · ϕdx

− q

4

∫
R2

sin(2ϕ) · ϕdx

=(
1

2
− 1

p
)

∫
R2

|v|pdx+
q

4

∫
R2

[(1− cos(2ϕ))− sin(2ϕ)ϕ]dx

+
1

2

∫
R2

v2 cos(2ϕ)ϕdx

≥ (
1

2
− 1

p
)

∫
R2

|v|pdx+
q

4

∫
R2

[1− cos(2ϕ)− sin(2ϕ)ϕ]dx > 0,

where we have used the following fact: 1−cos(2x)−x sin(2x) ≥ 0, for any x ∈ [0, π4 ].
The proof is completed.

Next, we use the minimization method to prove that the minimum energy m can
be achieved.

Lemma 14. Let σ > 1 + α0, p > 2, where α0 > 0 is a constant; then there exist
(v, ϕ) ∈ H1

r (R2)×H1
r (R2), such that J(v, ϕ) = m.

Proof. Set

Nr = {(v, ϕ) ∈ H1
r (R2)×H1

r (R2) : v 6= 0, ϕ 6= 0, 〈J ′(v, ϕ), (v, ϕ)〉 = 0},

and then

m = inf
(v,ϕ)∈N

J(v, ϕ) = inf
(v,ϕ)∈Nr

J(v, ϕ) := m1.

In fact, since J(v, ϕ) = J(|v|, ϕ), we may assume that v is non-negative. By Propo-
sition 1, we see that J(v∗, ϕ∗) ≤ J(v, ϕ), which implies that m1 ≥ m. On the other
hand, let (v∗, ϕ∗) ∈ Nr. Then (v∗, ϕ∗) ∈ N , which leads to m1 ≤ m. Then m = m1.
Let (vn, ϕn) ∈ H1

r (R2)×H1
r (R2) be a minimizing sequence such that J(vn, ϕn) → m

as n→ ∞.
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By calculation, we can get

J(vn, ϕn)−
1

p
〈J ′(vn, ϕn), (vn, ϕn)〉

=(
1

4
− 1

2p
)‖∇vn‖2L2 + (

σ

2
− σ

p
)‖vn‖2L2 + (

ν

4
− ν

2p
)‖∇ϕn‖2L2

− (
1

2
− 1

p
)

∫
R2

v2n sin(2ϕn)dx+
q

4

∫
R2

[1− cos(2ϕn)]dx

+
1

p

∫
R2

v2n cos(2ϕn) · ϕndx− q

2p

∫
R2

sin(2ϕn) · ϕndx

≥(
1

4
− 1

2p
)‖∇vn‖2L2 + (

σ

2
− σ

p
)‖vn‖2L2 + (

ν

4
− ν

2p
)‖∇ϕn‖2L2

− (
1

2
− 1

p
)

∫
R2

v2n sin(2ϕn)dx+
q

4

∫
R2

[1− cos(2ϕn)− sin(2ϕn) · ϕn]dx

+
1

p

∫
R2

v2n cos(2ϕn) · ϕndx

≥(
1

4
− 1

2p
)‖∇vn‖2L2 + (

σ

2
− σ

p
)‖vn‖2L2 + (

ν

4
− ν

2p
)‖∇ϕn‖2L2 − (

1

2
− 1

p
)‖v‖2L2

≥min{1
4
− 1

2p
, (σ − 1)((

1

2
− 1

p
)}‖vn‖2H1 + (

ν

4
− ν

2p
)‖∇ϕn‖2L2 .

Since σ > 1 and p > 2, using Lemma 5, we obtain that {(vn, ϕn)} is bounded in
H1

r (R2)×H1
r (R2) up to a subsequence still denoted by {(vn, ϕn)}, and we can assume

that there exist v, ϕ ∈ H1
r (R2) such that vn ⇀ v, ϕn ⇀ ϕ, inH1

r (R2),
vn → v, ϕn → ϕ, inLs(R2), (2 < s <∞),
vn(x) → v(x), ϕn(x) → ϕ(x), a. e. in R2,

(28)

and v, ϕ ≥ 0, i.e. in R2. We now prove that (v, ϕ) ∈ N , and J(v, ϕ) = m. By (28)
and weak lower semi-continuity of the norm function, we have

1

2
‖∇v‖2L2 +

ν

2
‖∇ϕ‖2L2 ≤ lim inf

n→∞

(
1

2
‖∇vn‖2L2 +

ν

2
‖∇ϕn‖2L2

)
. (29)

By (29), Hölder’s inequality and Lebesgue’s dominated convergence theorem, we
can obtain∫

R2

∣∣v2n sin(2ϕn)− v2 sin(2ϕ)
∣∣ dx

=

∫
R2

|(v2n − v2) sin(2ϕn) + v(sin(2ϕn)− sin(2ϕ))|dx

≤
∫
R2

|v2n − v2||2ϕn|dx+

∫
R2

v2| sin(2ϕn)− sin(2ϕ)|dx

≤ (

∫
R2

|v2n − v2|2dx) 1
2 (

∫
R2

|ϕn|2dx)
1
2 +

∫
R2

v2| sin(2ϕn)− sin(2ϕ)|dx→ 0.

(30)
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By Fatou’s lemma, we have

q

∫
R2

sin(2ϕ) · ϕdx ≤ q lim inf
n→∞

∫
R2

sin(2ϕn) · ϕndx. (31)

Since ∫
R2

| cos(2ϕn) · ϕn − cos(2ϕ) · ϕ|3dx

≤
∫
R2

∣∣∣|ϕn − ϕ| cos(2ϕn) + ϕ| cos(2ϕn)− cos(2ϕ)|
∣∣∣3dx

≤ 4

∫
R2

|ϕn − ϕ|3 cos3(2ϕn)dx+

∫
R2

ϕ3| cos(2ϕn)− cos(2ϕ)|3dx

≤ 4

∫
R2

|ϕn − ϕ|3 cos3(2ϕn)dx+

∫
R2

ϕ3|ϕ+ ϕn|3|ϕ− ϕn|3dx

→ 0,

(32)

then by (32), we have∣∣∣ ∫
R2

v2n cos(2ϕn) · ϕn − v2 cos(2ϕ) · ϕdx
∣∣∣

=
∣∣∣ ∫

R2

(v2n − v2) cos(2ϕn) · ϕn + v2 (cos(2ϕn) · ϕn − cos(2ϕ) · ϕ)
∣∣∣

≤
(∫

R2

|v2n − v2| 32 dx
) 2

3
(∫

R2

| cos(2ϕn) · ϕn|3dx
) 1

3

+

(∫
R2

|v|3dx
) 2

3

×
(∫

R2

∣∣∣ cos(2ϕn) · ϕn − cos(2ϕ) · ϕ
∣∣∣3dx) 1

3

→ 0.

(33)

Therefore, according to (29), (30), (31), and (33), we can obtain

1

2
‖∇v‖2L2 + σ‖v‖2L2 +

ν

2
‖∇ϕ‖2L2 +

q

2

∫
R2

sin(2ϕ) · ϕdx

≤
∫
R2

v2 sin(2ϕ)dx+ ‖v‖pLp +

∫
R2

v2 cos(2ϕ) · ϕdx.
(34)

If the equality in (34) holds, then (v, ϕ) ∈ Nr. So, arguing by contradiction, we
assume that

1

2
‖∇v‖2L2 +σ‖v‖2L2 +

ν

2
‖∇ϕ‖2L2 +

q

2

∫
R2

sin(2ϕ) · ϕ

<

∫
R2

v2 sin(2ϕ) + ‖v‖pLp +

∫
R2

v2 cos(2ϕ) · ϕ.

Let γ(t) = 〈J ′(vt, ϕt), (vt, ϕt)〉, where vt = tv(t−
1
2x), ϕt = ϕ(t−

1
2x). Clearly,

γ(t) → ν
2‖∇ϕ‖

2
L2 ≥ 0 for t → 0+, and γ(1) < 0. Therefore, there exists t ∈ (0, 1),
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such that γ(t) = 0, i.e., (vt, ϕt) ∈ Nr. Thus, by (29), (30), and Fatou’s lemma, we
deduce that

m ≤J(vt, ϕt) = J(vt, ϕt)−
1

2
〈J ′(vt, ϕt), (vt, ϕt)〉

=
qt

4

∫
R2

(1− cos(2ϕ)− ϕ sin(2ϕ)) dx+ (
1

2
− 1

p
)t2p+1

∫
R2

|v|pdx

+
t3

2

∫
R2

|v|2 cos(2ϕ)ϕdx

<
q

4

∫
R2

(1− cos(2ϕ)− ϕ sin(2ϕ)) dx+ (
1

2
− 1

p
)

∫
R2

|v|pdx+
1

2

∫
R2

|v|2 cos(2ϕ)ϕdx

≤ lim inf
n→∞

q

4

∫
R2

(1− cos(2ϕn)− ϕn sin(2ϕn)) dx+ lim inf
n→∞

(
1

2
− 1

p
)

∫
R2

|vn|pdx

+ lim inf
n→∞

1

2

∫
R2

v2n cos(2ϕn)ϕndx

≤ lim inf
n→∞

[q
4

∫
R2

(1− cos(2ϕn)− ϕn sin(2ϕn)) dx+ (
1

2
− 1

p
)

∫
R2

|vn|pdx

+
1

2

∫
R2

v2n cos(2ϕn)ϕndx
]

= lim inf
n→∞

(
J(vn, ϕn)−

1

2
〈J ′(vn, ϕn), (vn, ϕn)〉

)
= lim

n→∞
J(vn, ϕn) = m,

which leads to a contradiction. Therefore, the equality in (34) holds and then (v, ϕ) ∈
Nr. By weak lower semi-continuity of the norm function, (29), and (30), we get that

J(v, ϕ) ≤ lim inf
n→∞

J(vn, ϕn) = m.

On the other hand, owing to (v, ϕ) ∈ Nr, we have that J(v, ϕ) ≥ m, and so J(v, ϕ) =
m. This completes the proof.

Lemma 15. Let (v, ϕ) ∈ H1
r (R2) × H1

r (R2) be the minimizer of the minimiza-
tion problem (27); then there exists q0 > 0 such that for any q ≥ q0, there holds
J ′(v, ϕ) = 0.

Proof. Let G(v, ϕ) = 〈J ′(v, ϕ), (v, ϕ)〉 = 0. Applying the Lagrange multiplier the-
orem, there exists µ ∈ R, such that J ′(v, ϕ) = µG′(v, ϕ). Next, we prove µ = 0.
Indeed, by simple computation, we get

〈G′(v, ϕ), (v, ϕ)〉 =
∫
R2

|∇v|2 + 2σ|v|2dx− 2

∫
R2

(v2 sin(2ϕ) + 2v2 cos(2ϕ)ϕ

−v2 sin(2ϕ)ϕ2 + 1

2
v2 cos(2ϕ)ϕ)dx+ q

∫
R2

(cos(2ϕ)ϕ2

+
1

2
sin(2ϕ)ϕ)dx− p

∫
R2

|v|pdx+ ν

∫
R2

|∇ϕ|2dx

= (2− p)‖v‖pLp +

∫
R2

(2v2 sin(2ϕ)ϕ2 − 3v2 cos(2ϕ)ϕ)dx

+q

∫
R2

(cos(2ϕ)ϕ2 − 1

2
sin(2ϕ)ϕ)dx. (35)
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Observing that 2x2 cos(2x)−x sin(2x) ≤ 0, for any x ∈ [0, π4 ]. Thus, there exists q0 >
0, such that 2

∫
R2(v

2 sin(2ϕ)ϕ2− 3
2v

2 cos(2ϕ)ϕ)dx+q
∫
R2(cos(2ϕ)ϕ

2− 1
2 sin(2ϕ)ϕ)dx ≤

0, for any q ≥ q0. Therefore, by (35), we deduce that

〈G′(v, ϕ), (v, ϕ)〉 < 0.

This implies that µ = 0. Thus, we conclude that J ′(v, ϕ) = 0.

Theorem 3. Let σ > 1 + σ0, p > 2, and there exists q0 > 0, satisfying q ≥ q0,
where σ0 > 0 is a constant. Then system (22) has a normal ground state solution
(v, ϕ) ∈ H1

r (R2)×H1
r (R2).

Proof. From Lemma 14, there exists (v, ϕ) ∈ Nr, such that J(v, ϕ) = m. By
Lemma 15, we have J ′(v, ϕ) = 0, i.e., (v, ϕ) is the ground solution of system (22),
and the proof is completed.
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