On the automorphism group of a toral variety^{*}

Anton Shafarevich^{1,†} and Anton $\operatorname{Trushin}^1$

¹ Faculty of Computer Science, HSE University, Pokrovsky Boulevard 11, Moscow, 109028 Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Received December 6, 2022; accepted July 17, 2023

Abstract. Let \mathbb{K} be an uncountable algebraically closed field of characteristic zero. An affine algebraic variety X over \mathbb{K} is toral if it is isomorphic to a closed subvariety of a torus $(\mathbb{K}^*)^d$. We study the group $\operatorname{Aut}(X)$ of regular automorphisms of a toral variety X. We prove that if T is a maximal torus in $\operatorname{Aut}(X)$, then X is a direct product $Y \times T$, where Y is a toral variety with a trivial maximal torus in the automorphism group. We show that knowing $\operatorname{Aut}(Y)$, one can compute $\operatorname{Aut}(X)$. In the case when the rank of the group $\mathbb{K}[Y]^*/\mathbb{K}^*$ is dim Y + 1, the group $\operatorname{Aut}(Y)$ is described explicitly.

AMS subject classifications: 14M25, 14L30

Keywords: Affine variety, invertible function, algebraic torus, automorphism, rigid variety

1. Introduction

Let \mathbb{K} be an algebraically closed field of characteristic zero. The set of solutions of a system of polynomial equations in an affine space has been studied for a very long time. But some interesting properties may appear when we consider the set of solutions inside a torus $(\mathbb{K}^*)^d$. In other words, we consider only solutions with nonzero coordinates. One of the examples of this approach is the Bernstein-Kushnirenko Theorem; see [2, 6].

In [9], Popov proposed the following definition.

Definition 1. An irreducible affine algebraic variety X is called toral if it is isomorphic to a closed subvariety of a torus $(\mathbb{K}^*)^d$.

Some authors also use the term a "very affine variety"; see [11, 3]. It can be seen that X is toral if and only if the algebra of regular functions on X is generated by invertible functions; see [9, Lemma 1.14]. One of the reasons why toral varieties are interesting is that they are rigid varieties; see [9, Lemma 1.14].

Definition 2. An affine algebraic variety X is called rigid if there is no non-trivial action of the additive group $(\mathbb{K}, +)$ on X.

https://www.mathos.unios.hr/mc

©2023 School of Applied Mathematics and Computer Science, University of Osijek

 $^{^{*}\}mathrm{The}$ work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS.

[†]Corresponding author. *Email addresses:* shafarevich.a@gmail.com (A. Shafarevich), trushin.ant.nic@yandex.ru (A. Trushin)

Despite the fact that the automorphism group of an affine algebraic variety has a complicated structure, sometimes it is possible to describe it for rigid varieties. It was proven in [1] that the group of regular automorphisms $\operatorname{Aut}(X)$ of a rigid variety X contains a unique maximal torus T. One can find examples of computation of $\operatorname{Aut}(X)$ for rigid varieties in [1, 7, 8].

In this paper, we study the automorphism group $\operatorname{Aut}(X)$ of a toral variety X. We denote by $\mathbb{K}[X]$ the algebra of regular functions on X and by $\mathbb{K}[X]^*$ the multiplicative group of invertible regular functions on X. Let E(X) be the quotient group $\mathbb{K}[X]^*/\mathbb{K}^*$. By [10], the group E(X) is a free finitely generated abelian group. For a toral variety X the rank of E(X) is not less than dim X.

Any automorphism of X induces an automorphism of E(X). So we obtain a homomorphism from $\operatorname{Aut}(X)$ to $\operatorname{Aut}(E(X))$. We denote by H(X) the kernel of this homomorphism. Note that H(X) consists of automorphisms that multiply invertible functions by constants.

Suppose that X is a closed subvariety of a torus $T_d = (\mathbb{K}^*)^d$. In Proposition 1, we show that the group H(X) is naturally isomorphic to a subgroup in T_d which consists of elements that preserve X under the action by multiplication. In Proposition 2, we propose a way to compute the subgroup H(X).

In Theorem 1, we show that if T is a maximal torus in $\operatorname{Aut}(X)$, then X is isomorphic to a direct product $T \times Y$, where Y is a toral variety with a discrete automorphism group. Here and below we assume that the field \mathbb{K} is uncountable. Theorem 3 gives a way to find $\operatorname{Aut}(X)$ knowing $\operatorname{Aut}(Y)$. If the rank of E(Y) is $\dim Y + 1$, it is possible to describe $\operatorname{Aut}(Y)$ (Theorem 3).

We also consider the case when the rank of E(X) is equal to dim X. By Proposition 3 in this case X is a torus. Moreover, it is the only case when Aut(X) acts on X with an open orbit.

We use the following notation. If φ is a regular automorphism of an affine variety X, then by φ^* we mean an automorphism of $\mathbb{K}[X]$ dual to φ . If A is a group and B is a normal subgroup in A, then by [a] we denote the image of an element $a \in A$ in the quotient group A/B. If X is a closed subvariety of an affine variety Z, then by I(X) we mean the ideal of regular functions on Z which are equal to zero on X.

2. General facts about toral varieties

Here we prove some initial properties of toral varieties and propose a way to compute the group H(X) for a toral variety X

Let T_r be a torus of dimension r. We recall that the group $\operatorname{Aut}(T_r)$ is isomorphic to $T_r \rtimes \operatorname{GL}_r(\mathbb{Z})$; see [1, Example 2.3]. Here the left factor T_r acts on itself by multiplications and a matrix $(a_{ij}) \in \operatorname{GL}_r(\mathbb{Z})$ defines an automorphism of T_r which is given by the formula

$$t_i \to t_1^{a_{i1}} \dots t_r^{a_{ir}},$$

where t_1, \ldots, t_r are coordinate functions on T_r .

Now let X be a toral variety and r is the rank of E(X). One can choose invertible functions $f_1, \ldots, f_r \in \mathbb{K}[X]^*$ such that $[f_1], \ldots, [f_r]$ form a basis of the group E(X). Then f_1, \ldots, f_r generate the algebra $\mathbb{K}[X]$ and define a closed embedding of $\rho: X \hookrightarrow$ T_r . Note that if we choose another $g_1, \ldots, g_r \in \mathbb{K}[X]^*$ such that $[g_1], \ldots, [g_r]$ form a basis of E(X), then the respective embedding $\rho_g : X \hookrightarrow T_r$ differs from ρ by an automorphism of T_r . Indeed, we have

$$g_i = \lambda_i f_1^{a_{i1}} \dots f_r^{a_{ir}}, \ i = 1, \dots, r$$

for some $\lambda_i \in \mathbb{K}^*$ and $(a_{ij}) \in \operatorname{GL}_r(\mathbb{Z})$. If we consider an automorphism $\tau : T_r \to T_r$ which is given by the formulas

$$\tau(t_i) = \lambda_i t_1^{a_{i1}} \dots t_r^{a_{ir}},$$

then $\rho_g = \tau \circ \rho$.

Definition 3. We will call the embedding ρ described above canonical.

Note that if $\rho: X \hookrightarrow T_r$ is a canonical embedding, then $\mathbb{K}[X]^* \simeq \mathbb{K}[T_r]^*$ and $E(X) \simeq E(T_r)$. We denote by $\operatorname{Aut}_X(T_r)$ the subgroup of $\operatorname{Aut}(T_r)$ which consists of automorphisms of T_r that preserve X. There is a natural homomorphism $\operatorname{Aut}_X(T_r) \to \operatorname{Aut}(X)$ which sends an automorphism $\varphi \in \operatorname{Aut}_X(T_r)$ to its restriction $\varphi|_X$.

Proposition 1. Let X be a toral variety and $\rho : X \hookrightarrow T_r$ a canonical embedding. Then

1. the homomorphism

$$\operatorname{Aut}_X(T_r) \to \operatorname{Aut}(X), \ \varphi \to \varphi|_X$$

is an isomorphism;

2. the subgroup H(X) is the image of the subgroup $\operatorname{Aut}_X(T_r) \cap T_r$ with respect to this isomorphism.

Proof. We denote by t_1, \ldots, t_r coordinate functions on T_r and by f_1, \ldots, f_r the respective invertible regular functions on X. Then $[f_1], \ldots, [f_r]$ is a basis of E(X).

Firstly, we will prove that the homomorphism

$$\operatorname{Aut}_X(T_r) \to \operatorname{Aut}(X), \ \varphi \to \varphi|_X$$

is surjective. Let $\overline{\varphi}$ be an automorphism of X. Then $\overline{\varphi}$ defines an automorphism of the lattice E(X). Therefore,

$$\overline{\varphi}(f_i) = \lambda_i f_1^{a_{i1}} \dots f_r^{a_{ir}}, \ i = 1, \dots, r_r$$

where $\lambda_i \in \mathbb{K}^*$ and $(a_{ij}) \in \operatorname{GL}_r(\mathbb{Z})$. We define an automorphism φ of T_r by the formulas

$$\varphi(t_i) = \lambda_i t_1^{a_{i_1}} \dots t_r^{a_{i_r}}, \ i = 1, \dots, r.$$

Then φ preserves X and $\varphi|_X = \overline{\varphi}$.

Now suppose that the image of an automorphism $\psi \in \operatorname{Aut}_X(T_r)$ is a trivial automorphism of X. Then $\psi|_X$ defines a trivial automorphism of the lattice E(X). Hence, ψ defines a trivial automorphism of the lattice $E(T_r)$. So ψ has the form

$$\psi(t_i) = \beta_i t_i$$

for some $\beta \in \mathbb{K}^*$. It means that $\psi \in T_r$. But T_r acts on itself freely. Since ψ preserves all points of X, then ψ is a trivial automorphism of T_r . So the map

$$\operatorname{Aut}_X(T_r) \to \operatorname{Aut}(X)$$

is injective and therefore it is an isomorphism.

It remains to prove the last property. If $\delta \in \operatorname{Aut}_X(T_r) \cap T_r$, then $\delta|_X$ defines a trivial automorphism of E(X). Hence $\delta|_X \in H(X)$.

Conversely, suppose that $\delta|_X \in H(X)$. Then δ is given by the formulas

$$\delta(t_i) = \gamma_i t_i, \ i = 1, \dots, r,$$

for some $\gamma_i \in \mathbb{K}^*$. Therefore, $\delta \in \operatorname{Aut}_X(T_r) \cap T_r$.

Corollary 1. Let X be a toral variety and $r = \operatorname{rank} E(X)$. Then the group $\operatorname{Aut}(X)$ is isomorphic to a subgroup in $T_r \rtimes \operatorname{GL}_r(\mathbb{Z})$.

Remark 1. It follows from Proposition 1 that a toral variety X can be embedded in a torus T_r in such a way that any automorphism X can be uniquely extended to an automorphism of T_r . If X is a subvariety of Z, it is always natural to ask whether an automorphism of X can be extended to an automorphism of Z. Some results concerning this problem can be found in [4, 5].

Example 1. Let X be a toral variety and rank E(X) = r. Then there is a canonical embedding $\rho: X \hookrightarrow T_r$ of X into a torus T_r of dimension r. But in some cases it is also possible to embed X into a torus of lower dimension.

Consider

$$Y = \{(x, y) \in (\mathbb{K}^*)^2 | yx(x-1)(x-2)\dots(x-k) = 1\}.$$

It is a closed subvariety of a torus $T_2 = (\mathbb{K}^*)^2$, so Y is a toral variety. We see that $x, (x-1), \ldots, (x-k)$ are invertible functions on Y. We will show that $[x], [x-1], \ldots, [x-k]$ are linearly independent in E(Y). It implies that $\operatorname{rk} E(Y) \ge k+1$.

Indeed, otherwise there are $b_0, \ldots, b_k \in \mathbb{Z}$ and $\lambda \in \mathbb{K}^*$ such that

$$x^{b_0}(x-1)^{b_1}\dots(x-k)^{b_k} = \lambda.$$
 (1)

But the polynomial $x^{b_0}(x-1)^{b_1}\dots(x-k)^{b_k}-\lambda$ is not divisible by $yx(x-1)(x-2)\dots(x-k)-1$ in $\mathbb{K}[x^{\pm 1},y^{\pm 1}]$. So Equation (1) cannot hold for Y.

Example 2. It is also not true that every embedding of a toral variety X with rank E(X) = r into a torus T_r is canonical.

The embedding $X \hookrightarrow T_r$ is canonical if $[t_1|_X], \ldots, [t_r|_X]$ is a basis of E(X). If we choose $Y \subseteq T_2$ as in Example 1 above, then the embedding $Y \hookrightarrow T_2 \times T_{r-2} = T_r$, where $z \to (z, p)$ for some fixed point $p \in T_{r-2}$, is not a canonical embedding. Here the restrictions $t_3|_Y, \ldots, t_r|_Y$ are constants so $[t_3|_Y] = \ldots = [t_r|_Y]$ is a neutral element in E(Y).

Now let X be a closed irreducible subvariety in T_r and let the embedding $X \hookrightarrow T_r$ be canonical. By Proposition 1 we can identify the group H(X) with the subgroup in T_r which preserves X. We will describe the subgroup H(X) as a subgroup in T_r . Let $M \simeq \mathbb{Z}^r$ be the lattice of characters of T_r . For $m = (m_1, \ldots, m_r) \in M$ by χ^m we mean the character $t \to t_1^{m_1} \ldots t_r^{m_r}$. Then each function in $\mathbb{K}[t_1^{\pm 1}, \ldots, t_r^{\pm 1}]$ is a linear combination of characters. For a function $f = \sum_i \alpha_{m_i} \chi^{m_i} \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_r^{\pm 1}]$ by support of f we mean the subset

$$\operatorname{Supp} f = \{ m_i \in M | \alpha_{m_i} \neq 0 \} \subseteq M.$$

Let I(X) be the ideal of functions in $\mathbb{K}[t_1^{\pm 1}, \ldots, t_r^{\pm 1}]$ which are equal to zero on X. We say that $f \in I(X)$ is *minimal* if there is no non-zero $g \in I(X)$ such that $\text{Supp } g \subsetneq \text{Supp } f$.

Lemma 1. Minimal polynomials generate I(X) as a vector space.

Proof. If $f \in I(X)$ is not minimal, then there is a $g \in I(X)$ with $\operatorname{Supp} g \subsetneq \operatorname{Supp} f$. One can choose a constant α such that $\operatorname{Supp}(f - \alpha g) \subsetneq \operatorname{Supp} f$. Applying induction by cardinality of $\operatorname{Supp} f$ we see that g and $f - \alpha g$ can be represented as a sum of minimal polynomials. Then f is also a sum of minimal polynomials. \Box

Definition 4. We denote by M(X) a subgroup of M which is generated by Minkowski sums Supp f + (-Supp f) for all minimal $f \in I(X)$.

Proposition 2. The subgroup $H(X) \subseteq T_r$ is given by equations $\chi^m(t) = 1$ for all $m \in M(X)$.

Proof. Let $h \in H(X)$ and $f = \sum_i \alpha_{m_i} \chi^{m_i}$ be a minimal polynomial in I(X). Then $h \circ f = \sum_i \alpha_{m_i} \chi^{m_i}(h) \chi^{m_i}$. The ideal I(X) is invariant under the action of H(X). So $h \circ f \in I(X)$. Suppose that there are $a, b \in M(X)$ such that $\alpha_a, \alpha_b \neq 0$ and $\chi^{m_a}(h) \neq \chi^{m_b}(h)$. Then $g = \chi^{m_a}(h)f - h \circ f$ is a non-zero function in I(X) and Supp $g \subsetneq$ Supp f. But f is minimal. So $\chi^{m_a}(h) = \chi^{m_b}(h)$. Therefore, $\chi^{m_a-m_b}(h) = 1$ and this implies that $\chi^m(h) = 1$ for all $m \in M(X)$.

Now consider an element $t \in T_r$ such that $\chi^m(t) = 1$, $\forall m \in M(X)$. Then every minimal polynomial in I(X) is a semi-invariant with respect to t. But I(X)is a linear span of minimal polynomials. So I(X) is invariant under the action of t. Therefore, $t \in H(X)$.

At the end of this section, we note that toral varieties over uncountable fields satisfy the following conjecture formulated by Perepechko and Zaidenberg.

Conjecture 1 (Conjecture 1.0.1 in [8]). If Y is a rigid affine algebraic variety over \mathbb{K} , then the connected component $\operatorname{Aut}^{0}(Y)$ is an algebraic torus of the rank not greater than dim Y.

Corollary 2. Suppose that the field \mathbb{K} is uncountable. Let X be a toral variety over \mathbb{K} . Then $\operatorname{Aut}(X)$ is a discrete extension of an algebraic torus.

Proof. Indeed, if X is a toral variety, then the group $\operatorname{Aut}(X)/H(X)$ is isomorphic to a subgroup in $\operatorname{Aut}(E(X)) \simeq \operatorname{GL}_r(\mathbb{Z})$, where r is the rank of E(X). If K is uncountable, then $\operatorname{Aut}(X)/H(X)$ is a discrete group. So $\operatorname{Aut}^0(X)$ is contained in H(X). But H(X) is a quasitorus. Therefore, $\operatorname{Aut}^0(X)$ is a torus and the quotient group $\operatorname{Aut}(X)/\operatorname{Aut}^0(X)$ is a discrete group.

From this point onwards, we always assume that the field \mathbb{K} is uncountable.

3. The structure of the automorphism group

It follows from Corollary 1 that toral varieties are rigid. By [1, Theorem 2.1], there is a unique maximal torus in the automorphism group of an irreducible rigid variety.

Theorem 1. Let X be a toral variety over \mathbb{K} and T the maximal torus in $\operatorname{Aut}(X)$. Then $X \simeq Y \times T$, where Y is a toral variety with a discrete automorphism group.

Proof. Let r be the rank of the group E(X) and $\rho: X \hookrightarrow T_r$ a canonical embedding. We denote by M the lattice of characters of T_r and by M(X) the sublattice in M which corresponds to X. One can choose a basis $e_1, \ldots, e_r \in M$ such that b_1e_1, \ldots, b_le_l is a basis of M(X) for some $b_1, \ldots, b_l \in \mathbb{N}$ and $l \leq r$. Denote by t_1, \ldots, t_r coordinates on T_r corresponding to e_1, \ldots, e_r .

Then the equations $\chi^m(t) = 1$ for all $m \in M(X)$ define the subgroup H(X) in T_r which consists of elements of the form

$$(\epsilon_1,\ldots,\epsilon_l,t_{l+1},\ldots,t_r),$$

where $\epsilon_1, \ldots, \epsilon_l$ are the roots of unity of degrees b_1, \ldots, b_l , respectively, and $t_{l+1}, \ldots, t_r \in \mathbb{K}^*$. Then the maximal torus in H(X) is the torus

$$T_{r-l} = \{ (1, \dots, 1, t_{l+1}, \dots, t_r) \in T_r | t_i \in \mathbb{K}^* \}.$$

The group $\operatorname{Aut}(X)/H(X)$ is a discrete group. So the maximal torus of $\operatorname{Aut}(X)$ coincides with the maximal torus of the quasitorus H(X), which is T_{r-l} .

All minimal polynomials in I(X) are semi-invariant with respect to H(X). This means that minimal polynomials in I(X) are homogeneous with respect to each variable t_{l+1}, \ldots, t_r . Since functions t_i are invertible, one can choose a set of minimal generators of I(X) which do not depend on t_{l+1}, \ldots, t_r . It implies that $X \simeq Y \times T_{r-l}$, where Y is a subvariety of $T_l = \{(t_1, \ldots, t_l, 1, \ldots, 1) \in T_r | t_i \in \mathbb{K}^*\}$.

The variety Y is also a toral variety given by the ideal $I(X) \cap \mathbb{K}[t_1^{\pm 1}, \ldots, t_l^{\pm 1}]$. Since the unique maximal torus in $\operatorname{Aut}(X)$ is T_{r-l} , the maximal torus in $\operatorname{Aut}(Y)$ is trivial.

Let X be a toral variety and suppose that $X \simeq T_s \times Y$, where Y is a toral variety with a discrete automorphism group and T_s is the torus $(\mathbb{K}^*)^s$. One can see that Aut(X) contains the following subgroups.

There is a subgroup which is isomorphic to $\operatorname{Aut}(Y)$. This subgroup acts naturally on Y and trivially on T_s . The subgroup $\operatorname{GL}_s(\mathbb{Z})$ acts naturally on T_s and trivially on

Y. Moreover, there is a subgroup which is isomorphic to $(\mathbb{K}[Y]^*)^s \simeq (E(Y) \times \mathbb{K}^*)^s$. This subgroup acts in the following way. If $f_1, \ldots, f_s \in \mathbb{K}[Y]^*$, then we can define an automorphism of $T_s \times Y$ as follows:

$$(t_1,\ldots,t_s,y)\to (f_1(y)t_1,\ldots,f_s(y)t_s,y).$$

The following theorem was proposed to the authors by Gaifullin.

Theorem 2. Let $X \simeq T_s \times Y$ be a toral variety, where Y is a toral variety with a discrete automorphism group. Then

$$\operatorname{Aut}(X) \simeq \operatorname{Aut}(Y) \ltimes (\operatorname{GL}_s(\mathbb{Z}) \ltimes (E(Y) \times \mathbb{K}^*)^s).$$

Proof. There is a natural action of T_s on X. We see that $\mathbb{K}[Y]$ is the algebra of invariants of this action. Since T_s is a unique maximal torus in $\operatorname{Aut}(X)$, each automorphism of $T_s \times Y$ preserves $\mathbb{K}[Y]$. So we obtain a homomorphism

$$\Phi: \operatorname{Aut}(X) \to \operatorname{Aut}(Y).$$

Let B be the kernel of Φ . The group $\operatorname{Aut}(Y)$ is naturally embedded into $\operatorname{Aut}(T_s \times Y)$ and it intersects trivially with B. At the same time, $\operatorname{Aut}(Y)$ maps isomorphically to the image of Φ . It implies that

$$\operatorname{Aut}(T_s \times Y) = \operatorname{Aut}(Y) \ltimes B$$

We denote by t_1, \ldots, t_s coordinate functions on T_s . Then

$$\mathbb{K}[T_s \times Y] \simeq \mathbb{K}[T_s] \otimes \mathbb{K}[Y] = \mathbb{K}[Y][t_1^{\pm 1}, \dots, t_s^{\pm 1}].$$

Let $\phi \in B$. The algebra $\mathbb{K}[Y]$ is invariant with respect to ϕ^* . So for all $t \in T_s$ and $y \in Y$ we have

$$\phi((t,y)) = (t',y),$$

for some $t' \in T_s$. Therefore, for each $y \in Y$ the automorphism ϕ defines an automorphism $\phi_y : T_s \to T_s$. Hence, for each $y \in Y$ we have

$$\phi^*(t_i)(t,y) = t_i(\phi(t,y)) = t_i((\phi_y(t),y)) = f_i(y)t_1^{a_{i1}(y)} \dots t_s^{a_{is}(y)},$$

for some non-zero constant $f_i(y)$ and a matrix $A(y) = (a_{ij}(y)) \in \operatorname{GL}_s(\mathbb{Z})$. For reasons of continuity, the matrix A(y) is the same for all $y \in Y$ and $f_i : Y \to \mathbb{K}$ are regular functions on Y. Since $f_i(y) \neq 0$ for all $y \in Y$, the functions f_i are invertible. So we have

$$\phi^*(t_i) = f_i t_1^{a_{i1}} \dots t_s^{a_i}$$

for some $f_i \in \mathbb{K}[Y]^*$ and $A \in \mathrm{GL}_s(\mathbb{Z})$.

Then we have a homomorphism $\overline{\Phi} : B \to \mathrm{GL}_s(\mathbb{Z}), \phi \to A$. Again, the group $\mathrm{GL}_s(\mathbb{Z})$ is naturally embedded into B in the following way. The matrix $(d_{ij}) \in \mathrm{GL}_s(\mathbb{Z})$ corresponds to an automorphism

$$(t_1, \ldots, t_s, y) \to (t_1^{d_{11}} \ldots t_s^{d_{1s}}, \ldots, t_1^{d_{s1}} \ldots t_s^{d_{ss}}, y).$$

The group $\operatorname{GL}_s(\mathbb{Z})$ maps isomorphically to $\operatorname{GL}_s(\mathbb{Z})$ under $\overline{\Phi}$. So

$$B = \operatorname{GL}_{s}(\mathbb{Z}) \ltimes \operatorname{Ker} \overline{\Phi}.$$

The kernel of $\overline{\Phi}$ consists of automorphisms $\varphi \in \operatorname{Aut}(T_s \times Y)$ which have the following form:

$$\varphi(t_1,\ldots,t_s,y) = (f_1(y)t_1,\ldots,f_s(y)t_s,y),$$

for some $f_1, \ldots, f_s \in \mathbb{K}[Y]^*$. We see that for all $f_1, \ldots, f_s \in \mathbb{K}[Y]^*$ this formula defines an automorphism of $T_s \times Y$, so Ker $\overline{\Phi} \simeq (\mathbb{K}[Y]^*)^s \simeq (E(Y) \times \mathbb{K}^*)^s$. \Box

4. The case $\operatorname{rk} E(X) = \dim X$

Let X be a toral variety. Then rk $E(X) \ge \dim X$. Indeed, suppose that f_1, \ldots, f_r are invertible functions and $[f_1], \ldots, [f_r]$ is a basis in E(X). Then f_1, \ldots, f_r generate $\mathbb{K}[X]$. So $r \ge \operatorname{tr.deg} \mathbb{K}[X] = \dim X$.

The following result shows that if $\operatorname{rk} E(X) = \dim X$, then X is a torus. Moreover, this is the only case when $\operatorname{Aut}(X)$ acts with an open orbit on X.

Proposition 3. Let X be a toral variety. Then the following conditions are equivalent:

- 1. X is a torus;
- 2. rk $E(X) = \dim X;$
- 3. $\operatorname{Aut}(X)$ acts on X with an open orbit.

Proof. Implication $1) \Rightarrow 2$) is trivial.

Suppose that $\operatorname{rk} E(X) = \dim X$. Then one can choose invertible functions f_1, \ldots, f_n such that $[f_1], \ldots, [f_n]$ is a basis of E(X). Then $\mathbb{K}[X]$ is generated by

$$f_1, f_1^{-1}, \ldots, f_n, f_n^{-1}$$

But f_1, \ldots, f_n are algebraically independent, otherwise dim $X < \operatorname{rk} E(X)$. So $\mathbb{K}[X]$ is isomorphic to the algebra of Laurent polynomials. So we obtain implication $2) \Rightarrow 1$).

Implication 1) \Rightarrow 3) is trivial. Suppose X is a toral variety and Aut(X) acts on X with an open orbit U.

Let T be the maximal torus in $\operatorname{Aut}(X)$. Since the quotient group $\operatorname{Aut}(X)/T$ is a discrete group, the set U is a countable union of orbits of T. Since K is uncountable, it implies that one of the orbits of T is open in X. Then dim $X = \dim T$. By Theorem 1, we have $X \simeq T \times Y$ for some toral variety Y. But since dim $T = \dim T \times Y$, we obtain that Y is a point and $X \simeq T$.

5. The case $\operatorname{rk} E(X) = \dim X + 1$

By Theorem 1, any toral variety over an algebraically closed uncountable field of characteristic zero is a direct product $T \times Y$, where T is a torus and Y is a toral variety with a discrete automorphism group. By Theorem 2, one can find $\operatorname{Aut}(X)$ knowing $\operatorname{Aut}(Y)$. In this section, we provide a way to find $\operatorname{Aut}(Y)$ when $\operatorname{rk} E(Y) = \dim Y + 1$.

Let Y be a toral variety with a trivial maximal torus in Aut(Y). Let r be the rank of E(Y). We suppose that $r = \dim Y + 1$.

There is a canonical embedding of Y into the torus T_r as a hypersurface. The variety T_r is factorial so there is an irreducible polynomial $h \in \mathbb{K}[t_1^{\pm 1}, \ldots, t_r^{\pm 1}]$ such that I(Y) = (h). The polynomial h has a form

$$h = \sum_{m \in \text{Supp } h} \alpha_m \chi^m.$$

Let M be the lattice of characters of T_r and M(Y) a sublattice in M which corresponds to Y; see Definition 4. Since the maximal torus in $\operatorname{Aut}(Y)$ is trivial, the rank of the lattice M(Y) is equal to r. It means that the elements $m_a - m_b$ with $m_a, m_b \in \operatorname{Supp} h$ generate a sublattice of full rank in M.

We denote by GAff(M, h) the group of all invertible integer affine transformations φ of M, which preserve Supp h and for any linear combination

$$\sum_{a \in \text{Supp } h} a_m m = 0$$

where $a_m \in \mathbb{Z}$ and $\sum_m a_m = 0$, the affine transformation φ satisfies

$$\prod_{n \in \text{Supp } h} (\alpha_m)^{a_m} = \prod_{m \in \text{Supp } h} (\alpha_{\varphi(m)})^{a_m}.$$
 (2)

Theorem 3. Let Y be a toral variety with a trivial maximal torus in Aut(Y). Suppose that $rk E(Y) = \dim Y + 1$. Then

$$\operatorname{Aut}(Y)/H(Y) \simeq \operatorname{GAff}(M,h).$$

Proof. Let ψ be an automorphism of Y. By Proposition 1, the automorphism ψ can be extended to an automorphism of T_r . We denote by ψ^* the respective automorphism of $\mathbb{K}[t_1^{\pm 1}, \ldots, t_r^{\pm 1}]$. Then ψ^* has the form

$$\psi^*(t_i) = \lambda_i t_1^{a_{i1}} \dots t_r^{a_{ir}},$$

where $\lambda_i \in \mathbb{K}^*$ and $(a_{ij}) \in \operatorname{GL}_r(\mathbb{Z})$. We denote by λ the element $(\lambda_1, \ldots, \lambda_r) \in T_r$ and by $\overline{\psi}$ the automorphism of M that corresponds to the matrix (a_{ij}) . Then

$$\psi^*(\chi^m) = \chi^m(\lambda)\chi^{\psi(m)}$$

for all $m \in M$.

The polynomial $\psi^*(h)$ also generates I(Y). So it differs from h by an invertible element of $\mathbb{K}[t_1^{\pm 1}, \ldots, t_r^{\pm 1}]$. Then

$$\psi^*(h) = \alpha \chi^v h$$

for some $\alpha \in \mathbb{K}^*$ and $v \in M$. Therefore, we have the equation

$$\psi^*(h) = \sum_{m \in \text{Supp } h} \alpha_m \chi^m(\lambda) \chi^{\overline{\psi}(m)} = \alpha \sum_{m \in \text{Supp } h} \alpha_m \chi^{m+v}.$$
 (3)

It implies that $\overline{\psi}(m) - v$ belonge to Supp h for all $m \in \text{Supp } h$. We define the map $\varphi: M \to M$ by the following formula:

$$\varphi(m) = \overline{\psi}(m) - v.$$

Then φ is an affine transformation of M which preserves Supp h.

r

We will prove that φ belonge to GAff(M, h). So we consider a linear combination as in (2):

$$\sum_{n \in \text{Supp } h} a_m m = 0,$$

where $a_m \in \mathbb{Z}$ and $\sum_m a_m = 0$. Equation (3) can be written as

$$\sum_{m \in \text{Supp } h} \alpha_m \chi^m(\lambda) \chi^{\varphi(m)} = \alpha \sum_{m \in \text{Supp } h} \alpha_m \chi^m = \alpha \sum_{m \in \text{Supp } h} \alpha_{\varphi(m)} \chi^{\varphi(m)}$$

and it implies

$$\frac{\alpha_{m_1}\chi^{m_1}(\lambda)}{\alpha_{m_2}\chi^{m_2}(\lambda)} = \frac{\alpha_{m_1}}{\alpha_{m_2}}\chi^{m_1-m_2}(\lambda) = \frac{\alpha_{\varphi(m_1)}}{\alpha_{\varphi(m_2)}}$$

for all $m_1, m_2 \in \text{Supp } h$.

We fix some $m_0 \in \text{Supp } h$. Then we have

$$\prod_{m \in \text{Supp } h} (\alpha_{\varphi(m)})^{a_m} = \prod_{m \in \text{Supp } h} \left(\frac{\alpha_{\varphi(m)}}{\alpha_{\varphi(m_0)}}\right)^{a_m} = \prod_{m \in \text{Supp } h} \left(\frac{\alpha_m}{\alpha_{m_0}} \chi^{m-m_0}(\lambda)\right)^{a_m}$$
$$= \prod_{m \in \text{Supp } h} \left(\frac{\alpha_m}{\alpha_{m_0}}\right)^{a_m} (\chi^{\sum_m a_m(m-m_0)}(\lambda))$$
$$= \prod_{m \in \text{Supp } h} \left(\frac{\alpha_m}{\alpha_{m_0}}\right)^{a_m} = \prod_{m \in \text{Supp } h} (\alpha_m)^{a_m}$$

So $\varphi \in GAff(M, h)$. Then we obtain a homomorphism

$$\eta : \operatorname{Aut}(Y) \to \operatorname{GAff}(M,h), \ \psi \to \varphi.$$

Moreover, we see that the kernel of η is H(Y). Now we will show that η is surjective.

Let $\varphi \in \text{GAff}(M,h)$ and f_1, \ldots, f_r be a basis in M(Y). Again, we fix some $m_0 \in \text{Supp } h$. Then there are $a_{m,j} \in \mathbb{Z}$ for $m \in \text{Supp } h$ such that

$$f_j = \sum_{m \in \text{Supp } h} a_{m,j}(m - m_0).$$

There is a $\lambda \in T_r$ such that

$$\chi^{f_j}(\lambda) = \prod_{m \in \text{Supp } h} \left(\frac{\alpha_m}{\alpha_{m_0}}\right)^{-a_{m,j}} \prod_{m \in \text{Supp } h} \left(\frac{\alpha_{\varphi(m)}}{\alpha_{\varphi(m_0)}}\right)^{a_{m,j}}$$

for all $j = 1, \ldots, r$.

Let $d\varphi$ be the linear part of φ , i.e., $d\varphi(m) = \varphi(m) - \varphi(0)$. We define an automorphism ψ^* of $\mathbb{K}[t_1^{\pm 1} \dots t_r^{\pm 1}]$ by the following rule:

$$\psi^*(\chi^m) = \chi^m(\lambda)\chi^{d\varphi(m)}.$$

Let us check if ψ^* preserves I(Y). We have

$$\psi^*(h) = \sum_{m \in \text{Supp } h} \alpha_m \chi^m(\lambda) \chi^{d\varphi(m)}.$$

We denote $\varphi(0)$ by v. Then

$$\varphi(m) = d\varphi(m) + v$$

and

$$\chi^v \psi^*(h) = \sum_{m \in \text{Supp } h} \alpha_m \chi^m(\lambda) \chi^{\varphi(m)}.$$

We see that Supp $\chi^v \psi^*(h) =$ Supp h. We will show that there is an $\alpha \in \mathbb{K}$ such that

$$\chi^v \psi^*(h) = \alpha h.$$

For any $b, c \in \text{Supp } h$ there are numbers $d_j \in \mathbb{Z}$ such that

$$b-c = \sum_{j=1}^{r} d_j f_j.$$

 So

$$\frac{\alpha_b \chi^b(\lambda)}{\alpha_c \chi^c(\lambda)} = \frac{\alpha_c}{\alpha_b} \chi^{b-c}(\lambda) = \frac{\alpha_b}{\alpha_c} \chi^{\sum_j d_j f_j}(\lambda)$$
$$= \frac{\alpha_b}{\alpha_c} (\prod_{j=1}^r \chi^{f_j}(\lambda))^{d_j} = \frac{\alpha_b}{\alpha_c} \prod_{m,j=1} \left(\frac{\alpha_m}{\alpha_{m_0}}\right)^{-d_j a_{m,j}} \prod_{m,j} \left(\frac{\alpha_{\varphi(m)}}{\alpha_{\varphi(m_0)}}\right)^{d_j a_{m,j}}.$$
 (4)

We have a combination

$$0 = b - c - \sum_{j} d_{j} f_{j} = b - c - \sum_{m,j} d_{j} a_{m,j} (m - m_{0}) = b - c - \sum_{m,j} d_{j} a_{m,j} m + (\sum_{m,j} d_{j} a_{m,j}) m_{0}.$$

The sum of all coefficients in the last sum is equal to 0. Since $\varphi \in Gaff(M, h)$ we obtain

$$\frac{\alpha_b}{\alpha_c} \prod_{m,j} \left(\frac{\alpha_m}{\alpha_{m_0}}\right)^{-d_j a_{m,j}} = \frac{\alpha_{\varphi(b)}}{\alpha_{\varphi(c)}} \prod_{m,j} \left(\frac{\alpha_{\varphi(m)}}{\alpha_{\varphi(m_0)}}\right)^{-d_j a_{m,j}}.$$
(5)

It follows from equations 4 and 5 that

$$\frac{\alpha_b \chi^b(\lambda)}{\alpha_c \chi^c(\lambda)} = \frac{\alpha_{\varphi(b)}}{\alpha_{\varphi(c)}}.$$

So the coefficients of the polynomials $\chi^{v}\psi^{*}(h)$ and h are proportional. Then there is an $\alpha \in \mathbb{K}$ such that $\chi^{v}\psi^{*}(h) = \alpha h$. Hence $\psi^{*}(h) = \alpha \chi^{-v}h \in I(Y)$. Therefore, ψ^{*} preserves I(Y) and defines an automorphism ψ . It is a direct check that $\eta(\psi) = \varphi$. So η is surjective.

Corollary 3. Let Y be a toral variety with a trivial maximal torus in Aut(Y). Suppose that $rk E(Y) = \dim Y + 1$. Then Aut(Y) is a finite group.

Proof. Indeed, the group H(Y) is finite in this case. As mentioned before, the sublattice M(Y) is of full rank and generated by the finite set Supp h + (-Supp h). Then any affine transformation of M is uniquely defined by the image of the set Supp h + (-Supp h). Therefore, the group GAff(M, h) is finite. Then the group Aut(Y) is also finite.

It is natural to formulate the following question.

Conjecture 2. Let Y be a toral variety with a trivial maximal torus in Aut(Y). Is Aut(Y) a finite group?

Note that this is not true for a general rigid variety. One can find a counterexample in [7].

At the end, we give three examples illustrating Theorem 3.

Example 3. Let Y be the affine line \mathbb{A}^1 without two points. Then Y is isomorphic to an open set of the torus \mathbb{K}^* :

$$Y = \{t \in \mathbb{K}^* | t \neq 1\} \subseteq \mathbb{K}^*.$$

Hence, Y can be given in $(\mathbb{K}^*)^2$ as the set of solutions of the equation

$$h = t_1(t_2 - 1) - 1 = 0, \ (t_1, t_2) \in (\mathbb{K}^*)^2.$$

So Y is a toral variety. We have

$$\mathbb{K}[Y] = \mathbb{K}[t_1^{\pm 1}, t_2^{\pm 1}] / (t_1(t_2 - 1) - 1) \simeq \mathbb{K}[t_2^{\pm 1}]_{t_2 - 1}$$

where $\mathbb{K}[t_2^{\pm 1}]_{t_2-1}$ denotes the localization of $\mathbb{K}[t_2^{\pm 1}]$ at $t_2 - 1$. Hence, all invertible elements of $\mathbb{K}[Y]$ have the form $\lambda(t_2 - 1)^a t_2^b = \lambda t_1^a t_2^b$, where $\lambda \in \mathbb{K}^*$. Therefore, $[t_1], [t_2]$ is a basis of E(Y). So the rank of E(Y) is equal to dim Y + 1 and the embedding $Y \hookrightarrow (\mathbb{K}^*)^2$ as a set of zeros

$$h = t_1(t_2 - 1) - 1 = t_1t_2 - t_1 - 1 = 0, \ (t_1, t_2) \in (\mathbb{K}^*)^2$$

is a canonical embedding. We can apply Theorem 3 to find Aut(Y).

Figure 1: Supp $(t_1t_2 - t_1 - 1)$

Let $M \simeq \mathbb{Z}^2$ be the lattice of characters of $(\mathbb{K}^*)^2$. The set Supp h consists of points $m_0 = (0,0), m_1 = (1,0), m_2 = (1,1)$; see Figure 1.

We see that the lattice M(Y) contains elements (1,0), (0,1), so M(Y) = M. Therefore, H(Y) is a trivial group.

A linear combination

$$a_0m_0 + a_1m_1 + a_2m_2 = (a_1 + a_2, a_2)$$

with $a_0 + a_1 + a_2 = 0$ is equal to zero if and only if $a_0 = a_1 = a_2 = 0$. But then equations (2) are trivial. By affine transformations of M we can permute all points in Supp h. Therefore,

$$\operatorname{Aut}(Y) \simeq \operatorname{GAff}(M, h) \simeq S_3.$$

The answer looks natural since the affine line without two points is the projective line without three points.

In this case, Aut(Y) is generated by the automorphisms ψ_1, ψ_2 , where

$$\psi_1((t_1, t_2)) = (-t_1t_2, t_2^{-1}), \ \psi((t_1, t_2)) = (-t_2, t_1^{-1}t_2^{-1}).$$

Example 4. Now let Y be the set of solutions of the equation

$$Y = \{(t_1, t_2, t_3) \in (\mathbb{K}^*)^3 | h = t_3(t_1^2 + t_2^2 - 1) - 1 = 0\} \subseteq (\mathbb{K}^*)^3.$$

Then Y is a toral variety and

$$\mathbb{K}[Y] = \mathbb{K}[t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}/(t_3(t_1^2 + t_2^2 - 1) - 1)) = \mathbb{K}[t_1^{\pm 1}, t_2^{\pm 1}]_{t_1^2 + t_2^2 - 1}.$$

Therefore, $[t_1], [t_2], [t_3]$ is a basis of E(Y) and the embedding of Y in $(\mathbb{K}^*)^3$ is a canonical embedding.

We have $h = t_3(t_1^2 + t_2^2 - 1) - 1 = t_1^2 t_3 + t_2^2 t_3 - t_3 - 1$ and

Supp $h = \{m_0 = (0, 0, 0), m_1 = (0, 0, 1), m_2 = (2, 0, 1), m_3 = (0, 2, 1)\} \subseteq M \simeq \mathbb{Z}^3.$

The vectors (2,0,0), (0,2,0) and (0,0,1) form a basis of M(Y). Then the group $H(Y) \subseteq (\mathbb{K}^*)^3$ consists of elements

$$H(Y) = \{(\pm 1, \pm 1, 1) \in (\mathbb{K}^*)^3\} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

The group of invertible affine transformations of M preserving Supp h is isomorphic to S_3 and permutes points m_1, m_2, m_3 preserving m_0 . The sum

$$a_0m_0 + a_1m_1 + a_2m_2 + a_3m_3 = (2a_2, 2a_3, a_1 + a_2 + a_3)$$

with $a_0 + a_1 + a_2 + a_3 = 0$ is equal to zero if and only if $a_0 = a_1 = a_2 = a_3 = 0$. So equations (2) are trivial and $GAff(M, h) \simeq Aut(Y)/H(Y) \simeq S_3$.

The group $\operatorname{Aut}(Y)$ is generated by H(Y) and the automorphisms ψ_1 and ψ_2 which are defined by the formulas:

$$\psi_1((t_1, t_2, t_3)) = (t_2, t_1, t_3), \ \psi_2((t_1, t_2, t_3)) = (-t_2^{-1}, it_1t_2^{-1}, -t_2^2t_3).$$

One can check that ψ_1 and ψ_2 generate the subgroup in Aut(Y) which is isomorphic to S_3 and trivially intersects with H(Y). So

$$\operatorname{Aut}(Y) \simeq H(Y) \rtimes S_3.$$

The automorphism ψ_2 does not commute with the element $(1, -1, 1) \in H(Y)$. Therefore, Aut(Y) is not a direct product of H(Y) and S_3 .

Remark 2. It is natural to ask if it is true that, under the conditions of Theorem 3, we have $\operatorname{Aut}(Y) \simeq H(Y) \rtimes \operatorname{Gaff}(M,h)$? The authors do not know the answer to this question.

Acknowledgement

The authors are grateful to Segrey Gaifullin for useful discussions. We would also like to thank Ivan Arzhantsev for his helpful remarks and comments.

References

- I. ARZHANTSEV, S. GAIFULLIN, The automorphism group of a rigid affine variety, Math. Nachr. 290(2017), 662–671.
- [2] D. BERNSTEIN, The number of roots of a system of equations, Funct. Anal. Appl. 9(1975), 183–185.
- [3] J. HUH, The maximum likelihood degree of a very affine variety, Compos. Math. 149(2013), 1245–1266.
- [4] S. KALIMAN, Extensions of isomorphisms between affine algebraic subvarieties of k^n to automorphisms of k^n , Proc. Amer. Math. Soc. **113**(1991), 325–334.
- [5] S. KALIMAN, D. UDUMYAN, On automorphisms of flexible varieties, Adv. Math. 396(2022), Article no. 108112.
- [6] A. KOUSHNIRENKO, Newton polytopes and the Bezout theorem, Funct. Anal. Appl. 10(1976), 82–83.
- [7] A. PEREPECHKO, Automorphisms of surfaces of Markov type, Math. Notes 110(2021), 732–737.
- [8] A. PEREPECHKO, M. ZAIDENBERG, Automorphism group of affine rigid surfaces: the identity component, arXiv:2208.09738.
- [9] V. POPOV, On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties, CRM Proc. Lect. Notes **54**(2011), 289–311.

- [10] M. ROSENLICHT, Some rationality questions on algebraic groups, Ann. Mat. Pura Appl. 43(1957), 25–50.
- [11] J. TEVELEV, Compactifications of subvarieties of tori, Amer. J. Math. 129(2007), 1087–1104.