
2026 Technical Gazette 30, 6(2023), 2026-2035

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20230518000644
Preliminary communication

A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving
Algorithm Using PlaneGCS

Yunlei SUN, Yucong LI*, Kangping LIU

Abstract: The development of open-source geometric constraint solvers is a pressing research topic, as commercially available solvers may not meet the research
requirements. In this paper, we examine the use of numerical methods in PlaneGCS, an open-source geometric constraint solver within the FreeCAD CAD software. Our
study focuses on PlaneGCS's constraint solving algorithms and the three built-in single-subsystem solving methods: BFGS, LM, and Dogleg. Based on our research results,
the DFP method was implemented in PlaneGCS and was successfully verified in FreeCAD. To evaluate the performance of the algorithms, we used the solving state of the
constraint system as a test criterion, and analysed their solving time, adaptability, and number of iterations. Our results highlight the performance differences between the
algorithms and provide empirical guidance for selection of constraint solving algorithms and research based on open-source geometric constraint solvers.

Keywords: algorithm testing; DFP method; numerical constraint solving algorithm; open-source geometric constraint solver

1 INTRODUCTION

Computer-aided design (CAD) is the most widely used
modelling approach for engineering design. The typical
starting point in these designs is 2D sketches which can
later be extruded and combined to obtain complex three-
dimensional assemblies [1]. The geometric constraint
solver is a crucial component in this process and is often
the key technology in parametric CAD design. However,
as the engineering implementation of geometric constraint
solvers is often a proprietary technology in commercial
CAD, it can be difficult to understand the technical details.
This has led to the need for the development of open-source
geometric constraint solvers.

In this paper, we explore the application of numerical
methods in open-source geometric constraint solvers using
the FreeCAD CAD platform as an example. Samy Ait-
Aoudia et al. [2] classified geometric constraint solving
techniques into three categories: algebraic, rule-oriented,
and graph construction. Among these, algebraic methods,
including numerical and symbolic methods, are widely
used due to their fast solving speed and applicability to
almost all systems. Therefore, we focus on the application
of numerical methods in open-source geometric constraint
solvers.

However, despite some existing research focusing on
geometric constraint solving, there is still relatively little
research on the DFP method and geometric constraint
solving algorithms based on PlaneGCS. The selection of
geometric constraint solving algorithms still lacks criteria
in engineering. And the experiments in these studies only
simulate the work of geometric constraint solving
algorithms in solvers by solving systems of equations, and
are rarely actually applied to widely used solvers.
Therefore, the objective of this study is to specifically
investigate the application of the DFP method in PlaneGCS
and comprehensively evaluate its performance using the
real engineering cases as test cases. At the same time, the
selection criteria of geometric constraint solving algorithm
proposed by us are verified. Specifically, our research aims
to answer the following questions:
- How is the DFP method implemented and verified in

PlaneGCS?
- How does the geometric constraint solving algorithm

based on the DFP method compare to other

algorithms? How to choose an algorithm in
engineering practice?

- What are the strengths and limitations of the DFP
method for solving geometric constraints?
By explicitly stating these research objectives and

questions, we can better guide the investigation of the DFP
method and geometric constraint solving algorithms based
on PlaneGCS and help to choose a more suitable algorithm,
leading to a deeper understanding of the performance and
applicability of open-source geometric constraint solvers.

We explore the application of numerical methods in
open-source geometric constraint solvers using the
FreeCAD CAD platform as an example. To investigate the
application of the DFP method in PlaneGCS, we
implemented and verified the DFP method in the PlaneGCS
solver. We collected data through experiments to evaluate
the performance of the geometric constraint solving
algorithms, focusing on the solving state, solving time,
adaptability, and number of iterations. The experimental
data was obtained by testing the algorithms on a set of
representative geometric constraint systems.

In the following sections, we present our research results
and analysis.

Section 2 provides a literature review, summarising the
existing research on geometric constraint solving methods
and the solvers.

Section 3 describes the research methodology, including
an overview of the PlaneGCS constraint solving algorithms
and the implementation and verification of the DFP method.

Section 4 presents the results of our performance
evaluation, including the experimental setup, data collection,
and comparative analysis of solving state, solving time,
adaptability, and number of iterations.

In Section 5, we discuss the implications of the results,
interpreting and comparing the performance of the
algorithms, highlighting their strengths and limitations.

Finally, in Section 6, we summarise our main research
findings, answer the research objectives, discuss the
contributions and significance of the study, acknowledge the
limitations, and provide suggestions for future research.

2 RELATED WORKS

In many CAD modelling systems, 3D shapes are
created by sweeping 2D profiles. In parametric systems, it

Yunlei SUN et al.: A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS

Tehnički vjesnik 30, 6(2023), 2026-2035 2027

is common to add geometric constraints and dimensions to
the approximate profile so that the final accurate shape can
be calculated [3]. This section provides an overview of
geometric constraint solving methods and the solvers.

2.1 Overview of Geometric Constraint Solving Methods

Geometric constraint solving methods are techniques

used to resolve a geometric constraint system, as shown in
Fig. 1.

Figure 1 Geometric constraints in FreeCAD sketch

According to the classification proposed by Samy Ait-

Aoudia et al. [2], these methods can be broadly categorized
into three categories: algebraic methods, rule-oriented
methods, and graph construction methods. Algebraic
methods, in turn, encompass both numerical methods and
symbolic methods, as illustrated in Fig. 2.

The numerical method transforms a geometrically
constrained system into a set of nonlinear equations and
solves it using a numerical algorithm. This approach was
initially introduced by Hillyard [4] at the University of
Cambridge and further developed and improved by
Gossard [5] at MIT, known as Variational Geometry.
Although these equations are often multi-solvable,

numerical methods typically find only one solution. As a
result, they are used as a last resort when all other methods
have failed. Borning [6], Hillyard and Braid [7], and
Sutherland [8], use a relaxation method. This method
perturbs the values assigned to the variables and minimizes
some measure of the global error. In general, convergence
to a solution is slow. The method most widely used is the
Newton-Raphson iteration. It is used in the solvers
described in Refs. [9-11]. Newton-Raphson is a local
method and converges much faster than relaxation. The
method does not apply to consistently over-constrained
systems of equations unless special steps are taken, such as
solving a least squares problem.

The symbolic method, like the numerical method, also
transforms the geometric constraint system into a set of
nonlinear equations. However, it employs symbolic
algebra to solve these constraints, using methods like the
Grobner basis method [12] or Wu-Ritt characteristic
column method [13]. If symbolic parameters are used in
the system of nonlinear equations, the symbolic method
can find a general solution to the geometric constraint
system, making it a highly effective approach. However,
this method has the disadvantage of being slower, with
higher time and space complexity, so there are restrictions
on the types of geometric elements and constraints that can
be used.

The rule-oriented geometric constraint solving method
utilizes rules to define and carry out the construction
process, hence the name "rule-construction solving
method". This approach allows for clear representation of
geometric knowledge, separating it from the processing
stage, and makes it easy to expand the rule base. However,
this method also has its drawbacks: the rules are often
incomplete, the system is bulky, the solving speed is slow,
and it is unable to solve cyclic constraints.

Figure 2 Classification of geometric constraint solving methods

The graph construction method transforms the

geometric constraint system into a graph, deduces the
construction process through analysis of the geometric
constraint graph, and generates the geometric graphics
based on the construction steps. Currently, some
researchers use machine learning training datasets (such as
SketchGraphs [14]) and frameworks (such as SketchGen
[1]) to train models to automatically generate sketches,
reducing design time and enabling new design workflows.
This method is based on graph theory and is theoretically
rigorous, fast, and efficient. However, it can only solve

closed-loop constraints through numerical methods.
Additionally, it is sensitive to the types of geometric
elements and constraints used, so modifications to the
solving algorithm are required when adding new geometric
elements or constraints, making this method less general.

The summary of geometric constraint solving methods
is presented in Tab. 1. It is evident that the numerical
method is widely used in practical geometric constraint
solving due to its general applicability, and the focus of the
research in this field is to improve its solving efficiency
and stability.

Algebraic Methods Rule-oriented Methods Graph Construction Methods

Geometric Constraint Solving Methods

Numerical Methods Symbolic Methods

Yunlei SUN et al.: A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS

2028 Technical Gazette 30, 6(2023), 2026-2035

Table 1 Summary of geometric constraint solving methods
Methods Advantages Disadvantages Applicable scene

Algebraic
Numerical Fast, general

Sensitive to initial value, only one
solution

Most systems

Symbolic Effective, generic solution High time and space complexity
Small systems with restricted elements

and constraints

Rule-oriented
Separate knowledge and processing, avoid

numerical instability
Slow, difficult implementation Small systems

Graph Construction Rigorous theory, fast solving
Sensitive to types of elements and

constraints
Systems without new types of elements

and constraints

2.2 Limitations of Commercial Solvers

Commercial geometric constraint solvers have played

a prominent role in the field of computer-aided design
(CAD). Tab. 2 shows some famous commercial geometric
constraint solvers:

Table 2 Some famous commercial geometric constraint solvers

Name Developer Applied to CAD
DCM (Dimensional
Constraint Manager)

[15]

D-Cubed (a
subsidiary of Siemens

PLM Software)

AutoCAD,
SolidWorks, Creo,

NX, Solid Edge etc.
LGS (LEDAS

Geometric Solver)
[16]

LEDAS (currently
owned by Bricsys)

Cimatron E,
BricsCAD etc.

DCS (Dimensional
Constraint Solver)

[17]
Huatian Software CROWNCAD etc.

However, they also possess certain limitations that

have prompted the exploration and development of open-
source alternatives.

Proprietary Nature: Commercial solvers are often
proprietary technologies, meaning that their underlying
algorithms and implementation details are not openly
accessible to researchers and developers. This lack of
transparency hinders a comprehensive understanding of
the solver's inner workings, limiting customization and
advanced research efforts.

Limited Extensibility: Commercial solvers may have
limited extensibility options, making it challenging for
researchers and developers to integrate new algorithms or
modify existing functionalities. The closed nature of these
solvers restricts the flexibility required to adapt them to
specific research needs or unique application domains.

Cost and Licensing: Commercial solvers typically
require a substantial financial investment due to licensing
fees and maintenance costs. This cost factor can be
prohibitive for individual researchers, small research
groups, or organizations with limited budgets, limiting
their access to advanced geometric constraint solving
capabilities.

Lack of Community Collaboration: The closed-source
nature of commercial solvers often hampers collaboration
and knowledge sharing among researchers and developers.
This limitation prevents the community from collectively
addressing challenges, improving algorithms, and
contributing to the solver's overall development.

Dependency on Vendor Support: Commercial solvers
rely heavily on vendor support for updates, bug fixes, and
technical assistance. The dependency on a single vendor
for ongoing maintenance and support may lead to delays in
obtaining critical bug fixes or feature enhancements,
potentially affecting productivity and research progress.

It is important to note that while commercial solvers
have these limitations, they have also made significant

contributions to the advancement of geometric constraint
solving technology. However, the emergence of open-
source solvers has provided an opportunity to address these
limitations and foster a more collaborative and
customizable environment for geometric constraint solving
research and development.

2.3 Advantages of Open-Source Geometric Constraint

Solvers

Open-source geometric constraint solvers have

emerged as a significant alternative to proprietary solvers,
offering several advantages in terms of development and
functionality:

Accessibility: Open-source solvers are freely
available, eliminating the need for costly licenses. This
accessibility democratizes access to geometric constraint
solving technology, making it available to a broader
community of researchers, developers, and users. The open
nature of the source code allows researchers and
developers to scrutinize and understand the underlying
algorithms and implementation details. This transparency
facilitates code refinement, bug fixing, and customization
according to specific requirements.

Extensibility: Open-source solvers can be easily
extended to incorporate additional features and algorithms,
enabling researchers and developers to continually
enhance their capabilities. This extensibility promotes
innovation and facilitates the integration of novel
techniques into the solver framework.

Community Support: The open-source community
surrounding these solvers often provides active support
through forums, documentation, and collaborative
problem-solving. This support network facilitates
knowledge sharing and troubleshooting, fostering a vibrant
and dynamic community.

Overall, the development and advantages of open-
source geometric constraint solvers have revolutionized
the field, enabling researchers, developers, and users to
actively participate in the evolution and improvement of
the solver technology. These solvers offer accessibility,
extensibility, and a collaborative environment,
empowering the CAD community to advance geometric
constraint solving capabilities.

There are several common open-source geometric
constraint solvers:

SolveSpace [18] is a software for 2D and 3D geometric
modelling that allows the creation and modification of
parametric or constraint-driven models, as well as export
to a variety of formats. It uses a graph-based approach to
solving geometric constraint systems.

PlaneGCS [19] is a geometric constraint solver for 2D
sketching, which is mainly used in open-source software
such as FreeCAD and SALOME Shaper. It supports many

Yunlei SUN et al.: A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS

Tehnički vjesnik 30, 6(2023), 2026-2035 2029

types of constraints such as distance, angle, parallel,
perpendicular, tangent, etc. It uses numerical algorithms
for solving systems of nonlinear equations such as BFGS.

GeoSolver [20] is a software for 3D geometric
constraint solving that handles constraint relationships
between basic elements such as points, lines, surfaces, and
bodies, as well as user-defined variables and functions. It
uses a method based on interval analysis to solve geometric
constraint systems.

2.4 PlaneGCS and its Application in FreeCAD CAD
Software

The PlaneGCS is the geometric constraint solver used

in FreeCAD, as illustrated in Fig. 3. The solver consists of
several key modules, including:

Figure 3 PlaneGCS frame

(1) Geometry Module: As defined in the Geo.h file,

this module serves several key functions:
- It stores the parameters associated with the geometry
- Maintains solver-specific information about the

geometry
- Assists in the construction of systems of parametric

equations
- Facilitates the definition of complex geometries.

(2) Constraint Module: This module, defined in the
Constraints.h file, performs a number of critical tasks:
- It stores the parameters of the constraint
- Determines the error caused by satisfying the

constraint
- Computes the gradient with respect to a given

parameter
- Limits the step size of the numerical algorithm
- Manages the priority of constraints
- Maintains the properties of the sketch workbench

constraints.
(3) Subsystem. As defined in SubSystem.h, the

subsystems are classified into two categories: primary
subsystems and auxiliary subsystems. The primary
subsystems arise from constraints with no priority, while
the auxiliary subsystems arise from priority constraints.
The priority is utilized in certain procedures that involve
extended solution or programmatic movement of
geometric shapes. The class GCS::SubSystem in
SubSystem.h performs various computational operations
on the parameters and constraints of the subsystem, such as
calculation of residuals, the Jacobian matrix, or gradient.

These calculations are used by the solver algorithms
defined in GCS:System, such as the Dogleg algorithm.

(4) System. The class GCS::System defined in GCS.h
is the core of the solver. It contains all the parameters and
constraints for components with decoupled parameters.
This system is divided into subsystems, which are subsets
of parameters and constraints that can be solved
independently. The GCS::System has two primary
functions: initializing the geometric constraint system and
solving it.

The geometric constraint system initialization includes
the following operations:
- Diagnosis: to detect redundant and conflicting

constraints, calculate the degrees of freedom of the
system of equations, and determine parameters
without complete constraints.

- Dividing the system into decoupled components: using
graphs to simplify the size of the problem.

- Reducing component parameters and constraints: the
solver looks for equivalent constraints and simplifies
the parameters and constraints accordingly.

- Organizing subsystems: based on the simplified
parameters and constraints of the decoupled
components, each component may create a subSystem,
a subSystemsAux, or both.
The geometric constraint system solving includes

single-subsystem solving and dual-subsystems solving:
- Single-subsystem solving uses subsystems without

priority constraints and is used to perform redundancy
solving during diagnosis. The most frequent solving

Geometry Constraint Subsystem

PlaneGCS

subSystems subSystemsAux

System Solver Interface

Initialize Solve

Single Subsystem Two Subsystem

BFGS LM Dogleg

Sketch Class

Yunlei SUN et al.: A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS

2030 Technical Gazette 30, 6(2023), 2026-2035

operation, it depends on the actual implementation of
the solving algorithm, such as BFGS, LM, or Dogleg.

- Dual-subsystem solving is the implementation of the
SQP algorithm, which is the only algorithm that can
solve two subsystems simultaneously. This algorithm
gives priority to one subsystem over another and is
used for programmatic movement operations, such as
dragging.
(5) Solver Interface. Defined in Sketch.h, the solver

interface is responsible for communicating and exchanging
data between the sketch workbench and the solver. It also
facilitates programmatic movement of geometric shapes.
Importantly, the solving algorithm of the solver is called
here. The calling logic of the algorithm is as follows: first,
the default algorithm is attempted. If the default algorithm
fails, the other algorithms are called in a specific order. In
PlaneGCS, the default solving algorithm is the Dogleg
method, and the algorithm call order is Dogleg, LM, and
BFGS.

3 METHODOLOGY
3.1 Selection and Explanation of Performance Evaluation

Metrics

In practical engineering applications, geometric

constraint solvers lack criteria for selecting algorithms. We
proposed the following four evaluation metrics to evaluate
the performance of the DFP method and the other three
algorithms in solving geometric constraint systems,
providing an example to solve this problem

Solving Time: This metric measures the amount of
time required by the DFP method to solve a given
constraint system. It provides a direct indication of the
efficiency of the algorithm.

Solving State: This metric reflects the adaptability of
the DFP method, and it is the best indication of the
strengths and weaknesses of the algorithm in practical use,
because it reflects whether a typical test case has been
solved successfully. PlaneGCS defines four solving states:
- Success indicates that the algorithm has found a

solution and the error of the constraint system tends to
0.

- Converged means that the algorithm has found a
solution that minimizes the error of the constraint
system, but the error may not meet the required
tolerance level, resulting in a failure.

- Failed state refers to the inability of the algorithm to
find a solution.

- SuccessfulSolutionInvalid means that the algorithm
has found a solution, but the solution is not accepted
by OCE (Open Cascade Community Edition).
The solving state metric is a reflection of the

adaptability of the DFP method, with Success >
SuccessfulSolutionInvalid > Failed = Converged.

Number of Iterations: This metric measures the
number of iterations required by the DFP method to solve
a given constraint system. It reflects the convergence
performance of the algorithm.

Systematic Error: This metric represents the
difference between the results obtained by the DFP method
and the expected results, and is a reflection of the accuracy
of the algorithm.

It is important to note that in our theoretical analysis
and discussion, we have set an acceptable error threshold
of 1e−20 for the solution. This means that we will analyse
the number of iterations required by the DFP method when
the systematic error is small enough to provide insight into
the fundamental behaviour of the algorithm.

3.2 Overview of Constraint Solving Algorithms in

PlaneGCS

The focus of this paper is on the single-subsystem

solving algorithm of PlaneGCS. A brief overview of the
principles of these three preset algorithms is provided
below, and the detailed steps of the algorithms
implemented in PlaneGCS can be found in the appendix.

The BFGS method is an optimization algorithm that
was independently introduced by Broyden [21], Fletcher
[22], Goldfarb [23], and Shanno [24]. The formula for the
BFGS method is given by Eq. (1), where kB represents the

inverse matrix of the approximate Hessian matrix kH of

the nonlinear systems of equations derived from the
geometric constrained systems. The variables ks and ky

in the equation are defined as 1k kks x x  and

1k k ky f f   , respectively.

1

T T
BFGS k k k k k k
k k T T

k k k k k

y y B s s B
B B

y s s B s
    (1)

The BFGS method is a quasi-Newton optimization

method that uses the BFGS formula to correct the matrix.

It is based on the assumption that both 1
BFGS
kB  and BFGS

kB

are reversible. Using the Shermann-Morrison-Woodbury
formula, a modified formula for kH can be derived from

Eq. (1), as shown in Eq. (2).

1 1

T T
BFGS k k k k k
k k T T

k k k k

T T
k k k k k k

T
k k

y H y s s
H H

y s y s

s y H H y s

y s


 

    
 

 
   
 

 (2)

The PlaneGCS algorithm uses the BFGS formula (Eq.

(2)) to calculate the iteration direction, and then utilizes
line search to determine the step size.

The Gauss-Newton method may encounter difficulties

when the matrix T
k kJ J becomes singular. To resolve this

issue, Levenberg [25] proposed using Eq. (3) to calculate
the iteration direction, with 0kv  . The Levenberg-

Marquardt (LM) method, which has been widely adopted,
was the result of the efforts of Marquardt [26] in 1964. The
equation (Eq. (3)) is referred to as the LM equation, where

kJ is the Jacobian matrix of the residual function in the

system, I is the identity matrix, d is the iteration
direction, and kr is the residual.

 T T
k k k k kJ J v I d J r   (3)

Yunlei SUN et al.: A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS

Tehnički vjesnik 30, 6(2023), 2026-2035 2031

The correction of the parameter kv is a crucial aspect

of the LM method. PlaneGCS employs the method
proposed by Nielsen [27]:

 3
1

1

If 0, max 1/ 3,1 (2 1)

If 0, , : 2

k k k k

k k k

v v

v cv c c

 






    


  
 (4)

where, k is defined as the ratio of the actual reduction of

 f x from kx to k kx d , to the reduction of the

quadratic approximation function
1

() () ()
2

T
k k k k kq d J d r J d r   of  kf x d .

The Dogleg method, proposed by Powell [28], solves
the trust region subproblem Eq. (5) in 1970. It is inspired
by the influence of parameter kv in the LM method on the

direction LM
kd . In the Dogleg method, the trust region

radius is denoted by k .

21
min || ||

2
s.t. || || 0

,

,

k k

k k

J d r

d



   
 (5)

The Dogleg method optimizes the iteration direction

selection of the LM method. Its selection principle is
illustrated in Fig. 4.

If || ||GN
k kd   ,

make GN
k kd d

Else, if || ||SD
k k kd   ,

make
|| ||

SDk
k kSD

k

d d
d




Else，calculate

 1 SD GN
k k k kd d d     ,

where make sure  makes k kd  
Figure 4 Schematic diagram of the Dogleg method

3.3 Implementation and Verification of the DFP Method

The DFP formula, shown in Eq. (6), which was first

proposed by Davidon [29] in 1959 and later developed by
Fletcher and Powell [30], is the first quasi-Newton method
that lays the foundation for the establishment of quasi-
Newton methods. The DFP method is a quasi-Newton
method that uses the DFP formula to correct the matrix.
When compared to Eq. (1), it can be seen that kB and kH ,

ky and ks are swapped in the two equations, making

BFGS method and DFP method dual to each other. This is
also the reason why we choose the DFP method, which is
similar in nature to the BFGS and is used to verify that our
selection criteria are more representative.

1

T T
DFP k k k k k k
k k T T

k k k k k

s s H y y H
H H

s y y H y
    (6)

Assuming that both 1
DFP
kH  and DFP

kH are reversible,

the correction formula for kB can be derived from Eq. (6)

using the Shermann-Morrison-Woodbury formula. Eq. (7)
shows the correction formula, which can also be seen as a
duality formula with respect to Eq. (2).

1 1
T T

DFP k k k k k
k k T T

k k k k

T T
k k k k k k

T
k k

s B s y y
B B

s y s y

y s H H s y

s y


 

     
 

 
  
 

 (7)

The steps of the DFP method are as follows:
Step 1 Start with an initial point 0x in nR and a

symmetric positive definite matrix 0H in n nR  , set a

tolerance value 0 , and initialize the iteration counter
 0k  .

Step 2 Check the termination criteria. If satisfied,
output the relevant information and stop the iteration.

Step 3 Compute kH using Eq. (6), and calculate the

search direction kd as k k kd H g  .

Step 4 Use a line search method to find a positive
step size k , and update the current estimate

1 k k k kx x d   .

Step 5 Correct kH using Eq. (6) to obtain 1kH  ,

increment the iteration counter 1k k  , and go back
to Step 2.

According to the steps of DFP method, we
implemented the DFP algorithm in PlaneGCS and verified
its effectiveness. We have added options for the DFP
method to the solver control panel on the left side of the
FreeCAD interface, as shown in Fig. 5.

Next, the time and space complexities of the DFP
method are analyzed. We assume that the size of the
geometric constraint system is n .

The time complexity can be analyzed as follows:
a. Finding the system error has a time complexity of

 O n .

b. The line search has a loop condition of
1 2 3f f f  , meaning that the number of iterations is

constant with regards to the acceptable error. The function

Yunlei SUN et al.: A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS

2032 Technical Gazette 30, 6(2023), 2026-2035

for finding err is called in each iteration, resulting in a time
complexity of  O n .

c. The termination condition of the DFP method is also
tied to the error, and therefore, the number of iterations is
constant. Among the internal functions called, finding error
and the line search function both have a time complexity of

 O n , while the time complexity for the gradient

calculation function is 2()O n . As a result, the overall time

complexity of the DFP method is 2()O n .

The space complexity is determined by the data
structures defined in the code for solving the problem,
which are shown in Tab. 3.

The space complexity is calculated according to the

space occupied by H, namely 2()O n .

Table 3 The data structure used by the DFP method

Matrix Vector
H:
approximate
Hessian matrix

x:
parameter vector

xdir:
iteration direction

grad:
gradient vector

s:

1k kx x 

y:

1k kg g 
Hy:
H * y

Figure 5 FreeCAD interface

4 EXPERIMENT
4.1 Experimental Setup and Data Collection

The tests were conducted using the test environment

and tools listed in Tab. 4. The development environment
used was FreeCAD 0.19.1, compiled using CMake 3.20.1
and Visual Studio 2019, and the operating system used was
Windows 10.

The testing was performed using the Test Framework
workbench of FreeCAD, as shown in Fig. 6. The testing

module selected was TestSketcherApp, which is used to
test the functions of the Sketch workbench. Clicking the
Start button executes the setup test cases, which are
examples of actual user use, and Fig. 7 shows one of the
test cases ("BasicFillet"). The advantage of testing in this
way is that it is closer to the actual engineering application
scenarios than simulation in software such as Matlab by
constructing a system of equations.

Table 4 Test/development environment

Source Code Library Pack Compilation Tool Development Tool
Interface Development

Plugin
Operating System

FreeCAD-0.19.1
FreeCADLibs_

12.5.3_x64_VC17
CMake 3.20.1 Visual Studio 2019 Qt VS Tools 2.7.1 Windows 10

To collect the data to evaluate the performance of the

algorithms, two methods were used. The first method
involved changing the default solving algorithm in
PlaneGCS, and the second method involved changing the

order in which the algorithms are called in PlaneGCS. As
an example, the DFP method was used to modify the
default algorithm, and the order of the algorithms was
changed to DFP, BFGS, LM, and Dogleg. The test

Yunlei SUN et al.: A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS

Tehnički vjesnik 30, 6(2023), 2026-2035 2033

information was recorded in the Report View on the right
side of Fig. 5, which could be output as a log. However, the
logs were long and cumbersome, so Python was used to
extract and process the information.

Figure 6 Test framework workbench interface

Figure 7 Graphics of the test case "BasicFillet"

4.2 Comparative Analysis of Algorithm Performance

Tab. 5 provides an overview of the average solving
time of multiple experiments of each algorithm for each
test case. As can be seen: the DFP solves the "BasicFillet"
in the shortest time of the four algorithms, the BFGS has
the shortest time for four test cases, the LM has two, and
the Dogleg is the fastest for most of the test cases. It is
important to note that the LM method failed to solve the
test case "Curve" due to the results being rejected by the
OCE (Open Cascade community version). The DFP and
BFGS methods were unable to solve the "Sketchslot" test
case as the number of iterations exceeded the pre-set
maximum of 100. Further analysis of the "Sketchslot" test
case will be discussed in a later section of this paper.

Table 5 The solving time of four algorithms for every test case (Unit: sec.)

Test Case DFP BFGS LM Dogleg

BasicFillet 0.0064 0.0074 0.0092 0.012
Coincident 0.006 0.004 0.0048 0.0046

Curve 0.0236 0.0176 0.025 0.0174
Distance 0.0082 0.0068 0.0058 0.0058

HorizontalVertical 0.0074 0.0052 0.004 0.0056
OriginalCorner 0.007 0.0064 0.0056 0.004
PointOnObject 0.0104 0.008 0.0096 0.0106

Symmetric 0.0176 0.0126 0.0118 0.0114
Tangent 0.0512 0.03 0.0218 0.016

Unconnected 0.0076 0.0034 0.003 0.002
UnconnectedCurve 0.0104 0.0052 0.0032 0.0028

BlockConstraintTests 0.065 0.045 0.0384 0.0352
SketchBox 0.0052 0.0046 0.0056 0.0046
Issue3245 0.0062 0.003 0.0032 0.0028

Issue3245_2 0.0008 0.0002 0.0004 0.0004
SketchSlot 1.1428 0.2144 0.177 0.0632

The data in Tab. 6 shows that the space complexity of

LM and Dogleg methods is higher compared to the other
two methods, DFP and BFGS. This may indicate that these
two methods require more memory to solve the constraint
system compared to the others. It should also be noted that
the space complexity of an algorithm is an important factor
in determining its performance and scalability, especially
for large-scale geometric constraint solving problems.
Thus, it is crucial to take this into consideration when
choosing a suitable algorithm for a particular problem.

Table 6 The data structure stored by the algorithm
Data Structure DFP BFGS LM Dogleg

Matrix 1 1 2 2
Vector 6 6 7 8

The solving results for the 16 test cases using the four

algorithms are displayed in Tab. 7, including the illegal
(OCE-Invalid) state, referred to as the
SuccessfulSolutionInvalid state in Section 4.1. The results
show that these four algorithms have a range of
applicability with Dogleg performing the best, followed by
LM, BFGS, and DFP, which is in line with the default
algorithm call order of PlaneGCS.

Table 7 The solving state of four algorithms for the 16 test cases

State DFP BFGS LM Dogleg
Success 15 15 15 16

OCE-Invalid
(SuccessfulSolutionInvalid)

0 0 1 0

Failed 1 1 0 0

Table 8 The number of iterations and system error

DFP BFGS LM Dogleg
ite err ite err ite err ite err
23 2.94E−22 14 8.58E−26 14 3.53E−19 4 1.07E−28
56 1.61E−23 23 1.83E−21 14 1.16E−20 7 2.88E−25
82 7.43E−28 8 5.10E−21 14 1.22E−19 5 1.07E−28
74 8.04E−22 27 4.76E−22 14 3.38E−19 6 1.24E−25
177 8.58E−22 45 9.03E−21 17 4.78E−19 7 2.96E−23
125 9.40E−23 22 1.19E−23 15 3.40E−18 7 1.03E−27
151 9.42E−21 27 2.18E−24 16 2.59E−20 6 2.10E−21
168 3.90E−22 28 1.05E−21 16 9.52E−18 7 2.50E−24
79 1.15E+00 168 1.21E−21 26 5.27E−18 10 7.39E−22
214 1.17E−24 24 1.08E−22 15 1.78E−20 6 7.36E−25

The results of the number of iterations and systematic

error for the four algorithms used in PlaneGCS for the test
case "Sketchslot" are presented in Tab. 8. The maximum
number of iterations was increased during the test. As can

Yunlei SUN et al.: A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS

2034 Technical Gazette 30, 6(2023), 2026-2035

be seen, the LM and Dogleg methods were more efficient
than the quasi-Newton methods DFP and BFGS.
Furthermore, the Dogleg method performed better than
LM, and BFGS performed better than DFP.

4.3 Analysis of the Results

From the test data, it can be found that: the DFP
method is the best at handling fillet operations, it has the
shortest solving time, and when the sketch designed by the
user contains a large number of fillets, DFP will
significantly reduce the sketch solving time. Another
noteworthy phenomenon is that the Dogleg method has the
best performance among the 16 test cases, it has the
shortest solving time in solving most of the test cases, and
has fewer iterations than the other three algorithms, but it
uses the most storage space, and may get bottlenecked
when dealing with larger scale sketch solving problems. A
good idea for solving geometric constraints is to have DFP,
BFGS and LM handle the operations that they are good at,
such as DFP for fillet, BFGS for coincident, and LM for
distance, and Dogleg as an alternative, which is applied
when the other methods do not work well to make the
problem solvable by using its wide applicability.

5 DISCUSSION

The superiority of the Dogleg method over the quasi-
Newton methods (DFP and BFGS) can be attributed to its
trust region technique. Unlike the quasi-Newton methods,
which determine the direction of iteration first and then the
step size, the trust region method first sets limits on the step
size and then determines both the direction and step size of
iteration. This approach helps the iteration converge closer
to the optimal solution, as it restricts the iteration from
venturing too far in the wrong direction.

As stated by Nocedal [31], the BFGS method is known
to have a highly effective self-correcting property, which
allows it to correct misestimations of the curvature in the
objective function within a few steps. On the other hand,
the DFP method is less effective in correcting such
misestimations, which is considered to be the reason for its
poor practical performance.

Figure 8 Comparison of results obtained by line search method and trust region

method

The comparison between the Dogleg method and the
two quasi-Newton methods is shown in Fig. 8, where kx

represents the current iteration point, *x represents the
optimal solution of the problem, and the dashed line
represents the contour line of  kq d . The next iteration

point obtained by the line search method (quasi-Newton) is

a k kx x d  , while the next iteration point obtained by the

trust region method (Dogleg) is tx . It can be observed that

tx is closer to the minimum point *x of the original

problem than ax , demonstrating the effectiveness of the

trust region in directing the iteration towards the optimal
solution.

We can see from the experimental results: the DFP
method takes the shortest time among the four algorithms
to solve the fillet problem, but it does not have an
advantage in solving the other test cases, which also
reflects that different algorithms are good at different areas
in practical application scenarios.

The objectives of our study were to investigate and
evaluate the application of the DFP methodology in
PlaneGCS and to comprehensively evaluate its
performance in solving test cases as an empirical guide for
subsequent research outlines based on open-source
geometric constraint solvers. And help to choose the
appropriate geometric constraint solving algorithm in
different engineering scenes. Based on the results of our
study, we succeeded in achieving these objectives.

It is worth noting that although our findings are
consistent with the purpose of the study, there are still some
limitations. For example, our study was evaluated based on
PlaneGCS only, and the application of other CAD
platforms may be different. More algorithms need to be
introduced to test the reliability of the selection criteria. In
addition, our study could be further extended to explore the
potential room for improvement and wider applicability of
the DFP approach.

6 CONCLUSIONS

The conclusion of this paper highlights the study of the

PlaneGCS geometric constraint solver of the open-source
CAD software FreeCAD. The focus of the study was on
the BFGS, LM, and Dogleg methods, with the addition of
the DFP method. The research results were compared and
analyzed in terms of solving time, adaptability, number of
iterations, and systematic error. The study successfully
explored the application and selection of numerical
methods in an open-source geometric constraint solver and
obtained the following main research findings:
- The DFP method is successfully integrated into

PlaneGCS and its effectiveness in geometric constraint
solving is verified.

- The DFP method shows faster solving speed in solving
the fillet operation, which is advantageous compared
with other algorithms.

- Different geometric constraint solving methods are
good at handling different problems, which can refer
to our standards for selection in the real engineering
scene.
In this study, the way of applying DFP algorithm to

PlaneGCS is put forward, which provides a new idea and
method for improving the solution of geometric constraints
in CAD field. By putting forward reasonable evaluation
metrics and comparing DFP method with other algorithms,
we provide an important reference for the selection of
geometric constraint solving algorithms in CAD field. Our
research results have important guiding significance for the

Yunlei SUN et al.: A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS

Tehnički vjesnik 30, 6(2023), 2026-2035 2035

further development and improvement of open-source
geometric constraint solver in CAD field, and provide
practical experience and suggestions for related work.

However, there are some limitations in this work that
require improvement in the future. These include the need
for more real engineering cases to test the adaptability of
the solving algorithms and explore other sketch operations
that DFP method is good at solving.

Acknowledgments

This work was supported in part by the Fundamental

Research Funds for the Central Universities (Grant No.
18CX02019A).

7 REFERENCES

[1] Para, W., Bhat, S., Guerrero, P., Kelly, T., Mitra, N., Guibas,

L. J., & Wonka, P. (2021). Sketchgen: Generating
constrained cad sketches. Advances in Neural Information
Processing Systems, 34, 5077-5088.

[2] Ait-Aoudia, S., Bahriz, M., & Salhi, L. (2009, July). 2D
geometric constraint solving: an overview. 2009 Second
International Conference in Visualisation, 201-206.

 https://doi.org/10.1109/VIZ.2009.29
[3] González-Lluch, C., Company, P., Contero, M., Pérez-

López, D., & Camba, J. D. (2019). On the effects of the fix
geometric constraint in 2D profiles on the reusability of
parametric 3D CAD models. International Journal of
Technology and Design Education, 29(4), 821-841.

 https://doi.org/10.1007/s10798-018-9458-z
[4] Hillyard, R. C. & Braid, I. C. (1978). Analysis of dimensions

and tolerances in computer-aided mechanical design.
Computer-Aided Design, 10(3), 161-166.

 https://doi.org/10.1016/0010-4485(78)90140-9
[5] Light, R. A. & Gossard, D. C. (1983). Variational geometry:

a new method for modifying part geometry for finite element
analysis. Computers & Structures, 17(5-6), 903-909.

 https://doi.org/10.1016/0045-7949(83)90104-9
[6] Borning, A. (1981). The programming language aspects of

thinglab, a constraint-oriented simulation laboratory.
Readings in Artificial Intelligence & Databases, 3(4), 353-
387. https://doi.org/10.1145/357146.357147

[7] Hillyard, R. C. & Braid, I. C. (1978). Characterizing non-
ideal shapes in terms of dimensions and tolerances. ACM
SIGGRAPH Computer Graphics, 12(3), 234-238.

 https://doi.org/10.1145/965139.807396
[8] Sutherland, I. E. (1963). Sketchpad: a man-machine

graphical communication system. Proceedings of the Spring
Joint Computer Conference.
https://doi.org/10.1145/1461551.1461591

[9] Light, R. & Gossard, D. (1982). Modification of geometric
models through variational geometry. Computer-Aided
Design, 14(4), 209-214.
https://doi.org/10.1016/0010-4485(82)90292-5

[10] Lin, V. C., Gossard, D. C., & Light, R. A. (1981). Variational
geometry in computer-aided design. ACM, 15, 171-177.

 https://doi.org/10.1145/800224.806803
[11] Nelson, G. (1985). Juno, a constraint-based graphics system.

ACM, 235-243. https://doi.org/10.1145/325334.325241
[12] Buchberger, B. (1985). An Algorithmic Method in

Polynomial Ideal Theory. Reidel Publishing Co.
[13] Wu-Ritt (1984). Basic principles of machine proof of

geometric theorems. Science Press.
[14] Seff, A., Ovadia, Y., Zhou, W., & Adams, R. P. (2020).

Sketchgraphs: A large-scale dataset for modeling relational
geometry in computer-aided design. arXiv preprint
arXiv:2007.08506.

[15] Siemens PLM Software. (n.d.). D-Cubed 2D DCM.
https://www.plm.automation.siemens.com/global/en/produc
ts/plm-components/2d-dcm.html

[16] LEDAS Ltd. (n.d.). LGS 2D/3D geometric constraint
solvers. https://ledas.com/en/products/lgs-2d-3d/

[17] Huatian Software. (n.d.). DCS (Dimensional Constraint
Solver) [Software]. Huatian Software.
https://www.htcad.com/en/dcs.html

[18] SolveSpace. (n.d.). SolveSpace [Software]. SolveSpace.
https://solvespace.com/index.pl

[19] PlaneGCS. (n.d.). PlaneGCS [Software]. PlaneGCS.
https://github.com/PlaneGCS/PlaneGCS

[20] GeoSolver. (n.d.). GeoSolver [Software]. GeoSolver.
https://geosolver.com/download.html

[21] Broyden, C. G. (1970). The convergence of a class of double-
rank minimization algorithms: 2. the new algorithm. IMA
journal of applied mathematics, 6(3), 222-231.

 https://doi.org/10.1093/imamat/6.3.222
[22] Fletcher, R. (1970). A new approach to variable metric

algorithms. The computer journal, 13(3), 317-322.
 https://doi.org/10.1093/comjnl/13.3.317
[23] Goldfarb, D. (1970). A family of variable-metric methods

derived by variational means. Mathematics of computation,
24(109), 23-26.
https://doi.org/10.1090/S0025-5718-1970-0258249-6

[24] Shanno, D. F. (1970). Conditioning of quasi-Newton
methods for function minimization. Mathematics of
computation, 24(111), 647-656.

 https://doi.org/10.1090/S0025-5718-1970-0274029-X
[25] Levenberg, K. (1944). A method for the solution of certain

non-linear problems in least squares. Quarterly of applied
mathematics, 2(2), 164-168.

 https://doi.org/10.1090/qam/10666
[26] Marquardt, D. W. (1963). An algorithm for least-squares

estimation of nonlinear parameters. Journal of the Society for
Industrial & Applied Mathematics, 11(2), 431-441.

 https://doi.org/10.1137/0111030
[27] Nielsen, H. B. (1999). Damping parameter in Marquardt's

method. IMM, 248.
[28] Powell, M. J. (1970). A hybrid method for nonlinear

equations. Numerical methods for nonlinear algebraic
equations, 87-161.

[29] Davidon, W. C. (1991). Variable metric method for
minimization. SIAM Journal on Optimization, 1(1), 1-17.

 https://doi.org/10.1137/0801001
[30] Fletcher, R., & Powell, M. J. (1963). A rapidly convergent

descent method for minimization. The computer journal,
6(2), 163-168. https://doi.org/10.1093/comjnl/6.2.163

[31] Wright, J. N. S. J. (2006). Numerical optimization.

Contact information:

Yunlei SUN, Associate Professor
Qingdao Institute of Software,
College of Computer Science and Technology,
China University of Petroleum (East China), Qingdao, 266580, China
E-mail: sunyunlei@upc.edu.cn

Yucong LI, Master
(Corresponding author)
Qingdao Institute of Software,
College of Computer Science and Technology,
China University of Petroleum (East China), Qingdao, 266580, China
E-mail: s21070036@s.upc.edu.cn

Kangping LIU, Master
Qingdao Institute of Software,
College of Computer Science and Technology,
China University of Petroleum (East China), Qingdao, 266580, China
E-mail: 2459625512@qq.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

