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Abstract
Wick’s contractions, also related to Wick’s theorem, represent important mathematical technique used 
in quantum many-body theory to simplify calculations involving creation and annihilation operators. 
In this work we study the properties of full Wick’s contractions and discuss in details corresponding 
graph and group theory aspects. We observed isomorphism between graph-like objects which are in 
fact contained in the full Wick’s contractions and some geometrical objects, such as circle or regular 
rectangle with internal structure. We also found isomorphism between two induced groups, one which 
is related to permutations of one end of Wick’s lines and the second which corresponds to rotations of 
directed lines inside geometrical object. We present fast and efficient algorithm for calculation of the 
expectation value of large number of creation and annihilation particle and hole operators in order to 
achieve different particle-hole or particle-particle terms in many-body theories, from nuclear to solid 
state physics or quantum chemistry. The algorithm is based on observed isomorphisms. It simplifies 
full Wick’s contractions to simple adjacency and geometrical relations, which are also used for sign 
determination. Also, we presented several illustrative examples of computation, such as calculation 
of the two-body particle-hole terms in Hartree-Fock’s theory and the Random phase approximation.

Keywords: Wick’s theorem, Wick’s contractions, group theory, graph theory, quantum mechanics, 
quantum many-body theory, Hartree-Fock, Random phase approximation

1. Introduction
In the many-body theories we must often calculate expectation values of particle-particle (hole-hole) or 
particle-hole, transition or density matrix elements which may contain large number of creation and an-
nihilation operators. This particular task is usually done by hand, which can be rather tedious, especially 
if the total number of operators is larger than . In order to reduce the amount of time needed for this 
task and possibility for human errors, we present simple and fast algorithm which calculates quantum 
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mechanical expectation values using full Wick’s contractions, based on geometrical mapping of operators 
on vertices of regular polygon or equidistant points of unit circle and Wick’s lines on directed lines (edges) 
between vertices, i.e., simple adjacency and geometrical conditions and relations. For illustration, here 
we will use unit circle representation.

 Wick’s contractions are a set of mathematical rules that describe the simplification of complex many 
body interactions in quantum mechanical systems. They provide a systematic way of eliminating redundant 
terms in a quantum many-body wave function, leading to a more compact and manageable description of 
the system. The contractions are named after the physicist Gian Carlo Wick, who introduced them in 1950 
in his work as a tool for analyzing quantum field theory (Wick, 1950). In other words, Wick’s contractions are 
a way grouping, i.e., combining creation and annihilation operators in a quantum mechanical bracket. For 
example, see refs.: (Shankar, 1994; Sakurai & Napolitano, 2014). These operators represent the creation 
and annihilation of particles (holes) in the system, and their combinations determine the total number 
of particles or holes present in the wave function in particle-hole many-body picture (Suhonen, 2007). 

Although Wick’s theorem is originally proposed to simplify problem of bringing products of field op-
erators into a normal form and to give clear derivation of Feynman’s diagrammatic rules of perturbation 
theory (Wick, 1950), it is still widely used in quantum field theory for systematical calculation of higher-point 
correlation functions since they can be expressed in terms of lower-point propagators. See for example 
refs.: (Weinberg, 1995; Mandl, 2010). Wick’s theorem and contractions have been used extensively in many 
other areas of physics, including condensed matter physics, nuclear, atomic physics, and cosmology. In 
condensed matter physics, for example, they have been used to study the behavior of electrons in solids 
(Altland & Simons, 2010) and the properties of superconductors (Baym & Pethick, 2004). In atomic physics, 
they have been used to understand the behavior of atomic systems, including the spectroscopy of atoms 
and the behavior of atoms in magnetic fields (Avron et al., 1987). In nuclear physics Wick’s contractions 
can be used to calculate ground state properties of nuclei, transition amplitudes and other quantities 
related to nuclear reactions and decays (Suhonen, 2007). In cosmology, they have been used to study the 
properties of the early universe and the behavior of cosmic radiation (Baumann, 2016). The theorem has 
also been extended in the quantum gravity due to additional degrees of freedom and extra dimensions 
(see for example: (Rovelli, 2004)).

In this work we are focused on Wick’s contractions in fermionic systems only, which are important for 
most practical reasons in theoretical physics and chemistry. In the Section 2. we present novel perspective 
on mathematical properties of Wick’s contractions as graph-like objects and properties from the group 
theory perspective. In the Section 3. we describe our computational algorithm for full Wick’s contractions 
in quantum many-body fermion systems (FWC-QMBFS) based on these properties, while in the Section 
4. we show few illustrative computational results for applications in the Hartree-Fock and Random phase 
approximation. 

2. Mathematical properties of Wick’s contractions
Observables in the formalism of second quantization are proportional to a product of creation and annihila-
tion particle (or hole) operators. Although observables may have nonzero expectation value in the vacuum 
state, when one constructs them by arranging creation operators to the left of annihilation operators, 
which is so called normal order of operators, their expectation values become zero. First it is necessary 
to define Wick’s contraction as mathematical objects and its relation to the normal ordered product of 
the operators (Mattuck, 1976; Suhonen 2007). We are focused here only on the time independent case. 

Definition 1. The contraction of two arbitrary quantum mechanical operators A1 and A2 regardless of its 
fermionic or boson nature, is defined as:

(1)

where N stands for normal ordered product of operators. 
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Definition 2. Sums of normally ordered products of n arbitrary operators for fixed number of contractions 
are defined as: 

(2)

where i1 and i1’ are indices related to a pair of operators connected with corresponding Wick’s contraction 
line and k =|n/2| in the last expression.

Explanation: In the first expression k = 1 and sum runs on single contractions of pairs (pair of indices  i1 
and i1’ , with a condition i1 ≠ i1’). In the second one k = 2 and sum runs on double contractions (two pairs 
of indices i1, i1’ and i2, i2’, with a condition i1 ≠ i1’, i2 ≠ i2’, i1 ≠ i2’, and i2 ≠ i1’), while in the last summation 
runs over |n/2| index pairs, without repetition any of indices. If n is an even number, it contains terms 
(all possible permutations) which are products of contractions (c-numbers). If n is odd, the last sum has 
terms with a single unpaired operator. 

Theorem 1. (Wick’s theorem): For a given product of quantum mechanical operators A1 A2 
… An we have:

(3)

Proof: The theorem is proven by the mathematical induction (see ref. (Molinari, 2017)). When n=2 opera-
tors, it is true (see Definition 1.). Suppose that the statement is true for a product of creation/annihilation 
operators A1 

… An, then we need to show that is also true for the product of A1 
… An An+1 operators. By 

hypothesis of the induction for n operators we have:

(4)

Lets consider:

(5)

The contraction in last expression means the sum of all contractions of An+1 with unpaired operators Ai in 
Nn,k. On the other hand, we have the following relation:

(6)

Using identities (5) and (6) one obtains:
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(7)

which is Wick’s theorem for n+1 operator.

Corollary 1. If a state | gs 〉 represents a ground state of a system of even number of particles and the 
action of the operators A1 , A2, …, A2n with respect to reference state | gs 〉 is given by:

 , and . (8)

The expectation value of the operators  is given by the expression (see refs. (Suhonen, 2007; Molinari, 2017).:  

(9)

Explanation: In the last equality we used the Definition 2. and the fact that each contraction is a complex 
number. The last summation runs over n index pairs, without repetition any of indices, which corresponds 
to a sum of all possible permutations P up to a sign(P). For details about “constrained permutation” with 
respect to the nonvanishing Wick’s contractions for a particular ordering of operators in the particle-hole 
quantum many-body picture see the Definition 6. below. 

Corollary 1. is a direct consequence of the Wick’s theorem. Wick’s contractions represent the connected 
parts of the so-called correlation function, which describe the genuine interactions between the particles 
(Weinberg, 1995). In other words, we can use them to calculate one- and two-body matrix elements, tran-
sition amplitudes and density matrix, which is shown in Section 4. for few illustrative examples.

Proof: From the Theorem 1. one can always rewrite product of operators A1 , A2, …, A2n as sum of normal 
product of 2n operators without and with k contractions, where 1 ≤ k ≤ n from the Definition 2. The expec-
tation value with respect to the reference state ¿ gs of the sum of normal product of operators is vanishing 
by its definition. On the other hand, each contracted pair of operators “can be moved outside” of the nor-
mal product (they are just c-numbers), which is again vanishing. Therefore, only full Wick’s contractions, 
i.e., without any unpaired operators (k = n) will give nonvanishing contribution to the expectation value.  

Corollary 2. Expectation value of the product of odd number of quantum mechanical operators A1 
… A2n+1 

is given by:

(10)

Proof: If total number of operators is odd, there is one unpaired operator left for k = n contractions in the 
normal product, which expectation value is by the definition 0, due to  or . The rest of 
the proof related to the sum of normal product of the operators without and with 0 ≤ k < n contractions 
is the same as in the Corollary 1. 

Definition 3. The contraction of two arbitrary fermionic operators for the time independent case in the 
particle-hole quantum many-body picture (see for example refs. (Mattuck, 1976; Suhonen 2007)) is given 
by the following expressions:
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(11)

where c† and c (h† and h) denote creation and annihilation of particle (hole) respectively, with cα | HF 〉 = 0 
and hβ | HF 〉 = 0, with condition єα > єF , єβ ≤ єF where єF stands for the Fermi level and | HF 〉 for particle-hole 
(Hartree-Fock) vacuum.

Definition 4. Set of full Wick’s contractions S is defined as a set of all nonvanishing arrangements of an-
nihilation and creation operator pairs of the same kind connected with corresponding Wick’s contraction 
lines related to specific ordering of operators.

Example 1: a) Set S related to two-body term in the Hartree-Fock approximation:

.
(12)

b) Sets S1 , S2, …, S5 are related to the A matrix in Random phase approximation (RPA):

(13)

Definition 5. Let us consider expectation value of n quantum mechanical creation and annihilation particle 
and hole operator pairs. There exists a map f from a set of full Wick’s nonvanishing contractions S to a set 
W of 2n equidistant (special) points on unit circle interconnected with n straight directed lines, as follows:

1.	 for every point on unit circle, there exists one and only one operator,
2.	 all points set on unit circle are following the same order of appearance as operators, with an arbitrary 

choice of the first point and an arbitrary choice of a direction (clockwise or counterclockwise, see 
Fig. 1.),

3.	 each point related to annihilation operator is connected using directed straight line exactly to one 
point related to creation operator of the same kind, i.e., particle (hole) annihilation operator to 
particle (hole) creation operator, obeying the same direction (clockwise or counterclockwise) as 
points in point 2) of the definition,
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4.	 each directed line that connects pair of points on unit circle from point 3) of this definition corresponds 
to a Wick’s contraction line that connects pair of operators,

5.	 sign of the result of the Wick’s contraction of operators corresponds to the number of intersections 
of directed lines inside unit circle I, i.e., the sign is -1 if I is an odd number and 1 if it is an even 
number or zero.

Fig.1. Counter-clockwise and clockwise choice of direction. 

Theorem 2. Let S and W be two sets of graph-like objects described above. Set S is isomorphic to set W.

Proof: If two sets contain graph-like objects, which have an internal structure, as elements of sets, it is pos-
sible to define properties such as homomorphism and isomorphism which one typically relates to group 
properties. However, it is necessary to follow general steps in order to prove that there is an isomorphism 
between two sets. First, we need to examine the structure of two sets S and W. From Definitions 4. and 
5. follows directly that sets S and W must always contain the same number of elements.

Second, we need to prove that the mapping f from the Definition 5. is bijection. Any two different 
operators regardless of their kind are mapped into two different points on unit circle. Similarly, any two 
different Wick’s lines are mapped into two different directed lines that connect distinct pairs of points on 
unit circle. Therefore, it is injection. From the points 1) – 4) of the Definition 5. it is ensured that there is 
no free element in the set of all realizations of circles, i.e., codomain, and there are eliminated all unim-
portant rotations of the unit circle (point 2) of the same definition). In other words, from the point 1) one 
can never add more or have less points than the number of operators in the specific arrangement. From 
points 3) and 4) each directed line corresponds to specific pair of points, therefore there are no extra, nor 
less directed lines then corresponding Wick’s contraction lines. Thus, the mapping f between set S and 
W is surjection. When mapping is both injection and surjection, we say that the mapping is bijection, and 
we have proven the second part of the theorem. 

In the third part we need to show that the mapping f is homomorphism. The same ordering of operators 
leads to the same ordering of corresponding (special) points on unit circle and the same arrangement 
of Wick’s contraction lines that connects operators of the same kind leads to the same arrangement of 
directed lines between points on unit circle, which is ensured by the points 2) and 4) of the Definition 5. 
Mathematically speaking, let denote operators in the specific arrangement of operators as vertices V and 
Wick’s lines as edges E and similarly (special) points on unit circle as vertices Λ and directed lines as edges 
Σ in the other set. In other words, let assume we have graph-like objects G = (V, E) , and Δ = (Λ, Σ). We also 
have intersections I, which exist in graph-like objects in both sets and here are treated independently. We 
can define adjacency operation ⋇ between each vertex a, b ∈ V as
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a ⋇ b = 1 if (a, b) ∈ E,
a ⋇ b = 0 otherwise.

(14)

Similar definition may be found in ref.: (Hell & Nešetřil, 2004). In other words, the adjacency operation 
returns 1 if the vertices a and b are connected by an (directed) edge in the graph and returns 0 otherwise. 
Analogous operation one can define between each vertex c, d ∈ Λ of the other graph-like object. The ho-
momorphism between two graph-like objects, i.e., in our case elements of set S and set W, satisfies the 
following relation:

f(a ⋇ b) = f(a) ⋇ f(b). (15)

The adjacency operation ⋇ is already explicitly includedin each Wick’s contraction line which connects an-
nihilation and creation operators of the same kind, but also in directed line which connects corresponding 
pair of points on unit circle, which follows directly from the Definition 5. Both result in Kronecker delta 
usually with an additional information about state which may be bellow or above the Fermi surface, due to 
difference between particles and holes. Therefore, the mapping f from the Definition 5. is a homomorphism. 
Note also that one can define adjacency matrix as in the graph theory, see for example ref.: (Veljan, 2001).

Adjacency operation is just a part of internal structure of graph-like objects, which also contain intersec-
tion points, which are treated separately through sign operation. The sign result is also preserved by the 
function f. From the point 5) of the Definition 5. for each g ∈ S and some w ∈ W follows that sign(g) = sign(w). 
To see why, note that the minimal number of intersections of Wick’s lines, if exist (otherwise is zero), regard-
less of operator arrangement inside quantum mechanical bra-ket is equal to the number of intersections 
of directed lines inside the unit circle, which may be obtained from simple geometrical relations, i.e., the 
position of lines with respect to each other. This corresponds to solving system of linear equations for 
each pair of lines. Furthermore, any additional intersections of Wick’s lines inside bra-ket, which may come 
from the choice of an individual, always come in pairs, which means that the sign of Wick’s contraction 
will remain unchanged regardless of individual calculation procedure. Therefore, we conclude that the 
sign is also conserved by homomorphism f. Every element g ∈ S corresponds to some realization of non-
vanishing full Wick’s contractions for specific operator arrangement, which means that homomorphism 
f also preserves the total contraction result, i.e.,

 (16)

which follows directly from the previous step, where n is the number of operator pairs. 
In the last step we need to prove that it is possible to construct inverse mapping f -1 which is also a 

homomorphism. The Definition 5. also describe the internal structure of arbitrary element w ∈ W, in 
particular point 2) of the same definition fixes point ordering up to irrelevant choice of the first point and 
a choice of direction and similarly point 4) fixes lines which connect pairs of points. Due to arrangement 
preservation in terms of points and directed lines on unit circle, it is always possible to map back to the 
arrangement of operators and Wick’s lines inside a bra-ket. The proof is the same as in the third part of 
the proof, with only difference where points and directed lines are replaced by operators and Wick’s lines, 
and opposite. Point 5) holds in both directions, what is proven in the previous step, which means also for 
mapping f –1. Therefore, the mapping f –1 is also homomorphism. From previous steps we conclude that 
sets S and W are isomorphic.

Definition 6. Let indices p1 ,p2,p3,…,pn (h1 ,h2,h3,…,hm) represent the order of appearance of n annihilation 
particle (m hole) operators corresponding to one end (left end) of the Wick’s contraction lines, while in-
dices p1‘,p2‘,p3‘,…,pn‘ (h1‘ ,h2‘,h3‘,…,hm‘) for the positions of n creation particle (m hole) operators which are 
connected to p1-th,…, pn-th, (h1-th, …, hm-th) Wick’s line respectively. Permutation operation of the creation 
end (right end) of at most (n+m) Wick’s contraction lines, while keeping annihilation operator places fixed, 
is defined as (written in two-line notation):
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(17)

where elements pk – pk‘ (hk – hk‘) in the first row represent k-th Wick’s contraction line connect-
ing fixed k-th annihilation and free creation operator of the same kind with corresponding in-
dices and elements of the second row  after transformation, with the following  
conditions:  for every column k ∈ P. The action of P is defined as the change 
of the end of the k-th Wick’s contraction line (in the k-th column), i.e., the ending creation operator, if 

, otherwise it is not changed. Indices  stand for new positions of the end of the line.

Claim 1. Any permutation of ends of Wick’s contraction lines from the Definition 6. may be composed of 
a sequence of one-end swaps of two Wick’s contraction lines. 

Explanation: With a sequence of swaps of only one end of two Wick’s contraction lines one can make all 
possible arrangements of Wick’s lines, obeying standard rules defined by Wick (Wick, 1950). It corresponds 
to a well-known problem which states that from a sequence of swaps of arbitrary two elements of a set 
one can build all possible permutations of elements (creation operators of the same kind in our case), 
which is proven by and used as the computational algorithm by Heap, B. R., see ref. (Heap, 1963). We use 
this algorithm for construction of all permutations of Wick’s lines in our computer code (see Section 4.)

Lemma 1. Set of permutations of one end of Wick’s lines X described by the Definition 6. is a group with 
the respect to the composition of permutations as the group operation.

Explanation: The proof follows directly from the permutation group properties with additional constraints 
from the Definition 6. and will not be discussed further.

Example 2: Multiplication table for the permutations of ends of Wick’s lines connecting operators in the 
Hartree-Fock approximation two body form is shown in Table 1. Let us define abbreviation for the following 
permutations in which Wick’s lines stay the same:

(18)

and the transposition of two lines

(19)

where Wick’s lines are changing one end between two hole creation operators, while keeping annihilation 
hole operators fixed. The multiplication table, i.e., the composition of permutations, one builds straight 
forward, except for the term:

(20)

Table 1. Multiplication table for the permutation group X (hh h† h†).

⊗ E τ

E E τ

τ τ E
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Definition 7. Let X be a group of permutations of ends of Wick’s lines described by the Definition 6 and let 
S be a non-empty set of nonvanishing Wick’s contractions. Natural action of X on S is given by the function  
ϕ : X × S → S defined by (see for example ref. (Dummit, & Foote, 2004)):

ϕ(P, g) = ϕP(g) = P ∘ g = P(g), 
for all P ∈ X and all g ∈ S

(21)

which satisfies the following conditions of a group actions:

i)	 for each g ∈ S the identity element E ∈ X fixes g, i.e., E ∘ g = E (g) = g,
ii)	 for each P, Q ∈ X and each g ∈ S we have (P ⊗ Q) ∘ x = P ∘ (Q ∘ x), where binary operation ⊗ stands 

for the composition of permutations from the Definition 6.

Explanation: Note that the action of X on S is always well behaved, i.e., from the Definition 6. directly fol-
lows that the action of each p ∈ X on each g1 ∈ S is just P(g1)=g2, where g2 ∈ S. The action always results 
in some element of S. Note also the difference between operations ⊗ and ∘, i.e., operation ⊗ is compo-
sition between two arbitrary permutations, while ∘ represents the action of arbitrary element of X i.e., 
permutation, to arbitrary element of S.

Lemma 2. The set of all bijections from S to itself from the Definition 7. that can be obtained by applying 
all elements of X to all elements of S, i.e., the set of functions ϕP, forms a group under composition of 
functions. This group is called the Wick’s permutation group of X induced by the action of X on S and is 
denoted by XS.

Proof: The proof naturally comes from the properties of the group action from the Definition 7. Let us 
assume that for each g ∈ S and each bijection ϕP ∧ ϕQ ∈ XS, the composition of the actions on element g 
is then ϕP ∘ ϕQ(g) = ϕR(g), where ϕR(g) is another action on element g and ϕR ∈ XS. From the Definition 7. 
we have ϕP (g) = P(g) and ϕQ (g) = Q(g), where P and Q ∈ X. On the other hand, from the Lemma 2. the 
composition of permutations P Q = R is just another permutation, i.e., R ∈ X, therefore ϕP ∘ ϕQ = ϕR, inde-
pendent of choice of the element g ∈ S, so the group closure condition is satisfied. 

In the second step we want to show the existence of the identity bijection . Let us assume that for each  
exists an identity bijection  for which we have:

ϕP ∘ ϕE(g) = ϕE ∘ ϕP(g) = ϕP(g) (22)

In other words, for every g ∈ S holds ϕE(g) = E(g) = g therefore ϕP ∘ ϕE(g) = ϕP(g) = P(g). Similarly, from 
the second condition in the Definition 7. follows that ϕE ∘ ϕP(g) = E ∘ (P ∘ g) = (E P) ∘ g, while from Lemma 
1. follows that (E P) ∘ g = (E P)(g) = P(g) from which  ϕP ∘ ϕE = ϕE ∘ ϕP = ϕP , independent of the choice of 
the element g ∈ S. Therefore, we have proven the existence of identity bijection ϕE ∈ XS.

Similarly, let us assume that for each g ∈ S and each ϕP , ϕQ and ϕR ∈ XS:

ϕP ∘ (ϕQ ∘ ϕR )(g) = (ϕP ∘ ϕQ ) ∘ ϕR(g) (23)

The associativity of the composition of bijections follows directly from Lemma 1, i.e., the group closure and 
associativity of permutations, and the second group action condition from the Definition 7. In other words, 
from the first part of the proof, for every g ∈ S the action of the composition of bijections ϕQ ∘ ϕR(g) is just 
another action ϕT(g), where bijection ϕT ∈ XS i.e., ϕT(g) = T(g), for which from the Lemma 1. and Definition 
7. follows T(g) = Q ∘ R(g). However, ϕP ∘ ϕT (g) is again another action ϕU (g), where bijection ϕU ∈ XS, for 
which analogously have U(g)=P ⊗ T(g)=P ⊗(Q ⊗ R) (g). On the other hand, for every g ∈ S let the action 
of the composition of bijections ϕP ∘ ϕQ(g) be equal to ϕW(g) where ϕW ∈ XS, i.e., ϕW(g) = W (g), for which 
W(g)=P ⊗ Q (g). Similarly, we have ϕW ∘ ϕR (g) = W ⊗ R(g) = (P ⊗ Q) ⊗ R(g) From the Lemma 1., i.e., 
the associativity of permutations P ⊗ (Q ⊗ R)= (P ⊗ Q) ⊗ R from which follows that ϕP ∘ ϕT = ϕW ∘ ϕR 
therefore ϕP ∘ (ϕQ ∘ ϕR ) = (ϕP ∘ ϕQ ) ∘ ϕR , independently of the choice of the element g ∈ S and we have 
proven the third part.



10
D. Vale, N. Paar

Zbornik Istarskog veleučilišta Vol. 2 (2023.), No. 1

In the last part we need to show that for each bijection ϕP ∈ XS exists a unique inverse bijection ϕP
–1 ∈ XS. 

Let us assume they satisfy the following property for each g ∈ XS:

ϕP ∘ ϕP
–1 (g) = ϕP

–1 ∘ ϕP (g) = ϕE (g) (24)

In other words, let assume that for each ϕP ∈ XS exists unique ϕP for which ϕP ∘ ϕQ (g) = ϕE (g), where and  
From the Definition 7. follows (P⊗Q)(g)=E(g), while from Lemma 2. follows P–1=Q. Further, ϕQ (g) = ϕP–1 (g) 
from which follows ϕP

–1 (g) = ϕP-1 (g). On the other hand, the same holds for ϕQ ∘ ϕP(g) = ϕE(g). From the 
Definition 7. follows that (Q⊗P)(g)=E(g), while from Lemma 1. again follows P–1=Q. The rest of the proof 
is the same as in previous step, which means that from (P⊗Q)= (Q⊗P)=E, follows that for each ϕP ∈ XS 
exists a unique inverse bijection ϕP-1 ∈ XS, independent of any choice of the element g ∈ S. Therefore, we 
have proven that XS satisfies all group properties, which correspond to the properties of the group X. 

Definition 8. Let  are coordinates of points related to ends and 
 of the beginning of n directed lines  that corresponds to pairs of par-

ticle operators. Similarly, from m directed lines that connect pairs of points related to hole operators we 
have coordinates   and . Rotation 
Υ of the beginning of direct lines which connect pairs of points of the same kind on unit circle is defined as:

(25)

where  and  represent new coor-
dinates of the beginning of lines after performed operation and     stands 
for , where we have operationally defined angles of rotation:

 , (26)

with

(27)
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and similarly, to hole operators, where  . Regardless of the operator kind, for every 
k = 1, 2, 3, …, (n+m) must hold   for counterclockwise, and  for clockwise direction of 
setting points, where  ( ) represents old (new) angle between line connecting the center of unit circle S 
and a point related to the first operator (independent of operator kind) and a line connecting S and point 
related to the k-th creation operator, and similarly for ωk for annihilation operator.

Lemma 3. Let W be a set of (special) equidistant points on unit circle connected with directed lines from 
the Definition 5. Set of all rotations Υ of points which are the beginning (or end) of directed lines from the 
Definition 5. is a group ℛ with respect to the composition of rotations ⨀ as a group operation.

Proof: Rotation of one end of each directed line is a subset of a discrete version of orthogonal group 
SO(2), the so called Zn group, cyclic group of order n, which consists of rotations of the plane by an angle 
of 2π/n radians. Further, there exist additional constraint, i.e., new angles must satisfy , for 
counterclockwise, and  for clockwise choice of a direction for every k-th line (see the Defini-
tion 6.). Therefore, the group R corresponds to a subgroup of a group obtained by Cartesian product 
Zn+m × Zn+m × … × Zn+m = Zn+m ⊕ Zn+m ⊕ … ⊕ Zn+m with additional constraints from the Definition 8., where 
⊕ here denotes the direct sum.

First, we need to show that the group is closed with respect to rotation Υ, which means that applying any 
composition of operation performed on two arbitrary elements in the group always produces another 
element in the group. Second, note that angles in Υ are operatively defined, not with fixed values, therefore 

 rather contain angle relations between pairs of corresponding points. In order to 
prove the closure property of the group, we need to show that additional condition from the Definition 8. also 
behave well for each Υ1, Υ2 ∈ ℛ where  and   
while the rest follow from the group properties of the Zn+m ⊕ Zn+m ⊕ … ⊕ Zn+m group. In other words, the 
composition of corresponding rotations is given by:

(28)

where from the properties of Zn+m group we have: , for each k = 1, … , (n+m)  
regardless of kind, while from the Definition 8. we have:

(29)

where 0≤ rk<2(n+m), 0≤ wk<2(n+m), from which 

(30)

where 0≤ yk<2(n+m). By comparison must hold

(31)

which has the same form as for αk and βk. Condition  must hold for each rotation for counterc-
lockwise, and  for clockwise direction of setting points on unit circle. In other words, composition 
of rotations of beginnings (or ends) of directed lines is another rotation , 
which satisfy the Definition 8., therefore the group ℛ is closed. 
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Second, the existence of identity rotation Σ ∈ ℛ follows directly from the properties of the Zn+m group, 
where identity element is 0. In other words, in order to obtain αk= 0 the request is that for each line rk= 0  
(k = 1, 2,...(n+m)) regardless of operator species. Therefore, Σ must contain only rotation angles αk= 0 i.e., 
Σ = ϒ (0,...,0), ie. for each ϒ ∈ ℛ satisfies Σ ⊙ Υ= Υ ⊙ Σ= Υ. 

Third, for each Υ1, Υ2 and Υ3 ∈ ℛ, where    
and , we have:

(Υ1 ⊙ Υ2 )⊙ Υ3= Υ1 ⊙ (Υ2 ⊙ Υ3), (32)

which may be rewritten as in the previous step in the following form:

, for each 
 regardless of kind.

(33)

The two expressions are equivalent because addition of angles is associative, i.e., the order in which we 
add three angles does not affect the result. From the previous step, the condition  for coun-
terclockwise, and  for clockwise direction setting points on unit circle, must hold at each step of 
summation. Therefore, we can group the terms in either way and get the same result and we have proved 
the associativity.

Every element in a group has a unique inverse element. For any element Υ1 ∈ ℛ, there exists a unique 
element Υ2 ∈ ℛ such that

Υ1 ⊙ Υ2 = Υ2 ⊙ Υ1 = Σ, (34)

where the inverse element of Υ1 is denoted by Υ2 = Υ1
–1.

(35)

, for each  regardless of kind. (36)

from which we have the first case with αk + βk= 2π if both αk≠ 0 and βk≠ 0, and the second case with 
αk + βk= 0 if αk= βk= 0. All other possibilities are excluded by the Definition 8. which put constraints on 
values of angles. Therefore, we have proven the last part and the group properties of ℛ.

Example 3.: Let us consider the multiplication table for the discrete rotation group ℛ(hchhh†h†c†h†), where 
rotations Υ are defined operationally as: e = Υ(0,0,0,0), σ13 = σ13=Υ(θ3–θ1, 0, θ1–θ3, 0), σ14=Υ(θ4–θ1, 0, 0, 
θ1–θ4), σ34=Υ( 0, 0, θ4–θ3,θ3–θ4), τ413=Υ(θ4–θ1, 0, θ1–θ3, θ3–θ4), 341=Υ(θ3–θ1, 0, θ4–θ3, θ1–θ4).

Table 2. Multiplication table for the discrete rotation group ℛ(hchhh†h†c†h†). 

⨀ e σ13 σ14 σ34 τ413 341

e e σ13 σ14 σ34 τ413 341

σ13 σ13 e 341 τ413 σ34 σ14

σ14 σ14 τ413 e 341 σ13 σ34

σ34 σ34 341 τ413 e σ14 σ13

τ413 τ413 σ14 σ34 σ13 341 e

341 341 σ34 σ13 σ14 e τ413
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Definition 9.  Let ℛ be a finite group of rotations and let W be a nonempty set from previous lemma and the 
Definition 5. respectively. The natural action of ℛ on W is given by the function φ : ℛ × W → W  defined by:

φ(Υ,w)=φΥ (w)= Υ ∘ w = Υ(w), for all Υ ∈ ℛ and all w ∈ W (37)

which satisfies the following conditions of a group actions:

i)	 for each w ∈ W the identity element Σ ∈ X fixes w, i.e., Σ ∘ w = Σ(w) = w.
i)	 For each Υ1, Υ2 ∈ ℛ and each w ∈ W we have (Υ2 ⊙ Υ1) ∘ w = Υ2 ∘ (Υ1 ∘ w), where binary operation 

⊙ stands for the composition of rotations from the Definition 7.

Lemma 4. The set of all bijections from W to itself that can be obtained by applying elements of ℛ to W, 
i.e., the set of functions φΥ, forms a group under composition of functions. This group is called the per-
mutation group of ℛ induced by the action of ℛ on W and is denoted by ℛW.

Explanation: Steps of the proof are analogous to the ones of the proof of the Lemma 2. Therefore, it will 
not be discussed separately here.

Example 4.: For example, let w1,…,w6 are the elements of the set W which corresponds to geometric in-
terpretation of the full Wick’s contractions shown on Fig. 5. with designations from (15, 0), … , (15, 5). One 
can build all elements of the group starting from any of them by performing group action, i.e., rotations 
explained above. As an example, if we take w2, we get:

e(w2)=w2, σ13 (w2)=w6, σ14 (w2)=w4, 
σ34 (w2)=w1, τ134 (w2)=w3 , ̃134 (w2)=w5

(38)

Theorem 3. Let XS and ℛW be two groups described earlier. The induced group XS is isomorphic to induced 
group ℛW.

Proof: First, we need to examine the structure of two groups XS and ℛW. From Definitions 4. and 6. it follows 
directly that group XS and ℛW must always contain the same number of elements. They both satisfy group 
axioms, which is proven earlier in this work (see Lemmas 3. and 4.). 

Second, let us assume that such mapping exists and is given by function h: XS → ℛW, defined as: 
h(ϕP)=φΥ (w), for all ϕP ∈ XS and all φΥ ∈ ℛW. From the Definition 7., for every ϕP ∈ XS and g ∈ S we have 
ϕP (g) = g' where g' is just some element of the set S, and similarly from the Definition 9. for every φΥ ∈ ℛW 
and w ∈ W we have φΥ(w) = w', where w' some element of set W. From the Theorem 2., which states that   

 for all g ∈ S and all w ∈ W, in order to have group actions from Definitions 4. and 6., preserved, the 
function h must be both injection and surjection, i.e., bijection. To prove that we will assume the opposite 
situation, i.e., h is not surjection nor bijection. If h is not surjection, there exist some φΥ' ∈ ℛW which cannot 
be obtained by mapping h. But this is contradiction by the definition of function h, therefore the function 
must be surjection. On the other hand, let us assume that the function is not injection. Let ϕP1

, ϕP2
 ∈ XS 

and φΥ1
, φΥ2

 ∈ ℛW, if  and  then there must be some ϕP1
≠ ϕP2

 for which φΥ1
= φΥ2

. There-
fore, for every g ∈ S if ϕP 1

 (g) = g1 and ϕP 2
 (g) = g2, where both g1 and g2 are some elements of set S, from 

the Definition 7. follows that g1 ≠ g2, while for every w ∈ W from the Definition 9. follows that φΥ(w) = w', 
where w' ∈ W. However, from the Theorem 2. if  and , follows that g1 = g2 which is a con-
tradiction. In other words, function h is an injection. When function is both injection and surjection, we 
conclude that h is a bijection.

In order to prove that mapping h is a homomorphism, we need to show that for each ϕP1
and ϕP2

 ∈ XS 
some φΥ1 

and φΥ2
 ∈ ℛW we have: . Let us assume that there exists such homomor-

phism h. For each g ∈ S and all w ∈ W, and for each P1and P2 ∈ S some Υ1 
and Υ2 ∈ W if  

and , follows that P1 ⊗ P2(g)  Υ1 ⊙ Υ2 (w). In order to prove previous statement, from 
the Lemma 1. follows that for each P1, P2 ∈ X and g ∈ S we have P1 ⊗ P2 = P3 where P3 ∈ X, so P3(g) = g', 
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where g' ∈ S by the Definition 7. Similarly, from the Lemma 4. for each Υ1, Υ2 ∈ ℛ and w ∈ W, we have 
Υ1 ⊙ Υ2 (w) = Υ3 (w), from which Υ3 (w) = w', where w' ∈ W by the Definition 9. On the other hand, the 
Theorem 2. states that the mapping between graph-like objects from the Definition 5., i.e., g'  w' for 
all g' ∈ S and w' ∈ W is a homomorphism, therefore must hold P1 ⊗ P2(g)  Υ1 ⊙ Υ2(w). From previous 
statements follows that P1 ⊗ P2(g)  Υ1 ⊙ Υ2, so . Therefore, such homomorphism h exists 
and we have proven the third part. 

One can easily see how homomorphism h impose these conditions on the mapping, i.e., for iden-
tity bijection ϕE ∈ XS we have: for each ϕP ∈ XS must hold ϕP ∘ ϕE = ϕP. Since h is a homomorphism, 
h(ϕP ∘ ϕE)=h(ϕP)⋆h(ϕE), so h(ϕP)=h(ϕP)⋆h(ϕE). By cancelation laws for groups, this means that h(ϕE)= φΣ, 
which is identity in the group ℛW. This is rather general property of the homomorphisms than this specific 
case, i.e., they always map unique identity element of one group to the unique identity element of another 
group. Similarly, inverse element of ϕP is also mapped to the inverse of the element h(ϕp).

From the point 5) of the Definition 5. for all g ∈ S and w ∈ W if g  w then sign(g) = sign(w). Fur-
ther, from the Definitions 7. and 9. for some P ∈ X and some Υ ∈ ℛ  sign(P(g)) may be different than 
sign(g) and similarly sign(Υ(w)) may also be different from sign(w), therefore it is not necessarily con-
served by respective operations. However, for each g ∈ S and w ∈ W and for each P ∈ X and some 
Υ ∈ ℛ if g  w and P(g)  Υ(w) follows that sign(P(g)) = sign(Υ(w)). From the previous statement fol-
lows that for each  ϕP ∈ XS and some φΥ ∈ ℛW if ϕP   φΥ then parity(ϕP)=parity(φΥ). Similarly, for each 
g ∈ S and w ∈ W, and for each P1, P2 ∈ X and some Υ1, Υ2 ∈ ℛ if P1(g)  Υ1(w) and P2(g)  Υ2(w), then 
sign(P1 ⊗ P2(g)) = sign(Υ1 ⊙ Υ2(w)). Therefore, for each ϕP1 

and ϕP2 
∈ XS and some φΥ1

 and φΥ2
 ∈ ℛW if  

ϕP1
 ∘ ϕP2   φΥ1

 ⋆ φΥ2
 then parity(ϕP1

 ∘ ϕP2
)=parity(φΥ1

 ⋆ φΥ2
) and we have proven this part. Consequent-

ly, we also have that for each g ∈ S and w ∈ W if g  w and E is identity in X and Σ is identity in ℛ, then 
sign(E(g)) = sign(Σ(w)), while for inverses sign(P-1(g)) = sign(Υ-1(w)). Therefore, for the identity bijection  
ϕE in XS and φΣ in ℛW we have parity(ϕE)=parity(φΣ). On the other hand, for each ϕP 

∈ XS and some φΥ ∈ ℛW, 
if ϕP

–1 is an inverse of ϕP, φΥ
–1 is an inverse of φΥ and ϕP   φΥ, then ϕP

–1
   φΥ

–1 and parity(ϕP
–1)=parity(φΥ

–1). 
Consequently, we also have parity(ϕP

–1)=parity(ϕP) and parity(φΥ
–1)=parity(φΥ).

One can easily prove bijection h–1 is also homomorphism by interchanging two induced groups. From 
the Theorem 2., the sign operation holds in both directions, therefore it must also hold for the mapping h–1. 
All steps are the same as in the case of the function h. Therefore, the mapping h–1 is also homomorphism. 
From previous steps one finds that there is one-to-one correspondence between two induced groups, 
therefore there exist an isomorphism between them. From the mathematical side, we have proven all 
necessary parts needed to build our algorithm.

Example 5.: Let us take w1 from previous example which has the contraction sign(w1)=–1. Performing 
operations with negative parity, such as transpositions of one end of two lines, σ13, σ14, and σ34 respecti-
vely, one gets elements with opposite sign, i.e., 1. Identity and rotations of one end of three lines at the 
same time have the positive parity, which means they always lead to elements with the same sign result. 
Note, that the previous explanation is valid regardless of the choice of the element w ∈ W. Also, note that 
E, σ13, σ14, and σ34 have inverses which are in fact themselves and inverse of τ413 is just 341 (and opposite). 
Because of the Definition 8. for every w ∈ W the sign(τ413 (w)) = sign( 341(w)).

3. Description of the FWC-QMBFS Algorithm
The full code in C programming language may be found on the webpage with complete pseudocode des-
cription of the algorithm and examples, i.e., the link is: https://github.com/denivale/FWC-QMBFS.

The algorithm starts from reading data from input file using simple syntax, where data here represent 
creation and annihilation fermion operators that usually appears in calculation of quantum mechanical 
expectation values in particle-hole many-body picture. The canonical transformation to particle and hole 

https://github.com/denivale/FWC-QMBFS
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operators is also provided in the first step of calculation if one uses general operators for one- or two-
body terms, transition or density matrix elements. 

After performing canonical transformation of general operators, we need to calculate full Wick’s contrac-
tion of quantum mechanical operators. Previous step may be avoided if the calculation of the expectation 
value does not contain any operator of the general type. First it necessary to check whether we have an 
even number of operators. If that number is odd, the function immediately returns 0. While calculating 
full Wick’s contraction for each combination, it is enough to check whether at any moment of counting 
we have different number of creation and annihilation hole (particles) operators. If there is an excess or 
deficiency of creation operators with respect to annihilation operators of each kind, the result for com-
bination is 0. In other words, the failure to fulfill at least one of the conditions means the disappearance 
of the expected value for corresponding combination. 

The next step includes mapping between a set of full Wick’s contraction S (see the Definition 4.) and 
a set of equidistant points on unit circle W with rules described in the Definition 5. and an isomorphism 
between two sets S and W from the Theorem 2. Note that each element of the set S corresponds to the 
specific arrangement of pairs of operators connected with Wick’s lines for each possible nonvanishing 
combination. If the conditions from previous step are fulfilled, the calculation of each contraction line 
is performed for each arrangement of operators. This corresponds to the creation of all permutations 
of one end of Wick’s lines, i.e., the creation operator. Note that from any nonvanishing arrangement of 
Wick’s contraction lines one can achieve every other nonvanishing realization, which is by Theorem 3. 
also true for rotations of one end of directed lines on the unit circle. The last geometric representation 
is particularly useful for the calculation number of intersection. The complete calculation takes place in 
several steps: i) Checking whether it is possible to realize a contraction line between each pair of opera-
tors. If there is a contraction line that cannot be realized, then the result is 0 for specific arrangement. ii) 
If all contraction lines between pairs of operators for a given permutation can be realized, we calculate 
the sign of Wick’s contractions. iii) The contraction line is valid of two operators if the following conditions 
are met: a) The two operators must correspond to an annihilation and a creation operator of the same 
type, b) The annihilation operator must precede the creation operator. The procedure is repeated for 
each permutation of the Wick’s lines, i.e., arrangement of Wick’s contraction lines, but also for all non-
vanishing combinations obtained after canonical transformation of operators to particle-hole picture. If 
the contraction is successfully performed, the contraction result is saved in the form of Kronecker type 
data which also contains information whether it is related to states above or below Fermi level. The sign 
calculation from point ii) corresponds to the calculation of the number of intersections of directed lines 
within the unit circle, which is -1 if the number of intersections is odd, or 1 if the number of intersections 
is even number or zero.

In the last step of the algorithm the result is printed on standard output. Complete mathematical 
procedure done by algorithm presented here may also be exported in latex output, converted to pdf and 
also shown in pdf viewer. Geometrical interpretation of Wick’s contraction can be exported in various data 
types, such as pdf, eps or dvi, and viewed. It is stored with specific ordering, i.e., containing information 
of the order of combination used in calculation and permutation index (which are both just the matter of 
choice, i.e., the algorithm used).

4. Results
Averaged calculation times of expectation values of N≲6 quantum mechanical operators containing ge-
neral or only particle (hole) type are tcalc≲60 ms (Intel i7 processor, 8 GB RAM), with calculation time diffe-
rence between operators of general and particular type (holes or particles) which is less than 20 ms. The 
former can be explained by the necessary canonical transformations of general operators into particles 
or holes as intermediate step in calculation of expectation values, which in turn increases the number of 
combinations of particle and/or hole operators, i.e., corresponding bra-kets with non-vanishing Wick’s 
contractions. The difference is even larger for N>6 operators, usually few times larger than only particle 
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(hole) case, due to larger number of particle and/or hole nonvanishing combinations. The results of the 
computation time for different numbers of operators are shown in Fig. 2. 

Fig. 2. Averaged calculation time for full Wick’s contractions for various number of second quantization general 
and only particle (only hole) operators without latex or eps/dvi/ps geometrical interpretation output

In the following we demonstrate the importance of our algorithm by showing few calculations of specific 
arrangements of quantum operators used in many-body theories such as Hartree-Fock and RPA (see 
Example 1.). For both canonical transformation of operators to particles and hole type is done in the first 
step of the calculation, after which the operators are connected with the corresponding Wick’s lines. In 
the next step each arrangement of the Wick’s lines is mapped into the unit circle after which full Wick’s 
contraction procedure is performed, as described in previous section, with the result written as the sum 
of Kronecker deltas and theta functions. The elements of the set W, which we will refer here as the geo-
metrical interpretation of Wick’s contraction, are obtained in the intermediate step. 

The calculation of two body terms in Hartree-Fock approximation is related to the set S from the Ex-
ample 1.a). Performed mathematical procedure is the output of our computational algorithm, which is 
shown in Fig. 3. The geometrical interpretation (the set W) is shown on the Fig. 4. 

Fig. 3. Latex output of the calculation of the expectation value of the particle-hole contributions to Hartree-Fock 
two body term.
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Fig. 4. Geometrical interpretation of full Wick’s contractions related with calculation of the expectation value 
of the operators of the two-body particle-hole term in the Hartree-Fock approximation.

According to the Thouless theorem, it is possible to connect two arbitrary non-orthogonal states of the 
nucleus as |Ψ⟩=eŜ|Φ⟩, where S is an operator that enables this by creating various combinations of par-
ticle-annihilation pairs or various complex configurations (Thouless, 1960). Usually, we are interested in 
the case where Slater determinant |Φ⟩ is describing the ground state. Therefore, for two-body element 
we have (Da Providência, 1965): 

(39)

In order to calculate expectation value of the two-body particle-hole term in the so-called random phase 
approximation (RPA) we need to investigate the following term:

(40)

The procedure for the calculation of expectation values of operators which are related to the two-body 
term of the RPA A matrix, which is the latex output of our computer program as in the first case and it is 
presented in Fig. 5. We are focused on the first order RPA only, therefore the operator Ŝ describes only 
particle-hole configurations, i.e., . Each contraction term corresponds to different physical 
process in the particle-hole many-body picture. The first six terms on the Fig. 5., which correspond to the 
5th, 6th, 9th and 10th combination of the canonical transformation of operators, are presented in the Fig. 6., 
while the last six terms from the Fig. 5. are presented in the Fig. 7. 
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Fig. 5. Latex output of the calculation of the expectation value of the operators of the particle-hole contribu-
tions to the A matrix in RPA. The output of the canonical transformation of operators is omitted here in the 
first step of the calculation.

After inserting the result of full Wick’s contraction back to the expression in eq. (29) we obtain:

(41)

In other words, when combined with asymmetric matrix element  and expansion coefficients  
and , each of them can be related to different physical processes described by 8 topologically distinct 
Goldstone-Providencia diagrams (Da Providência, 1963; Mattuck, 1967), which are shown in the Fig. 8. 
Second column in Fig. 8. corresponds to direct (Hartree) terms, while the third column corresponds to 
exchange (Fock) terms. As an example of the Hartree contribution let us focus on the first term in eq. (41):

(42)
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Fig. 6. Geometrical interpretation of the full Wick’s contractions (set W) related with calculation of the expe-
ctation value of the operators of the particle-hole contribution to the RPA A matrix, in particular sets from S1 
to S4 from Example 1.

It describes the process in which the response of the system to the external field is first manifested in 
the creation of the particle-hole pair n4, with the realization amplitude . The mentioned pair is then 
propagated until the moment when, due to the interaction with the rest of the system, i.e. the particles 
within the Fermi sea, the particle scatters from the n state to the 2 state, which is the annihilation process 
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of the mentioned pair, and the (simultaneous) creation of the m2 pair which is propagated until some 
later moment in which the annihilation occurs due to the relaxation of the system. The amplitude of the 
annihilation realization of the particle-hole pair is shown by . This process is shown in the first row 
and the second column of the Fig.8. First term in eq. (41) also contains the Fock contribution:

(43)

which represents the case when we first have the formation of the particle-hole pair n4, where due to 
mutual interaction, the hole scatters from state 4 to state 2, and the particle from state n to state m, that 
would later lead to the annihilation of the pair m2. As before, we relate the coefficients  and  to 
the creation and annihilation of the particle-hole pairs. This process is shown in the first row and the third 
column of the Fig.7. Variation with respect to the density matrix, i.e., corresponding expansion coefficients 

 and  from Thouless theorem, leads to the RPA A matrix.

Fig. 7. Geometrical interpretation of the full Wick’s contractions (set W) related with calculation of value of the 
operators of the particle-hole contribution to the RPA A matrix, in particular set  from Example 1.
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Fig. 8. Goldstone-Da Providencia diagrams for physical processes related to RPA A matrix. Vertical arrow 
represents time flow. Empty large circles represent states below Fermi level, smaller filled circles amplitudes 
of creation or annihilation of phonons, arrows propagation of particle and dashed arrows of hole state (Da 
Providência, 1963; Mattuck 1967).  The abbreviation V. N. T. stands for “vacuum normalization terms”, i.e., 
terms which are cancelled after variation with respect to density matrix.

Summary
In conclusion, Wick’s contractions are an essential tool in the study of quantum many body systems. We 
have formulated two theorems related to the observed isomorphism between graph-like objects which 
are in fact contained in the full Wick’s contractions and some geometrical objects, such as circle or regular 
rectangle with internal structure, and an isomorphism between two induced groups, i.e., permutations of 
one end of Wick’s lines and rotations of directed lines inside geometrical object.

In this paper we have presented fast and efficient algorithm for the calculation of Wick’s contractions 
based on the observed isomorphisms. We have tested the execution time of the computer program for 
different numbers of creation and annihilation operators of the same kind and found that time of the 
execution increases almost exponentially with the total number of operators, and the case which involves 
general operators, which results in few times larger execution time with respect to the case of opera-
tors of one kind due to additional canonical transformation procedure. We have presented the tex and 
geometrical output (figures) of the computer program for few representative cases. Also, we have given 
the connection between results of the Wick’s contractions and related physical process in Hartree-Fock 
theory and Random phase approximation. 
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Wick’s contractions allow physicists to gain a deeper understanding of many body systems, and they 
continue to play a crucial role in our understanding of the behavior and interactions of particles on a 
microscopic scale.
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Sažetak
Wickove kontrakcije, također povezane s Wickovim teoremom, predstavljaju važnu matematičku tehniku 
koja se koristi u kvantnoj mnogočestičnoj teoriji za pojednostavljenje izračuna koji uključuje operatore 
stvaranja i poništenja. U ovom radu proučavali smo svojstva potpunih Wickovih kontrakcija i detaljno 
raspravili kontrakcije s aspekta teorije grafova i teorije grupa. Promatrali smo izomorfizam između 
objekata nalik grafovima koji su zapravo sadržani u punoj Wickovoj kontrakciji i nekoliko geometrijskih 
objekata, poput kružnice i pravilnog poligona koji imaju unutarnju strukturu. Također smo pronašli 
izomorfizam između dvije inducirane grupe, jedne koja je povezana s permutacijama jednog kraja 
Wickovih linija i druge koja odgovara rotacijama usmjerenih linija unutar geometrijskog objekta. 
Predstavili smo brz i učinkovit algoritam za izračun očekivane vrijednosti velikog broja operatora 
stvaranja i poništenja čestica i šupljina kako bismo izračunali različite čestično-čestične ili čestično-
šupljinske članove u mnogočestičnim teorijama, od nuklearne fizike do fizike čvrstog stanja ili kvantne 
kemije. Naš algoritam temelji se na opaženim izomorfizmima. Potpune Wick-ove kontrakcije svodi na 
jednostavne relacije susjedstva i geometrijske odnose, koje smo također iskoristili za određivanje njihova 
predznaka. Također, prezentirali smo nekoliko ilustrativnih primjera računanja, poput dvočestičnih 
čestica-šupljina članova koji se pojavljuju u Hartree-Fockovoj teoriji i aproksimaciji slučajnih faza.

Ključne riječi: Wickov teorem, Wick-ove kontrakcije, teorija grupa, teorija grafova, kvantna mehanika, 
kvantna mnogočestična teorija, Hartree-Fock, aproksimacija slučajnih faza




