The Sand Removal Performance and Erosion Characteristics of Shale Gas Wellhead Desander

Jian ZHANG, Chang LIU, Dong LIN, Jian GAO, Changchao QI, Jun JIANG, Bo KOU, Shanbi PENG*

Abstract: In the process of shale gas extraction, fracturing technology is often used, and the extracted gas contains large amounts of sand, resulting in the risk of blockage and erosion of surface gathering equipment, which seriously affects safe production. To address this problem, this paper presents a numerical study of the sand removal performance and erosion characteristics of the filter desander used in Sichuan shale gas fields under different operating conditions (flow velocity, sand mass flow rate, operating pressure, and sand particle size) using CFD method. The results show that the increase of shale gas velocity is not conducive to the efficient operation of the filter desander. So the flow velocity should be controlled within 10 m/s as much as possible to avoid the rapid drawdown of separation efficiency and overly high erosion rate. When the sand size increases from 10 μm to 100 μm, the erosion area of the filter desander changes to sheet-like distribution, and the separation efficiency increases to 85%, a 2.3-fold increase. In addition, the change in operating pressure has a relatively small impact on the erosion wear of the desander.

Keywords: desander; erosion; separation efficiency; numerical simulation; shale gas

1 INTRODUCTION

Currently, with the promotion of "carbon neutral", the world has entered a critical period of energy transition, and the shift from fossil energy to new energy development has become an inevitable trend [1-4]. As an unconventional natural gas, shale gas has the characteristics of low pollution, high efficiency, and large reserves. At present, fracturing technology is often used in shale gas exploitation. The fracturing flow back fluid contains sand and other solid impurities, causing blockage and erosion of shale gas surface gathering equipment, which may lead to equipment and pipeline failure in serious cases and affect the safe production of gas field exploitation [5].

Shale gas wellheads in Sichuan mainly use filter desander to remove solid impurities such as sand. Fig. 1 is the structure of this device. During the operation process of the desander, the solid sand in the extracted gas will be blocked by the baffle and filter screen when passing through the desander, thus achieving the purpose of gas-solid separation. For the shale gas desander, separation efficiency is an important index to estimate its sand removal performance, which directly determines the safety and stability of gas field exploitation.

![Figure 1 Filter desander](image1)

The filter desander is subject to severe erosion wear, as seen in Fig. 2. Over time, the cartridge filter will be broken through by solid sand, thus failing to work. At the same time, due to the wide parameters range of field operation, the separation effect cannot meet the production requirements, and the downstream separator will still be eroded by large amounts of sand.

![Figure 2 Comparison between the desander cartridge filter before and after erosion](image2)

Therefore, it is necessary to study the sand removal performance and erosion characteristics of this equipment to clarify its reasonable operating conditions so that the filter desander can keep working efficiently. In recent years, scholars have carried out many studies on the sand removal performance of desanders, as shown in Tab. 1.
Up to now, scholars have conducted many studies of the separation performance, but there is still little research on erosion. Admittedly, this is closely related to the difficulty of the erosion experiments on desanders. With the rapid development of computer science, the application of Computational Fluid Dynamics (CFD) to erosion research has gradually become a trend [13-15]. This paper retrieved the CFD studies of desander erosion in recent years, and the summary is shown in Table 2.

In summary, most of the studies focus on the analysis and discussion of the sand removal performance and pressure loss of desanders and have proposed various methods for structural improvement. However, it can be seen from the above literature that as an important piece of equipment in the shale gas industry, filter desander has received little attention from scholars, and studies on their erosion studies are even more scarce. In view of the above reasons, this paper will analyse the sand removal performance and erosion characteristics of filter desander under different operating conditions to clarify the reasonable operating conditions and failure-prone locations of filter desanders, so that they can maintain efficient operation and provide technical guidance for field inspection at the same time.

In the second part, the turbulence model and erosion model are established, and the three-dimensional model of the filter desander is built by investigating the relevant parameters of existing desanders in Sichuan. In the third part, based on Ansys FLUENT, a hydrodynamics simulation software, the velocity and pressure fields inside the desander are analysed. Then, the effects of inlet velocity, sand mass flow, operating pressure, and sand size on the separation efficiency and erosion wear of the desander are further analysed, and a reasonable range of operating parameters is given.
2 MODEL AND METHOD
2.1 Mathematical Models

2.1.1 Continuity Equation

It is assumed that the shale gas is an incompressible ideal fluid in a turbulent state. Based on this assumption, the continuity equation is shown in Eq. (1):

$$\frac{\partial (\rho u_i)}{\partial x_i} = 0$$

where, \(u_i\) is the average flow velocity of shale gas; \(x_i\) is the location.

2.1.2 Turbulence Equations

After the shale gas enters the filter desander, the fluid motion at the filter screen and the exhaust pipe are complex and variable, so the Realizable \(k-\varepsilon\) model is most applicable. Turbulent kinetic energy \(k\) equation:

$$\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho u_i u_i)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\mu + \frac{\mu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right] + G_k - \rho \varepsilon$$

Turbulence dissipation rate \(\varepsilon\) equation:

$$\frac{\partial (\rho \varepsilon)}{\partial t} + \frac{\partial (\rho u_i \varepsilon)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\mu + \frac{\mu_t}{\sigma_\varepsilon} \frac{\partial \varepsilon}{\partial x_j} \right] + C_{\mu} \frac{k^{\frac{3}{2}}}{\varepsilon} - \rho C_{\varepsilon} \frac{\varepsilon^2}{k + \varepsilon}$$

Turbulent viscosity \(\mu\) is represented by \(k\) and \(\varepsilon\):

$$\mu = \rho C_{\mu} \frac{k^2}{\varepsilon}$$

\(C_{\mu}\) in Eq. (4) is constant in the Standard \(k-\varepsilon\) model, but to better account for the swirling effect, the value in the Realizable \(k-\varepsilon\) model is determined by the following equation.

$$C_{\mu} = \frac{1}{A_0 + A_1 U^* \frac{k}{\varepsilon}}$$

where, \(U^* = \sqrt{\Omega_{xy}^2 + \Omega_{yz}^2 + \Omega_{zx}^2}\), \(\Omega_{xy} = \Omega_{xy} - 2 \varepsilon \rho \omega_k\), \(\Omega_{yz} = \Omega_{yz} - 2 \varepsilon \rho \omega_k\), \(A_0 = 4.04\), \(A_1 = \sqrt{6} \cos \phi\), \(\Omega_{xy}\) is the average rotation rate, whose value is obtained in a coordinate system rotated with angular velocity \(\omega_k\).

2.1.3 Discrete Phase Model

Considering the movement of sand carrying airflow in the filter desander, this paper simulates the flow field of gas-solid two-phase flow in the filter desander by the DPM model with the Euler-Lagrange method, and the motion equation of sand is solved to realize the particles’ trajectory tracking control [22-24]. The equation of motion is:

$$\frac{du_p}{dt} = F_p (u - u_p) + g (\rho_p - \rho) + F_y$$

$$F_D = \frac{18 \mu}{\rho_p d_p^2} \frac{C_D Re}{24}$$

where, \(u\) is the gas velocity, m/s; \(u_p\) is sand velocity, m/s; \(F_y\) is other forms of forces in the Y-direction; \(\mu\) is hydrodynamic viscosity, Pa s; \(d_p\) is sand diameter, m; \(C_D\) is drag force; \(Re\) is the relative Reynolds number (Reynolds number of sand).

2.1.4 Erosion Prediction Model

Oka et al. [25] proposed the Oka erosion prediction model in 2005, which is considered one of the best erosion models with universality [26]. Its expressions are as follows:

$$E = E_{90} \left(\frac{V}{V_{ref}} \right)^{k_2} \left(\frac{d}{d_{ref}} \right)^{k_3} f(\alpha)$$

$$f(\alpha) = (\sin \alpha)^{n_1} (1 + H_s (1 - \sin \alpha))^{n_2}$$

where, \(E_{90}\) is the reference values of the target at 90°, kg/m²; \(V\) is the particle impact velocity, m/s; \(V_{ref}\) is the relative particle impact velocity with the target, m/s; \(k_2, k_3\) are the velocity and sand size index; \(\alpha\) is the impact angle of the sand; \(f(\alpha)\) is the impact angle function of the sand; \(n_1, n_2\) are the impact angle function constants. Since the material selected in this paper is carbon steel, the corresponding parameters are shown in Tab. 3 [19]:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(E_{90})</th>
<th>(H_s)</th>
<th>(V_{ref})</th>
<th>(d_{ref})</th>
<th>(V_{ref})</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>290</td>
<td>1.3</td>
<td>2.35</td>
<td>0.19</td>
<td>104</td>
</tr>
<tr>
<td>mm</td>
<td>1150</td>
<td>1.8</td>
<td>0.8</td>
<td>1.3</td>
<td>326</td>
</tr>
</tbody>
</table>

2.2 Physical Model

2.2.1 The Three-Dimensional Model of Desander

By investigating the desander in Sichuan shale gas fields, we found the size of the desander is DN 300×1200. Considering that the numerical simulation ignores the wall thickness of the geometry model, the diameter of the desander is taken to be 290 mm and the total height is 1150 mm. The corresponding structural parameters are shown in Tab. 4. The 3D calculation model and grid of the filter desander were generated by ANSYS software, as shown in Fig. 3.

To facilitate the subsequent erosion studies and flow field analyses, a total of seven planes were selected and three data extraction lines were set up, as shown in Fig. 4.
2.2.2 Grid Independence Test

The model and grid of the desander were generated by the ANSYS ICEM software, and the local refinement of the parts such as the exhaust elbow was performed. Considering the complex internal structure of the desander, this article adopts unstructured grids for grid division. The velocity inlet was used for the inlet and the pressure outlet was selected for the gas phase outlet, while the dust collector at the bottom was in trap mode. The inlet velocity is 6 m/s, the outlet pressure is 3.0 MPa, and the sand volume is 10 kg/d, and the sand particles are using R-R distribution, which distribution range is 10 ~ 100 μm. The separation efficiency of the desander is used as the reference index for the grid independence test.

Fig. 5 shows that when the grid number reaches 634535, the separation efficiency of the desander no longer fluctuates significantly with the increase of the grid number. Therefore, it is considered that the independence requirement has been met when the grid number is 634535, so this model is taken as the calculation model.

3 RESULTS AND DISCUSSION

3.1 Desander Two-Phase Flow Field Analysis

To better analyze the effect of shale gas on the sand particles in the dispersed phase inside the shale gas, numerical simulations were conducted for the operating condition with a velocity of 6 m/s and outlet pressure of 3.0 MPa, and the velocity and pressure distribution of gas-solid two-phase inside the desander were analyzed and discussed, as shown in Figs. 6 to 8.

Fig. 6 shows the velocity distribution cloud images of plane 1 and plane 2. The velocity flow field inside the whole desander is quite turbulent. After entering the desander, the velocity of the sand-carrying flow in the inlet section remains the same. However, the shale gas velocity decreases significantly after encountering the inlet cylindrical baffle. The flow velocity in the outlet section increases significantly due to the reduction of the flow area.

As shown in Fig. 7, the flow is obstructed by the circular baffle after entering the desander, and part of the fluid performs tangential motion along the baffle, and the velocity is gradually decreasing. On the other side of the baffle, the two separated fluids meet and perform reentry movement. At the same time, the flow is restrained by the top and wall of the desander, thus forming a velocity field with a low velocity in the middle and a higher velocity on the inside and outside.
Fig. 7 Velocity cloud images of different height planes

Plane 5 is the filter screen. There is a significant decrease in the velocity of the fluid as it passes through the filter screen. And inside the filter screen, there is a small increase in flow velocity because of the reduction of the flow area. The velocity distribution in plane 7 indicates that the shale gas performs a swirling motion at the bottom of the desander and generates the maximum velocity in the local area.

Fig. 8 shows the pressure distribution in the $X = 0$ and $Y = 0$ sections of the desander. The pressure is symmetrically distributed inside the desander about the axis, and the gas pressure reaches the minimum value inside the filter screen. The reason is that the flow field inside the desander is chaotic and the velocity direction keeps changing, so the pressure outside the filter screen is almost equal; the fluid loses more energy when it goes through the filter screen, so the pressure inside the filter screen is relatively smaller.

3.2 Effect of Flow Velocity on Sand Separation Efficiency and Erosion

Considering that the variation of shale gas flow velocity directly affects the sand removal performance and erosion characteristics of the filter desander, the paper makes the simulation analysis of different working conditions with flow velocity ranging from 2 m/s to 18 m/s, as shown in Fig. 9.
The erosion rate at the inlet circular baffle gradually grows as the shale gas velocity increases, and the erosion of the lower part of the baffle is the most obvious. The reason is that the rise in velocity increases the turbulent kinetic energy of sand particles and causes greater erosion wear of the desander wall; and under the influence of gravity, the sand-carrying flow keeps moving downward, so the main erosion area appears in the lower area of the baffle.

Fig. 10 shows the erosion cloud images of the exhaust elbow at different velocities. The erosion of the exhaust elbow mainly occurs at the outer part of the rear half of the elbow, and the erosion also increases with the higher velocity of the shale gas. Compared with the inlet circular baffle, the erosion wear of the exhaust elbow is more serious because the velocity of the outlet pipe section rises [27, 28]. When the shale gas velocity is lower than 8 m/s, the erosion area of the exhaust elbow is relatively small; when the flow velocity is greater than 10 m/s, the erosion area is extended to the outlet of the desander, and the erosion rate increases. Therefore, it is necessary to control the flow velocity within 10 m/s.
In addition, to further investigate the effect of shale gas velocity on the erosion characteristics of the filter desander, this work also analyzed its velocity field, as shown in Fig. 11.

According to the velocity cloud images at different inlet velocities in Fig. 11, the overall trend of velocity cloud images does not change much as the shale gas velocity increases, indicating that the velocity distribution in the desander is stable. Meanwhile, while the shale gas velocity is greater than 8 m/s, the maximum velocity appears in the filter screen part, and this area expands as the velocity increases. Moreover, this paper extracted the shale gas velocity and turbulent kinetic energy of each data line for quantitative analysis, as shown in Figs. 13 and 14. Fig. 12 shows the velocity variation curves at different lateral distances, and in the range of 0 to 0.2 m, the velocity first remains constant and then decreases rapidly, while in the range of 0.3 to 0.4 m, the shale gas velocity increases and then decreases [29]. The reason is that the flow direction of the shale gas changes under the action of the circular baffle, and then on the other side of the baffle, the gas converges together again, which is consistent with the regularity of the velocity field in Fig. 7.
As shown in Fig. 13, the turbulent kinetic energy of the shale gas increases with higher flow velocity, which further confirms the previous conclusion. At the inlet circular baffle of the desander, the change in flow velocity does not have a significant effect on the turbulent kinetic energy, but the closer the flow is to the bottom of the desander, the higher the peak turbulent energy of the fluid in the high flow velocity condition, which leads to increased erosion. In addition, the erosion simulation conditions based on shale gas desander are also applicable to the numerical study of the desanding performance, so the separation efficiency of the desander was also studied, as shown in Fig. 14.

Fig. 14 indicates that the sand removal efficiency decreases gradually with the increase of shale gas velocity. When the inlet velocity is less than 8 m/s, the sand removal efficiency of the desander is high and decreases slowly, because the energy contained in the solid particles is low at this time, so it is easy to be caught by the dust outlet under the influence of gravity. When the inlet velocity is greater than 10 m/s, it is easier for the solid particles to escape from the desander due to the higher flow velocity and larger energy of the particles.
3.3 The Effect of Sand Content on Sand Particle Separation Efficiency and Erosion

Since the sand production rate in each stage of the shale gas field production is constantly changing, it is necessary to analyze and discuss the sand removal performance and erosion characteristics of the desander under different sand volumes. The following simulations and analyses were conducted under the operating condition of shale gas velocity of 6 m/s and sand volume of 1 to 10 kg/d, as shown in Fig. 15.

The sand-carrying flow entering the desander is affected by the flow field fluctuation, resulting in irregular ring-shaped erosion on the inlet circular baffle. When the sand volume is 1 kg/d, the erosion characteristics of the circular baffle are not obvious, and the erosion area follows a point distribution. As the sand mass flow increases, the erosion rate of the circular baffle gradually increases [30].

Fig. 16 shows the erosion cloud images of the exhaust elbow at different sand volumes. The main erosion area of the exhaust elbow is the bottom half of the elbow, and the erosion area keeps extending toward the outlet as the sand volume increases. Since the sand particles are affected by gravity, they mainly impact the bottom of the exhaust elbow when they follow the gas to escape from the exhaust port.

![Erosion cloud images of the exhaust elbow at different sand volumes](image)

Figure 16 Erosion images of the exhaust elbow at different sand volumes

Fig. 17 shows the sand removal efficiency at three inlet velocities with different sand volumes. When the velocity of shale gas is constant, the sand mass flow rate has a small effect on the sand removal performance of the desander. While the velocity changes from 6 m/s to 10 m/s, the decrease in sand removal efficiency is almost always above 5% under a certain sand mass flow rate.

3.4 Effect of Sand Particle Size on Sand Separation Efficiency and Erosion

The size of sand particles from the extracted gas varies and affects the variation of the erosion characteristics and sand removal performance of the filter desander. Therefore, the paper studied the sand removal performance and erosion characteristics of different sand sizes (10 to 100 μm), as shown in Fig. 18.

The erosion rate at the circular baffle gradually increases with the larger sand size. When the sand size is less than 50 μm, the erosion area of the circular baffle is distributed in the two upper and lower clumps, and the maximum erosion appears as a dot. Moreover, the erosion area on the circular baffle gradually integrates into a whole when the sand size is larger than 50 μm. When the sand size is 100 μm, due to the large inertia of the sand particles, the influence of the internal flow field of the desander is smaller than the influence of their own inertia, so there are several obvious erosion points on the baffle.
Fig. 19 shows the erosion cloud images of the exhaust elbow under different particle sizes. As the sand diameter increases, the erosion rate at the exhaust elbow grows. When the sand size is 10 μm, the erosion area is distributed both inside and outside of the elbow. When the sand size is in the range of 20 ~ 70 μm, the erosion area is concentrated on the outside of the elbow and the erosion is gradually strengthened, and the major erosion area migrates downward. But when the sand size is greater than or equal to 80 μm, the major erosion areas in the exhaust elbow gradually migrate upward. In addition, to quantify the sand removal performance of the shale gas desander under different particle sizes, the paper extracted the separation efficiency under each operating condition, as shown in Fig. 20.

As the sand size increases, the overall sand removal efficiency shows a linear growth trend. The larger the sand size, the better the separation effect. When the sand size is 10 μm, the sand removal efficiency of the desander is 37%. And the sand removal efficiency is close to 85% when the sand size increases to 100 μm, which is an increase of 2.3 times.
3.5 Effect of Desander Pressure on Sand Separation Efficiency and Erosion

Through the field study of the Sichuan shale gas field, it was found that the pressure of shale gas varies greatly, and the pressure of desander can affect the physical properties of shale gas based on Basyouny's study, resulting in fluctuation of sand removal efficiency. Therefore, this paper also analyzes the sand removal performance and erosion characteristics of shale gas vertical desanders under different operating pressures (1 to 6 MPa), as shown in Fig. 21.

![Figure 21: Erosion cloud images of inlet baffle at different operating pressures](image1)

![Figure 22: Erosion cloud images of exhaust elbow at different operating pressures](image2)
The erosion area of the circular baffle mainly is distributed in dots when the pressure varies from 1 to 6 MPa, and the lower part of the baffle is also affected by the erosion wear of sand particles. However, the pressure increase of the desander does not cause the erosion area of the circular baffle to change significantly. With the growth of operating pressure, the degree is also very limited although the erosion rate of the circular baffle increases.

Fig. 22 shows the erosion cloud images of the exhaust elbow at different operating pressures. When the operating pressure increases from 1 to 6 MPa, the erosion of the exhaust elbow is relatively stable, and the erosion area is mainly concentrated in the outer part of the lower half of the elbow. However, with the change in operating pressure, the flow field of the desander does not show obvious fluctuation, and the erosion wear of solid sand particles on the elbow is also relatively stable.

4 CONCLUSION

(1) When the sand-carrying flow meets the circular baffle, the flow velocity decreases, and some sand particles are separated from the gas. After bypassing the circular baffle, the dispersed gas flow gathers again on the other side of the baffle, and reentry movement occurs. In addition, when the velocity rises, the erosion wear of both the circular baffle and the exhaust elbow increases and the separation efficiency decreases. This is especially obvious when the flow velocity exceeds 10 m/s, so it is necessary to control the flow velocity within 10 m/s.

(2) The change in sand mass flow rate and operating pressure has a small effect on the sand removal performance of the filter desander. However, as the sand volume increases, the erosion rate increases, and the erosion area expands. Compared with the above two factors, the change in sand particle size has a greater impact on the sand removal performance and erosion characteristics of the desander. When the sand size increases from 10 to 100 μm, the erosion area of the filter desander changes from point distribution to sheet-like distribution, and the separation efficiency grows to 85%.

(3) The corrosion resistance of the existing filter desander needs to be further improved. It is suggested to improve the entrance structure of the desander, reduce the impact angle, improve the sand removal efficiency, and reduce the erosion rate. Due to workload limitations, this paper did not analyze the combined effects of multiple factors. In the future, an evaluation of the filter desander can be conducted around this aspect.

Acknowledgements

This work was supported by the Sichuan Natural Science Foundation (2023NSFSC0422).

5 REFERENCES

