On the automorphism group of a toral variety*

Anton Shafarevich ${ }^{1, \dagger}$ and Anton Trushin ${ }^{1}$
${ }^{1}$ Faculty of Computer Science, HSE University, Pokrovsky Boulevard 11, Moscow, 109028
Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Received December 6, 2022; accepted July 17, 2023

Abstract

Let \mathbb{K} be an uncountable algebraically closed field of characteristic zero. An affine algebraic variety X over \mathbb{K} is toral if it is isomorphic to a closed subvariety of a torus $\left(\mathbb{K}^{*}\right)^{d}$. We study the group $\operatorname{Aut}(X)$ of regular automorphisms of a toral variety X. We prove that if T is a maximal torus in $\operatorname{Aut}(X)$, then X is a direct product $Y \times T$, where Y is a toral variety with a trivial maximal torus in the automorphism group. We show that knowing $\operatorname{Aut}(Y)$, one can compute $\operatorname{Aut}(X)$. In the case when the rank of the group $\mathbb{K}[Y]^{*} / \mathbb{K}^{*}$ is $\operatorname{dim} Y+1$, the group $\operatorname{Aut}(Y)$ is described explicitly.

AMS subject classifications: 14M25, 14L30
Keywords: Affine variety, invertible function, algebraic torus, automorphism, rigid variety

1. Introduction

Let \mathbb{K} be an algebraically closed field of characteristic zero. The set of solutions of a system of polynomial equations in an affine space has been studied for a very long time. But some interesting properties may appear when we consider the set of solutions inside a torus $\left(\mathbb{K}^{*}\right)^{d}$. In other words, we consider only solutions with nonzero coordinates. One of the examples of this approach is the Bernstein-Kushnirenko Theorem; see $[2,6]$.

In [9], Popov proposed the following definition.
Definition 1. An irreducible affine algebraic variety X is called toral if it is isomorphic to a closed subvariety of a torus $\left(\mathbb{K}^{*}\right)^{d}$.

Some authors also use the term a "very affine variety"; see [11, 3]. It can be seen that X is toral if and only if the algebra of regular functions on X is generated by invertible functions; see [9, Lemma 1.14]. One of the reasons why toral varieties are interesting is that they are rigid varieties; see [9, Lemma 1.14].

Definition 2. An affine algebraic variety X is called rigid if there is no non-trivial action of the additive group $(\mathbb{K},+)$ on X.
*The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS.
${ }^{\dagger}$ Corresponding author. Email addresses: shafarevich.a@gmail.com (A. Shafarevich), trushin.ant.nic@yandex.ru (A. Trushin)
https://www.mathos.unios.hr/mc
© 2023 School of Applied Mathematics and Computer Science, University of Osijek

Despite the fact that the automorphism group of an affine algebraic variety has a complicated structure, sometimes it is possible to describe it for rigid varieties. It was proven in [1] that the group of regular automorphisms $\operatorname{Aut}(X)$ of a rigid variety X contains a unique maximal torus T. One can find examples of computation of Aut (X) for rigid varieties in $[1,7,8]$.

In this paper, we study the automorphism group $\operatorname{Aut}(X)$ of a toral variety X. We denote by $\mathbb{K}[X]$ the algebra of regular functions on X and by $\mathbb{K}[X]^{*}$ the multiplicative group of invertible regular functions on X. Let $E(X)$ be the quotient group $\mathbb{K}[X]^{*} / \mathbb{K}^{*}$. By [10], the group $E(X)$ is a free finitely generated abelian group. For a toral variety X the rank of $E(X)$ is not less than $\operatorname{dim} X$.

Any automorphism of X induces an automorphism of $E(X)$. So we obtain a homomorphism from $\operatorname{Aut}(X)$ to $\operatorname{Aut}(E(X))$. We denote by $H(X)$ the kernel of this homomorphism. Note that $H(X)$ consists of automorphisms that multiply invertible functions by constants.

Suppose that X is a closed subvariety of a torus $T_{d}=\left(\mathbb{K}^{*}\right)^{d}$. In Proposition 1, we show that the group $H(X)$ is naturally isomorphic to a subgroup in T_{d} which consists of elements that preserve X under the action by multiplication. In Proposition 2, we propose a way to compute the subgroup $H(X)$.

In Theorem 1, we show that if T is a maximal torus in $\operatorname{Aut}(X)$, then X is isomorphic to a direct product $T \times Y$, where Y is a toral variety with a discrete automorphism group. Here and below we assume that the field \mathbb{K} is uncountable. Theorem 3 gives a way to find $\operatorname{Aut}(X)$ knowing $\operatorname{Aut}(Y)$. If the rank of $E(Y)$ is $\operatorname{dim} Y+1$, it is possible to describe $\operatorname{Aut}(Y)$ (Theorem 3).

We also consider the case when the rank of $E(X)$ is equal to $\operatorname{dim} X$. By Proposition 3 in this case X is a torus. Moreover, it is the only case when $\operatorname{Aut}(X)$ acts on X with an open orbit.

We use the following notation. If φ is a regular automorphism of an affine variety X, then by φ^{*} we mean an automorphism of $\mathbb{K}[X]$ dual to φ. If A is a group and B is a normal subgroup in A, then by $[a]$ we denote the image of an element $a \in A$ in the quotient group A / B. If X is a closed subvariety of an affine variety Z, then by $I(X)$ we mean the ideal of regular functions on Z which are equal to zero on X.

2. General facts about toral varieties

Here we prove some initial properties of toral varieties and propose a way to compute the group $H(X)$ for a toral variety X

Let T_{r} be a torus of dimension r. We recall that the group $\operatorname{Aut}\left(T_{r}\right)$ is isomorphic to $T_{r} \rtimes \mathrm{GL}_{r}(\mathbb{Z})$; see [1, Example 2.3]. Here the left factor T_{r} acts on itself by multiplications and a matrix $\left(a_{i j}\right) \in \mathrm{GL}_{r}(\mathbb{Z})$ defines an automorphism of T_{r} which is given by the formula

$$
t_{i} \rightarrow t_{1}^{a_{i 1}} \ldots t_{r}^{a_{i r}}
$$

where t_{1}, \ldots, t_{r} are coordinate functions on T_{r}.
Now let X be a toral variety and r is the rank of $E(X)$. One can choose invertible functions $f_{1}, \ldots, f_{r} \in \mathbb{K}[X]^{*}$ such that $\left[f_{1}\right], \ldots,\left[f_{r}\right]$ form a basis of the group $E(X)$. Then f_{1}, \ldots, f_{r} generate the algebra $\mathbb{K}[X]$ and define a closed embedding of $\rho: X \hookrightarrow$
T_{r}. Note that if we choose another $g_{1}, \ldots, g_{r} \in \mathbb{K}[X]^{*}$ such that $\left[g_{1}\right], \ldots,\left[g_{r}\right]$ form a basis of $E(X)$, then the respective embedding $\rho_{g}: X \hookrightarrow T_{r}$ differs from ρ by an automorphism of T_{r}. Indeed, we have

$$
g_{i}=\lambda_{i} f_{1}^{a_{i 1}} \ldots f_{r}^{a_{i r}}, i=1, \ldots, r
$$

for some $\lambda_{i} \in \mathbb{K}^{*}$ and $\left(a_{i j}\right) \in \mathrm{GL}_{r}(\mathbb{Z})$. If we consider an automorphism $\tau: T_{r} \rightarrow T_{r}$ which is given by the formulas

$$
\tau\left(t_{i}\right)=\lambda_{i} t_{1}^{a_{i 1}} \ldots t_{r}^{a_{i r}}
$$

then $\rho_{g}=\tau \circ \rho$.
Definition 3. We will call the embedding ρ described above canonical.
Note that if $\rho: X \hookrightarrow T_{r}$ is a canonical embedding, then $\mathbb{K}[X]^{*} \simeq \mathbb{K}\left[T_{r}\right]^{*}$ and $E(X) \simeq E\left(T_{r}\right)$. We denote by Aut ${ }_{X}\left(T_{r}\right)$ the subgroup of $\operatorname{Aut}\left(T_{r}\right)$ which consists of automorphisms of T_{r} that preserve X. There is a natural homomorphism $\operatorname{Aut}_{X}\left(T_{r}\right) \rightarrow \operatorname{Aut}(X)$ which sends an automorphism $\varphi \in \operatorname{Aut}_{X}\left(T_{r}\right)$ to its restriction $\left.\varphi\right|_{X}$.

Proposition 1. Let X be a toral variety and $\rho: X \hookrightarrow T_{r}$ a canonical embedding. Then

1. the homomorphism

$$
\operatorname{Aut}_{X}\left(T_{r}\right) \rightarrow \operatorname{Aut}(X),\left.\varphi \rightarrow \varphi\right|_{X}
$$

is an isomorphism;
2. the subgroup $H(X)$ is the image of the subgroup $\operatorname{Aut}_{X}\left(T_{r}\right) \cap T_{r}$ with respect to this isomorphism.

Proof. We denote by t_{1}, \ldots, t_{r} coordinate functions on T_{r} and by f_{1}, \ldots, f_{r} the respective invertible regular functions on X. Then $\left[f_{1}\right], \ldots,\left[f_{r}\right]$ is a basis of $E(X)$.

Firstly, we will prove that the homomorphism

$$
\operatorname{Aut}_{X}\left(T_{r}\right) \rightarrow \operatorname{Aut}(X),\left.\varphi \rightarrow \varphi\right|_{X}
$$

is surjective. Let $\bar{\varphi}$ be an automorphism of X. Then $\bar{\varphi}$ defines an automorphism of the lattice $E(X)$. Therefore,

$$
\bar{\varphi}\left(f_{i}\right)=\lambda_{i} f_{1}^{a_{i 1}} \ldots f_{r}^{a_{i r}}, i=1, \ldots, r
$$

where $\lambda_{i} \in \mathbb{K}^{*}$ and $\left(a_{i j}\right) \in \mathrm{GL}_{r}(\mathbb{Z})$. We define an automorphism φ of T_{r} by the formulas

$$
\varphi\left(t_{i}\right)=\lambda_{i} t_{1}^{a_{i 1}} \ldots t_{r}^{a_{i_{r}}}, i=1, \ldots, r
$$

Then φ preserves X and $\left.\varphi\right|_{X}=\bar{\varphi}$.

Now suppose that the image of an automorphism $\psi \in \operatorname{Aut}_{X}\left(T_{r}\right)$ is a trivial automorphism of X. Then $\left.\psi\right|_{X}$ defines a trivial automorphism of the lattice $E(X)$. Hence, ψ defines a trivial automorphism of the lattice $E\left(T_{r}\right)$. So ψ has the form

$$
\psi\left(t_{i}\right)=\beta_{i} t_{i}
$$

for some $\beta \in \mathbb{K}^{*}$. It means that $\psi \in T_{r}$. But T_{r} acts on itself freely. Since ψ preserves all points of X, then ψ is a trivial automorphism of T_{r}. So the map

$$
\operatorname{Aut}_{X}\left(T_{r}\right) \rightarrow \operatorname{Aut}(X)
$$

is injective and therefore it is an isomorphism.
It remains to prove the last property. If $\delta \in \operatorname{Aut}_{X}\left(T_{r}\right) \cap T_{r}$, then $\left.\delta\right|_{X}$ defines a trivial automorphism of $E(X)$. Hence $\left.\delta\right|_{X} \in H(X)$.

Conversely, suppose that $\left.\delta\right|_{X} \in H(X)$. Then δ is given by the formulas

$$
\delta\left(t_{i}\right)=\gamma_{i} t_{i}, i=1, \ldots, r
$$

for some $\gamma_{i} \in \mathbb{K}^{*}$. Therefore, $\delta \in \operatorname{Aut}_{X}\left(T_{r}\right) \cap T_{r}$.
Corollary 1. Let X be a toral variety and $r=\operatorname{rank} E(X)$. Then the group $\operatorname{Aut}(X)$ is isomorphic to a subgroup in $T_{r} \rtimes \mathrm{GL}_{\mathrm{r}}(\mathbb{Z})$.

Remark 1. It follows from Proposition 1 that a toral variety X can be embedded in a torus T_{r} in such a way that any automorphism X can be uniquely extended to an automorphism of T_{r}. If X is a subvariety of Z, it is always natural to ask whether an automorphism of X can be extended to an automorphism of Z. Some results concerning this problem can be found in [4, 5].
Example 1. Let X be a toral variety and rank $E(X)=r$. Then there is a canonical embedding $\rho: X \hookrightarrow T_{r}$ of X into a torus T_{r} of dimension r. But in some cases it is also possible to embed X into a torus of lower dimension.

Consider

$$
Y=\left\{(x, y) \in\left(\mathbb{K}^{*}\right)^{2} \mid y x(x-1)(x-2) \ldots(x-k)=1\right\}
$$

It is a closed subvariety of a torus $T_{2}=\left(\mathbb{K}^{*}\right)^{2}$, so Y is a toral variety. We see that $x,(x-1), \ldots,(x-k)$ are invertible functions on Y. We will show that $[x],[x-$ $1], \ldots,[x-k]$ are linearly independent in $E(Y)$. It implies that rk $E(Y) \geq k+1$.

Indeed, otherwise there are $b_{0}, \ldots, b_{k} \in \mathbb{Z}$ and $\lambda \in \mathbb{K}^{*}$ such that

$$
\begin{equation*}
x^{b_{0}}(x-1)^{b_{1}} \ldots(x-k)^{b_{k}}=\lambda \tag{1}
\end{equation*}
$$

But the polynomial $x^{b_{0}}(x-1)^{b_{1}} \ldots(x-k)^{b_{k}}-\lambda$ is not divisible by $y x(x-1)(x-$ $2) \ldots(x-k)-1$ in $\mathbb{K}\left[x^{ \pm 1}, y^{ \pm 1}\right]$. So Equation (1) cannot hold for Y.
Example 2. It is also not true that every embedding of a toral variety X with rank $E(X)=r$ into a torus T_{r} is canonical.

The embedding $X \hookrightarrow T_{r}$ is canonical if $\left[\left.t_{1}\right|_{X}\right], \ldots,\left[\left.t_{r}\right|_{X}\right]$ is a basis of $E(X)$. If we choose $Y \subseteq T_{2}$ as in Example 1 above, then the embedding $Y \hookrightarrow T_{2} \times T_{r-2}=T_{r}$, where $z \rightarrow(z, p)$ for some fixed point $p \in T_{r-2}$, is not a canonical embedding. Here the restrictions $\left.t_{3}\right|_{Y}, \ldots,\left.t_{r}\right|_{Y}$ are constants so $\left[\left.t_{3}\right|_{Y}\right]=\ldots=\left[\left.t_{r}\right|_{Y}\right]$ is a neutral element in $E(Y)$.

Now let X be a closed irreducible subvariety in T_{r} and let the embedding $X \hookrightarrow T_{r}$ be canonical. By Proposition 1 we can identify the group $H(X)$ with the subgroup in T_{r} which preserves X. We will describe the subgroup $H(X)$ as a subgroup in T_{r}. Let $M \simeq \mathbb{Z}^{r}$ be the lattice of characters of T_{r}. For $m=\left(m_{1}, \ldots, m_{r}\right) \in M$ by χ^{m} we mean the character $t \rightarrow t_{1}^{m_{1}} \ldots t_{r}^{m_{r}}$. Then each function in $\mathbb{K}\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$ is a linear combination of characters. For a function $f=\sum_{i} \alpha_{m_{i}} \chi^{m_{i}} \in \mathbb{K}\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$ by support of f we mean the subset

$$
\operatorname{Supp} f=\left\{m_{i} \in M \mid \alpha_{m_{i}} \neq 0\right\} \subseteq M
$$

Let $I(X)$ be the ideal of functions in $\mathbb{K}\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$ which are equal to zero on X. We say that $f \in I(X)$ is minimal if there is no non-zero $g \in I(X)$ such that $\operatorname{Supp} g \subsetneq \operatorname{Supp} f$.

Lemma 1. Minimal polynomials generate $I(X)$ as a vector space.
Proof. If $f \in I(X)$ is not minimal, then there is a $g \in I(X)$ with $\operatorname{Supp} g \subsetneq \operatorname{Supp} f$. One can choose a constant α such that $\operatorname{Supp}(f-\alpha g) \subsetneq \operatorname{Supp} f$. Applying induction by cardinality of $\operatorname{Supp} f$ we see that g and $f-\alpha g$ can be represented as a sum of minimal polynomials. Then f is also a sum of minimal polynomials.

Definition 4. We denote by $M(X)$ a subgroup of M which is generated by Minkowski sums $\operatorname{Supp} f+(-\operatorname{Supp} f)$ for all minimal $f \in I(X)$.

Proposition 2. The subgroup $H(X) \subseteq T_{r}$ is given by equations $\chi^{m}(t)=1$ for all $m \in M(X)$.

Proof. Let $h \in H(X)$ and $f=\sum_{i} \alpha_{m_{i}} \chi^{m_{i}}$ be a minimal polynomial in $I(X)$. Then $h \circ f=\sum_{i} \alpha_{m_{i}} \chi^{m_{i}}(h) \chi^{m_{i}}$. The ideal $I(X)$ is invariant under the action of $H(X)$. So $h \circ f \in I(X)$. Suppose that there are $a, b \in M(X)$ such that $\alpha_{a}, \alpha_{b} \neq 0$ and $\chi^{m_{a}}(h) \neq \chi^{m_{b}}(h)$. Then $g=\chi^{m_{a}}(h) f-h \circ f$ is a non-zero function in $I(X)$ and $\operatorname{Supp} g \subsetneq \operatorname{Supp} f$. But f is minimal. So $\chi^{m_{a}}(h)=\chi^{m_{b}}(h)$. Therefore, $\chi^{m_{a}-m_{b}}(h)=$ 1 and this implies that $\chi^{m}(h)=1$ for all $m \in M(X)$.

Now consider an element $t \in T_{r}$ such that $\chi^{m}(t)=1, \forall m \in M(X)$. Then every minimal polynomial in $I(X)$ is a semi-invariant with respect to t. But $I(X)$ is a linear span of minimal polynomials. So $I(X)$ is invariant under the action of t. Therefore, $t \in H(X)$.

At the end of this section, we note that toral varieties over uncountable fields satisfy the following conjecture formulated by Perepechko and Zaidenberg.

Conjecture 1 (Conjecture 1.0.1 in [8]). If Y is a rigid affine algebraic variety over \mathbb{K}, then the connected component $\operatorname{Aut}^{0}(Y)$ is an algebraic torus of the rank not greater than $\operatorname{dim} Y$.

Corollary 2. Suppose that the field \mathbb{K} is uncountable. Let X be a toral variety over \mathbb{K}. Then $\operatorname{Aut}(X)$ is a discrete extension of an algebraic torus.

Proof. Indeed, if X is a toral variety, then the group $\operatorname{Aut}(X) / H(X)$ is isomorphic to a subgroup in $\operatorname{Aut}(E(X)) \simeq \mathrm{GL}_{r}(\mathbb{Z})$, where r is the rank of $E(X)$. If \mathbb{K} is uncountable, then $\operatorname{Aut}(X) / H(X)$ is a discrete group. So $\operatorname{Aut}^{0}(X)$ is contained in $H(X)$. But $H(X)$ is a quasitorus. Therefore, Aut $^{0}(X)$ is a torus and the quotient group $\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X)$ is a discrete group.

From this point onwards, we always assume that the field \mathbb{K} is uncountable.

3. The structure of the automorphism group

It follows from Corollary 1 that toral varieties are rigid. By [1, Theorem 2.1], there is a unique maximal torus in the automorphism group of an irreducible rigid variety.
Theorem 1. Let X be a toral variety over \mathbb{K} and T the maximal torus in $\operatorname{Aut}(X)$. Then $X \simeq Y \times T$, where Y is a toral variety with a discrete automorphism group.

Proof. Let r be the rank of the group $E(X)$ and $\rho: X \hookrightarrow T_{r}$ a canonical embedding. We denote by M the lattice of characters of T_{r} and by $M(X)$ the sublattice in M which corresponds to X. One can choose a basis $e_{1}, \ldots, e_{r} \in M$ such that $b_{1} e_{1}, \ldots, b_{l} e_{l}$ is a basis of $M(X)$ for some $b_{1}, \ldots, b_{l} \in \mathbb{N}$ and $l \leq r$. Denote by t_{1}, \ldots, t_{r} coordinates on T_{r} corresponding to e_{1}, \ldots, e_{r}.

Then the equations $\chi^{m}(t)=1$ for all $m \in M(X)$ define the subgroup $H(X)$ in T_{r} which consists of elements of the form

$$
\left(\epsilon_{1}, \ldots, \epsilon_{l}, t_{l+1}, \ldots, t_{r}\right)
$$

where $\epsilon_{1}, \ldots, \epsilon_{l}$ are the roots of unity of degrees b_{1}, \ldots, b_{l}, respectively, and $t_{l+1}, \ldots, t_{r} \in$ \mathbb{K}^{*}. Then the maximal torus in $H(X)$ is the torus

$$
T_{r-l}=\left\{\left(1, \ldots, 1, t_{l+1}, \ldots, t_{r}\right) \in T_{r} \mid t_{i} \in \mathbb{K}^{*}\right\}
$$

The group $\operatorname{Aut}(X) / H(X)$ is a discrete group. So the maximal torus of $\operatorname{Aut}(X)$ coincides with the maximal torus of the quasitorus $H(X)$, which is T_{r-l}.

All minimal polynomials in $I(X)$ are semi-invariant with respect to $H(X)$. This means that minimal polynomials in $I(X)$ are homogeneous with respect to each variable t_{l+1}, \ldots, t_{r}. Since functions t_{i} are invertible, one can choose a set of minimal generators of $I(X)$ which do not depend on t_{l+1}, \ldots, t_{r}. It implies that $X \simeq Y \times T_{r-l}$, where Y is a subvariety of $T_{l}=\left\{\left(t_{1}, \ldots, t_{l}, 1, \ldots, 1\right) \in T_{r} \mid t_{i} \in \mathbb{K}^{*}\right\}$.

The variety Y is also a toral variety given by the ideal $I(X) \cap \mathbb{K}\left[t_{1}^{ \pm 1}, \ldots t_{l}^{ \pm 1}\right]$. Since the unique maximal torus in $\operatorname{Aut}(X)$ is T_{r-l}, the maximal torus in $\operatorname{Aut}(Y)$ is trivial.

Let X be a toral variety and suppose that $X \simeq T_{s} \times Y$, where Y is a toral variety with a discrete automorphism group and T_{s} is the torus $\left(\mathbb{K}^{*}\right)^{s}$. One can see that Aut (X) contains the following subgroups.

There is a subgroup which is isomorphic to $\operatorname{Aut}(Y)$. This subgroup acts naturally on Y and trivially on T_{s}. The subgroup $\mathrm{GL}_{\mathrm{s}}(\mathbb{Z})$ acts naturally on T_{s} and trivially on
Y. Moreover, there is a subgroup which is isomorphic to $\left(\mathbb{K}[Y]^{*}\right)^{s} \simeq\left(E(Y) \times \mathbb{K}^{*}\right)^{s}$. This subgroup acts in the following way. If $f_{1}, \ldots, f_{s} \in \mathbb{K}[Y]^{*}$, then we can define an automorphism of $T_{s} \times Y$ as follows:

$$
\left(t_{1}, \ldots, t_{s}, y\right) \rightarrow\left(f_{1}(y) t_{1}, \ldots, f_{s}(y) t_{s}, y\right)
$$

The following theorem was proposed to the authors by Gaifullin.
Theorem 2. Let $X \simeq T_{s} \times Y$ be a toral variety, where Y is a toral variety with a discrete automorphism group. Then

$$
\operatorname{Aut}(X) \simeq \operatorname{Aut}(Y) \ltimes\left(\operatorname{GL}_{s}(\mathbb{Z}) \ltimes\left(E(Y) \times \mathbb{K}^{*}\right)^{s}\right)
$$

Proof. There is a natural action of T_{s} on X. We see that $\mathbb{K}[Y]$ is the algebra of invariants of this action. Since T_{s} is a unique maximal torus in $\operatorname{Aut}(X)$, each automorphism of $T_{s} \times Y$ preserves $\mathbb{K}[Y]$. So we obtain a homomorphism

$$
\Phi: \operatorname{Aut}(X) \rightarrow \operatorname{Aut}(Y)
$$

Let B be the kernel of Φ. The group $\operatorname{Aut}(Y)$ is naturally embedded into $\operatorname{Aut}\left(T_{s} \times Y\right)$ and it intersects trivially with B. At the same time, $\operatorname{Aut}(Y)$ maps isomorphically to the image of Φ. It implies that

$$
\operatorname{Aut}\left(T_{s} \times Y\right)=\operatorname{Aut}(Y) \ltimes B
$$

We denote by t_{1}, \ldots, t_{s} coordinate functions on T_{s}. Then

$$
\mathbb{K}\left[T_{s} \times Y\right] \simeq \mathbb{K}\left[T_{s}\right] \otimes \mathbb{K}[Y]=\mathbb{K}[Y]\left[t_{1}^{ \pm 1}, \ldots, t_{s}^{ \pm 1}\right]
$$

Let $\phi \in B$. The algebra $\mathbb{K}[Y]$ is invariant with respect to ϕ^{*}. So for all $t \in T_{s}$ and $y \in Y$ we have

$$
\phi((t, y))=\left(t^{\prime}, y\right)
$$

for some $t^{\prime} \in T_{s}$. Therefore, for each $y \in Y$ the automorphism ϕ defines an automorphism $\phi_{y}: T_{s} \rightarrow T_{s}$. Hence, for each $y \in Y$ we have

$$
\phi^{*}\left(t_{i}\right)(t, y)=t_{i}(\phi(t, y))=t_{i}\left(\left(\phi_{y}(t), y\right)\right)=f_{i}(y) t_{1}^{a_{i 1}(y)} \ldots t_{s}^{a_{i s}(y)}
$$

for some non-zero constant $f_{i}(y)$ and a matrix $A(y)=\left(a_{i j}(y)\right) \in \mathrm{GL}_{s}(\mathbb{Z})$. For reasons of continuity, the matrix $A(y)$ is the same for all $y \in Y$ and $f_{i}: Y \rightarrow \mathbb{K}$ are regular functions on Y. Since $f_{i}(y) \neq 0$ for all $y \in Y$, the functions f_{i} are invertible. So we have

$$
\phi^{*}\left(t_{i}\right)=f_{i} t_{1}^{a_{i 1}} \ldots t_{s}^{a_{i s}}
$$

for some $f_{i} \in \mathbb{K}[Y]^{*}$ and $A \in \mathrm{GL}_{s}(\mathbb{Z})$.
Then we have a homomorphism $\bar{\Phi}: B \rightarrow \mathrm{GL}_{s}(\mathbb{Z}), \phi \rightarrow A$. Again, the group $\mathrm{GL}_{s}(\mathbb{Z})$ is naturally embedded into B in the following way. The matrix $\left(d_{i j}\right) \in$ $\mathrm{GL}_{s}(\mathbb{Z})$ corresponds to an automorphism

$$
\left(t_{1}, \ldots, t_{s}, y\right) \rightarrow\left(t_{1}^{d_{11}} \ldots t_{s}^{d_{1 s}}, \ldots, t_{1}^{d_{s 1}} \ldots t_{s}^{d_{s s}}, y\right)
$$

The group $\mathrm{GL}_{s}(\mathbb{Z})$ maps isomorphically to $\mathrm{GL}_{s}(\mathbb{Z})$ under $\bar{\Phi}$. So

$$
B=\mathrm{GL}_{s}(\mathbb{Z}) \ltimes \operatorname{Ker} \bar{\Phi}
$$

The kernel of $\bar{\Phi}$ consists of automorphisms $\varphi \in \operatorname{Aut}\left(T_{s} \times Y\right)$ which have the following form:

$$
\varphi\left(t_{1}, \ldots, t_{s}, y\right)=\left(f_{1}(y) t_{1}, \ldots, f_{s}(y) t_{s}, y\right)
$$

for some $f_{1}, \ldots, f_{s} \in \mathbb{K}[Y]^{*}$. We see that for all $f_{1}, \ldots, f_{s} \in \mathbb{K}[Y]^{*}$ this formula defines an automorphism of $T_{s} \times Y$, so Ker $\bar{\Phi} \simeq\left(\mathbb{K}[Y]^{*}\right)^{s} \simeq\left(E(Y) \times \mathbb{K}^{*}\right)^{s}$.

4. The case $\mathrm{rk} E(X)=\operatorname{dim} X$

Let X be a toral variety. Then rk $E(X) \geq \operatorname{dim} X$. Indeed, suppose that f_{1}, \ldots, f_{r} are invertible functions and $\left[f_{1}\right], \ldots,\left[f_{r}\right]$ is a basis in $E(X)$. Then f_{1}, \ldots, f_{r} generate $\mathbb{K}[X]$. So $r \geq \operatorname{tr}$.deg $\mathbb{K}[X]=\operatorname{dim} X$.

The following result shows that if $\operatorname{rk} E(X)=\operatorname{dim} X$, then X is a torus. Moreover, this is the only case when $\operatorname{Aut}(X)$ acts with an open orbit on X.

Proposition 3. Let X be a toral variety. Then the following conditions are equivalent:

1. X is a torus;
2. $\operatorname{rk} E(X)=\operatorname{dim} X$;
3. $\operatorname{Aut}(X)$ acts on X with an open orbit.

Proof. Implication 1) $\Rightarrow 2$) is trivial.
Suppose that rk $E(X)=\operatorname{dim} X$. Then one can choose invertible functions f_{1}, \ldots, f_{n} such that $\left[f_{1}\right], \ldots,\left[f_{n}\right]$ is a basis of $E(X)$. Then $\mathbb{K}[X]$ is generated by

$$
f_{1}, f_{1}^{-1}, \ldots, f_{n}, f_{n}^{-1}
$$

But f_{1}, \ldots, f_{n} are algebraically independent, otherwise $\operatorname{dim} X<\operatorname{rk} E(X)$. So $\mathbb{K}[X]$ is isomorphic to the algebra of Laurent polynomials. So we obtain implication $2) \Rightarrow 1)$.

Implication 1$) \Rightarrow 3)$ is trivial. Suppose X is a toral variety and $\operatorname{Aut}(X)$ acts on X with an open orbit U.

Let T be the maximal torus in $\operatorname{Aut}(X)$. Since the quotient group $\operatorname{Aut}(X) / T$ is a discrete group, the set U is a countable union of orbits of T. Since \mathbb{K} is uncountable, it implies that one of the orbits of T is open in X. Then $\operatorname{dim} X=\operatorname{dim} T$. By Theorem 1, we have $X \simeq T \times Y$ for some toral variety Y. But since $\operatorname{dim} T=\operatorname{dim} T \times Y$, we obtain that Y is a point and $X \simeq T$.

5. The case rk $E(X)=\operatorname{dim} X+1$

By Theorem 1, any toral variety over an algebraically closed uncountable field of characteristic zero is a direct product $T \times Y$, where T is a torus and Y is a toral variety with a discrete automorphism group. By Theorem 2, one can find $\operatorname{Aut}(X)$ knowing $\operatorname{Aut}(Y)$. In this section, we provide a way to find $\operatorname{Aut}(Y)$ when $\operatorname{rk} E(Y)=\operatorname{dim} Y+1$.

Let Y be a toral variety with a trivial maximal torus in $\operatorname{Aut}(Y)$. Let r be the rank of $E(Y)$. We suppose that $r=\operatorname{dim} Y+1$.

There is a canonical embedding of Y into the torus T_{r} as a hypersurface. The variety T_{r} is factorial so there is an irreducible polynomial $h \in \mathbb{K}\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$ such that $I(Y)=(h)$. The polynomial h has a form

$$
h=\sum_{m \in \operatorname{Supp} h} \alpha_{m} \chi^{m}
$$

Let M be the lattice of characters of T_{r} and $M(Y)$ a sublattice in M which corresponds to Y; see Definition 4. Since the maximal torus in $\operatorname{Aut}(Y)$ is trivial, the rank of the lattice $M(Y)$ is equal to r. It means that the elements $m_{a}-m_{b}$ with $m_{a}, m_{b} \in \operatorname{Supp} h$ generate a sublattice of full rank in M.

We denote by $\operatorname{GAff}(M, h)$ the group of all invertible integer affine transformations φ of M, which preserve Supp h and for any linear combination

$$
\sum_{m \in \text { Supp }} a_{m} m=0,
$$

where $a_{m} \in \mathbb{Z}$ and $\sum_{m} a_{m}=0$, the affine transformation φ satisfies

$$
\begin{equation*}
\prod_{m \in \operatorname{Supp}}\left(\alpha_{m}\right)^{a_{m}}=\prod_{m \in \operatorname{Supp} h}\left(\alpha_{\varphi(m)}\right)^{a_{m}} \tag{2}
\end{equation*}
$$

Theorem 3. Let Y be a toral variety with a trivial maximal torus in $\operatorname{Aut}(Y)$. Suppose that $\mathrm{rk} E(Y)=\operatorname{dim} Y+1$. Then

$$
\operatorname{Aut}(Y) / H(Y) \simeq \operatorname{GAff}(M, h)
$$

Proof. Let ψ be an automorphism of Y. By Proposition 1, the automorphism ψ can be extended to an automorphism of T_{r}. We denote by ψ^{*} the respective automorphism of $\mathbb{K}\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$. Then ψ^{*} has the form

$$
\psi^{*}\left(t_{i}\right)=\lambda_{i} t_{1}^{a_{i 1}} \ldots t_{r}^{a_{i r}}
$$

where $\lambda_{i} \in \mathbb{K}^{*}$ and $\left(a_{i j}\right) \in \mathrm{GL}_{r}(\mathbb{Z})$. We denote by λ the element $\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in T_{r}$ and by $\bar{\psi}$ the automorphism of M that corresponds to the matrix $\left(a_{i j}\right)$. Then

$$
\psi^{*}\left(\chi^{m}\right)=\chi^{m}(\lambda) \chi^{\bar{\psi}(m)}
$$

for all $m \in M$.
The polynomial $\psi^{*}(h)$ also generates $I(Y)$. So it differs from h by an invertible element of $\mathbb{K}\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$. Then

$$
\psi^{*}(h)=\alpha \chi^{v} h
$$

for some $\alpha \in \mathbb{K}^{*}$ and $v \in M$. Therefore, we have the equation

$$
\begin{equation*}
\psi^{*}(h)=\sum_{m \in \operatorname{Supp} h} \alpha_{m} \chi^{m}(\lambda) \chi^{\bar{\psi}(m)}=\alpha \sum_{m \in \operatorname{Supp} h} \alpha_{m} \chi^{m+v} \tag{3}
\end{equation*}
$$

It implies that $\bar{\psi}(m)-v$ belonge to Supp h for all $m \in \operatorname{Supp} h$. We define the $\operatorname{map} \varphi: M \rightarrow M$ by the following formula:

$$
\varphi(m)=\bar{\psi}(m)-v
$$

Then φ is an affine transformation of M which preserves Supp h.
We will prove that φ belonge to $\operatorname{GAff}(M, h)$. So we consider a linear combination as in (2):

$$
\sum_{m \in \text { Supp }} a_{m} m=0
$$

where $a_{m} \in \mathbb{Z}$ and $\sum_{m} a_{m}=0$.
Equation (3) can be written as

$$
\sum_{m \in \operatorname{Supp} h} \alpha_{m} \chi^{m}(\lambda) \chi^{\varphi(m)}=\alpha \sum_{m \in \operatorname{Supp} h} \alpha_{m} \chi^{m}=\alpha \sum_{m \in \operatorname{Supp} h} \alpha_{\varphi(m)} \chi^{\varphi(m)}
$$

and it implies

$$
\frac{\alpha_{m_{1}} \chi^{m_{1}}(\lambda)}{\alpha_{m_{2}} \chi^{m_{2}}(\lambda)}=\frac{\alpha_{m_{1}}}{\alpha_{m_{2}}} \chi^{m_{1}-m_{2}}(\lambda)=\frac{\alpha_{\varphi\left(m_{1}\right)}}{\alpha_{\varphi\left(m_{2}\right)}}
$$

for all $m_{1}, m_{2} \in \operatorname{Supp} h$.
We fix some $m_{0} \in \operatorname{Supp} h$. Then we have

$$
\begin{aligned}
\prod_{m \in \operatorname{Supp} h}\left(\alpha_{\varphi(m)}\right)^{a_{m}} & =\prod_{m \in \operatorname{Supp} h}\left(\frac{\alpha_{\varphi(m)}}{\alpha_{\varphi\left(m_{0}\right)}}\right)^{a_{m}}=\prod_{m \in \operatorname{Supp} h}\left(\frac{\alpha_{m}}{\alpha_{m_{0}}} \chi^{m-m_{0}}(\lambda)\right)^{a_{m}} \\
& =\prod_{m \in \operatorname{Supp} h}\left(\frac{\alpha_{m}}{\alpha_{m_{0}}}\right)^{a_{m}}\left(\chi^{\sum_{m} a_{m}\left(m-m_{0}\right)}(\lambda)\right) \\
& =\prod_{m \in \operatorname{Supp} h}\left(\frac{\alpha_{m}}{\alpha_{m_{0}}}\right)^{a_{m}}=\prod_{m \in \operatorname{Supp} h}\left(\alpha_{m}\right)^{a_{m}}
\end{aligned}
$$

So $\varphi \in \operatorname{GAff}(M, h)$. Then we obtain a homomorphism

$$
\eta: \operatorname{Aut}(Y) \rightarrow \operatorname{GAff}(M, h), \psi \rightarrow \varphi
$$

Moreover, we see that the kernel of η is $H(Y)$. Now we will show that η is surjective.
Let $\varphi \in \operatorname{GAff}(M, h)$ and f_{1}, \ldots, f_{r} be a basis in $M(Y)$. Again, we fix some $m_{0} \in \operatorname{Supp} h$. Then there are $a_{m, j} \in \mathbb{Z}$ for $m \in \operatorname{Supp} h$ such that

$$
f_{j}=\sum_{m \in \text { Supp } h} a_{m, j}\left(m-m_{0}\right)
$$

There is a $\lambda \in T_{r}$ such that

$$
\chi^{f_{j}}(\lambda)=\prod_{m \in \operatorname{Supp}}\left(\frac{\alpha_{m}}{\alpha_{m_{0}}}\right)^{-a_{m, j}} \prod_{m \in \operatorname{Supp} h}\left(\frac{\alpha_{\varphi(m)}}{\alpha_{\varphi\left(m_{0}\right)}}\right)^{a_{m, j}}
$$

for all $j=1, \ldots, r$.
Let $d \varphi$ be the linear part of φ, i.e., $d \varphi(m)=\varphi(m)-\varphi(0)$. We define an automorphism ψ^{*} of $\mathbb{K}\left[t_{1}^{ \pm 1} \ldots t_{r}^{ \pm 1}\right]$ by the following rule:

$$
\psi^{*}\left(\chi^{m}\right)=\chi^{m}(\lambda) \chi^{d \varphi(m)}
$$

Let us check if ψ^{*} preserves $I(Y)$. We have

$$
\psi^{*}(h)=\sum_{m \in \text { Supp } h} \alpha_{m} \chi^{m}(\lambda) \chi^{d \varphi(m)}
$$

We denote $\varphi(0)$ by v. Then

$$
\varphi(m)=d \varphi(m)+v
$$

and

$$
\chi^{v} \psi^{*}(h)=\sum_{m \in \operatorname{Supp} h} \alpha_{m} \chi^{m}(\lambda) \chi^{\varphi(m)}
$$

We see that $\operatorname{Supp} \chi^{v} \psi^{*}(h)=\operatorname{Supp} h$. We will show that there is an $\alpha \in \mathbb{K}$ such that

$$
\chi^{v} \psi^{*}(h)=\alpha h
$$

For any $b, c \in \operatorname{Supp} h$ there are numbers $d_{j} \in \mathbb{Z}$ such that

$$
b-c=\sum_{j=1}^{r} d_{j} f_{j}
$$

So

$$
\begin{align*}
\frac{\alpha_{b} \chi^{b}(\lambda)}{\alpha_{c} \chi^{c}(\lambda)} & =\frac{\alpha_{c}}{\alpha_{b}} \chi^{b-c}(\lambda)=\frac{\alpha_{b}}{\alpha_{c}} \chi^{\sum_{j} d_{j} f_{j}}(\lambda) \\
& =\frac{\alpha_{b}}{\alpha_{c}}\left(\prod_{j=1}^{r} \chi^{f_{j}}(\lambda)\right)^{d_{j}}=\frac{\alpha_{b}}{\alpha_{c}} \prod_{m, j=1}\left(\frac{\alpha_{m}}{\alpha_{m_{0}}}\right)^{-d_{j} a_{m, j}} \prod_{m, j}\left(\frac{\alpha_{\varphi(m)}}{\alpha_{\varphi\left(m_{0}\right)}}\right)^{d_{j} a_{m, j}} \tag{4}
\end{align*}
$$

We have a combination
$0=b-c-\sum_{j} d_{j} f_{j}=b-c-\sum_{m, j} d_{j} a_{m, j}\left(m-m_{0}\right)=b-c-\sum_{m, j} d_{j} a_{m, j} m+\left(\sum_{m, j} d_{j} a_{m, j}\right) m_{0}$.
The sum of all coefficients in the last sum is equal to 0 . Since $\varphi \in \operatorname{Gaff}(M, h)$ we obtain

$$
\begin{equation*}
\frac{\alpha_{b}}{\alpha_{c}} \prod_{m, j}\left(\frac{\alpha_{m}}{\alpha_{m_{0}}}\right)^{-d_{j} a_{m, j}}=\frac{\alpha_{\varphi(b)}}{\alpha_{\varphi(c)}} \prod_{m, j}\left(\frac{\alpha_{\varphi(m)}}{\alpha_{\varphi\left(m_{0}\right)}}\right)^{-d_{j} a_{m, j}} \tag{5}
\end{equation*}
$$

It follows from equations 4 and 5 that

$$
\frac{\alpha_{b} \chi^{b}(\lambda)}{\alpha_{c} \chi^{c}(\lambda)}=\frac{\alpha_{\varphi(b)}}{\alpha_{\varphi(c)}}
$$

So the coefficients of the polynomials $\chi^{v} \psi^{*}(h)$ and h are proportional. Then there is an $\alpha \in \mathbb{K}$ such that $\chi^{v} \psi^{*}(h)=\alpha h$. Hence $\psi^{*}(h)=\alpha \chi^{-v} h \in I(Y)$. Therefore, ψ^{*} preserves $I(Y)$ and defines an automorphism ψ. It is a direct check that $\eta(\psi)=\varphi$. So η is surjective.

Corollary 3. Let Y be a toral variety with a trivial maximal torus in $\operatorname{Aut}(Y)$. Suppose that rk $E(Y)=\operatorname{dim} Y+1$. Then $\operatorname{Aut}(Y)$ is a finite group.

Proof. Indeed, the group $H(Y)$ is finite in this case. As mentioned before, the sublattice $M(Y)$ is of full rank and generated by the finite set Supp $h+(-\operatorname{Supp} h)$. Then any affine transformation of M is uniquely defined by the image of the set Supp $h+(-\operatorname{Supp} h)$. Therefore, the group $\operatorname{GAff}(M, h)$ is finite. Then the group $\operatorname{Aut}(Y)$ is also finite.

It is natural to formulate the following question.
Conjecture 2. Let Y be a toral variety with a trivial maximal torus in $\operatorname{Aut}(Y)$. Is Aut (Y) a finite group?

Note that this is not true for a general rigid variety. One can find a counterexample in [7].

At the end, we give three examples illustrating Theorem 3.
Example 3. Let Y be the affine line \mathbb{A}^{1} without two points. Then Y is isomorphic to an open set of the torus \mathbb{K}^{*} :

$$
Y=\left\{t \in \mathbb{K}^{*} \mid t \neq 1\right\} \subseteq \mathbb{K}^{*}
$$

Hence, Y can be given in $\left(\mathbb{K}^{*}\right)^{2}$ as the set of solutions of the equation

$$
h=t_{1}\left(t_{2}-1\right)-1=0, \quad\left(t_{1}, t_{2}\right) \in\left(\mathbb{K}^{*}\right)^{2}
$$

So Y is a toral variety. We have

$$
\mathbb{K}[Y]=\mathbb{K}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}\right] /\left(t_{1}\left(t_{2}-1\right)-1\right) \simeq \mathbb{K}\left[t_{2}^{ \pm 1}\right]_{t_{2}-1}
$$

where $\mathbb{K}\left[t_{2}^{ \pm 1}\right]_{t_{2}-1}$ denotes the localization of $\mathbb{K}\left[t_{2}^{ \pm 1}\right]$ at $t_{2}-1$. Hence, all invertible elements of $\mathbb{K}[Y]$ have the form $\lambda\left(t_{2}-1\right)^{a} t_{2}^{b}=\lambda t_{1}^{a} t_{2}^{b}$, where $\lambda \in \mathbb{K}^{*}$. Therefore, $\left[t_{1}\right],\left[t_{2}\right]$ is a basis of $E(Y)$. So the rank of $E(Y)$ is equal to $\operatorname{dim} Y+1$ and the embedding $Y \hookrightarrow\left(\mathbb{K}^{*}\right)^{2}$ as a set of zeros

$$
h=t_{1}\left(t_{2}-1\right)-1=t_{1} t_{2}-t_{1}-1=0,\left(t_{1}, t_{2}\right) \in\left(\mathbb{K}^{*}\right)^{2}
$$

is a canonical embedding. We can apply Theorem 3 to find $\operatorname{Aut}(Y)$.

Figure 1: Supp $\left(t_{1} t_{2}-t_{1}-1\right)$
Let $M \simeq \mathbb{Z}^{2}$ be the lattice of characters of $\left(\mathbb{K}^{*}\right)^{2}$. The set Supp h consists of points $m_{0}=(0,0), m_{1}=(1,0), m_{2}=(1,1)$; see Figure 1 .

We see that the lattice $M(Y)$ contains elements $(1,0),(0,1)$, so $M(Y)=M$. Therefore, $H(Y)$ is a trivial group.

A linear combination

$$
a_{0} m_{0}+a_{1} m_{1}+a_{2} m_{2}=\left(a_{1}+a_{2}, a_{2}\right)
$$

with $a_{0}+a_{1}+a_{2}=0$ is equal to zero if and only if $a_{0}=a_{1}=a_{2}=0$. But then equations (2) are trivial. By affine transformations of M we can permute all points in Supp h. Therefore,

$$
\operatorname{Aut}(Y) \simeq \operatorname{GAff}(M, h) \simeq S_{3}
$$

The answer looks natural since the affine line without two points is the projective line without three points.

In this case, $\operatorname{Aut}(Y)$ is generated by the automorphisms ψ_{1}, ψ_{2}, where

$$
\psi_{1}\left(\left(t_{1}, t_{2}\right)\right)=\left(-t_{1} t_{2}, t_{2}^{-1}\right), \psi\left(\left(t_{1}, t_{2}\right)\right)=\left(-t_{2}, t_{1}^{-1} t_{2}^{-1}\right)
$$

Example 4. Now let Y be the set of solutions of the equation

$$
Y=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in\left(\mathbb{K}^{*}\right)^{3} \mid h=t_{3}\left(t_{1}^{2}+t_{2}^{2}-1\right)-1=0\right\} \subseteq\left(\mathbb{K}^{*}\right)^{3}
$$

Then Y is a toral variety and

$$
\mathbb{K}[Y]=\mathbb{K}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, t_{3}^{ \pm 1} /\left(t_{3}\left(t_{1}^{2}+t_{2}^{2}-1\right)-1\right)=\mathbb{K}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}\right]_{t_{1}^{2}+t_{2}^{2}-1}\right.
$$

Therefore, $\left[t_{1}\right],\left[t_{2}\right],\left[t_{3}\right]$ is a basis of $E(Y)$ and the embedding of Y in $\left(\mathbb{K}^{*}\right)^{3}$ is a canonical embedding.

We have $h=t_{3}\left(t_{1}^{2}+t_{2}^{2}-1\right)-1=t_{1}^{2} t_{3}+t_{2}^{2} t_{3}-t_{3}-1$ and

$$
\text { Supp } h=\left\{m_{0}=(0,0,0), m_{1}=(0,0,1), m_{2}=(2,0,1), m_{3}=(0,2,1)\right\} \subseteq M \simeq \mathbb{Z}^{3}
$$

The vectors $(2,0,0),(0,2,0)$ and $(0,0,1)$ form a basis of $M(Y)$. Then the group $H(Y) \subseteq\left(\mathbb{K}^{*}\right)^{3}$ consists of elements

$$
H(Y)=\left\{(\pm 1, \pm 1,1) \in\left(\mathbb{K}^{*}\right)^{3}\right\} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

The group of invertible affine transformations of M preserving Supph is isomorphic to S_{3} and permutes points m_{1}, m_{2}, m_{3} preserving m_{0}. The sum

$$
a_{0} m_{0}+a_{1} m_{1}+a_{2} m_{2}+a_{3} m_{3}=\left(2 a_{2}, 2 a_{3}, a_{1}+a_{2}+a_{3}\right)
$$

with $a_{0}+a_{1}+a_{2}+a_{3}=0$ is equal to zero if and only if $a_{0}=a_{1}=a_{2}=a_{3}=0$. So equations (2) are trivial and $\operatorname{GAff}(M, h) \simeq \operatorname{Aut}(Y) / H(Y) \simeq S_{3}$.

The group $\operatorname{Aut}(Y)$ is generated by $H(Y)$ and the automorphisms ψ_{1} and ψ_{2} which are defined by the formulas:

$$
\psi_{1}\left(\left(t_{1}, t_{2}, t_{3}\right)\right)=\left(t_{2}, t_{1}, t_{3}\right), \psi_{2}\left(\left(t_{1}, t_{2}, t_{3}\right)\right)=\left(-t_{2}^{-1}, i t_{1} t_{2}^{-1},-t_{2}^{2} t_{3}\right)
$$

One can check that ψ_{1} and ψ_{2} generate the subgroup in $\operatorname{Aut}(Y)$ which is isomorphic to S_{3} and trivially intersects with $H(Y)$. So

$$
\operatorname{Aut}(Y) \simeq H(Y) \rtimes S_{3}
$$

The automorphism ψ_{2} does not commute with the element $(1,-1,1) \in H(Y)$. Therefore, $\operatorname{Aut}(Y)$ is not a direct product of $H(Y)$ and S_{3}.

Remark 2. It is natural to ask if it is true that, under the conditions of Theorem 3, we have $\operatorname{Aut}(Y) \simeq H(Y) \rtimes \operatorname{Gaff}(M, h)$? The authors do not know the answer to this question.

Acknowledgement

The authors are grateful to Segrey Gaifullin for useful discussions. We would also like to thank Ivan Arzhantsev for his helpful remarks and comments.

References

[1] I. Arzhantsev, S. Gaifullin, The automorphism group of a rigid affine variety, Math. Nachr. 290(2017), 662-671.
[2] D. Bernstein, The number of roots of a system of equations, Funct. Anal. Appl. 9(1975), 183-185.
[3] J. Huh, The maximum likelihood degree of a very affine variety, Compos. Math. 149(2013), 1245-1266.
[4] S. Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of k^{n} to automorphisms of k^{n}, Proc. Amer. Math. Soc. 113(1991), 325-334.
[5] S. Kaliman, D. Udumyan, On automorphisms of flexible varieties, Adv. Math. 396(2022), Article no. 108112.
[6] A. Koushnirenko, Newton polytopes and the Bezout theorem, Funct. Anal. Appl. 10(1976), 82-83.
[7] A. Perepechko, Automorphisms of surfaces of Markov type, Math. Notes 110(2021), 732-737.
[8] A. Perepechko, M. Zaidenberg, Automorphism group of affine rigid surfaces: the identity component, arXiv:2208.09738.
[9] V. Popov, On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties, CRM Proc. Lect. Notes 54(2011), 289-311.
[10] M. Rosenlicht, Some rationality questions on algebraic groups, Ann. Mat. Pura Appl. 43(1957), 25-50.
[11] J. Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129(2007), 1087-1104.

