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Abstract: The development of open-source geometric constraint solvers is a pressing research topic, as commercially available solvers may not meet the research 
requirements. In this paper, we examine the use of numerical methods in PlaneGCS, an open-source geometric constraint solver within the FreeCAD CAD software. Our 
study focuses on PlaneGCS's constraint solving algorithms and the three built-in single-subsystem solving methods: BFGS, LM, and Dogleg. Based on our research results, 
the DFP method was implemented in PlaneGCS and was successfully verified in FreeCAD. To evaluate the performance of the algorithms, we used the solving state of the 
constraint system as a test criterion, and analysed their solving time, adaptability, and number of iterations. Our results highlight the performance differences between the 
algorithms and provide empirical guidance for selection of constraint solving algorithms and research based on open-source geometric constraint solvers. 
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1 INTRODUCTION  
 

Computer-aided design (CAD) is the most widely used 
modelling approach for engineering design. The typical 
starting point in these designs is 2D sketches which can 
later be extruded and combined to obtain complex three-
dimensional assemblies [1]. The geometric constraint 
solver is a crucial component in this process and is often 
the key technology in parametric CAD design. However, 
as the engineering implementation of geometric constraint 
solvers is often a proprietary technology in commercial 
CAD, it can be difficult to understand the technical details. 
This has led to the need for the development of open-source 
geometric constraint solvers. 

In this paper, we explore the application of numerical 
methods in open-source geometric constraint solvers using 
the FreeCAD CAD platform as an example. Samy Ait-
Aoudia et al. [2] classified geometric constraint solving 
techniques into three categories: algebraic, rule-oriented, 
and graph construction. Among these, algebraic methods, 
including numerical and symbolic methods, are widely 
used due to their fast solving speed and applicability to 
almost all systems. Therefore, we focus on the application 
of numerical methods in open-source geometric constraint 
solvers. 

However, despite some existing research focusing on 
geometric constraint solving, there is still relatively little 
research on the DFP method and geometric constraint 
solving algorithms based on PlaneGCS. The selection of 
geometric constraint solving algorithms still lacks criteria 
in engineering. And the experiments in these studies only 
simulate the work of geometric constraint solving 
algorithms in solvers by solving systems of equations, and 
are rarely actually applied to widely used solvers. 
Therefore, the objective of this study is to specifically 
investigate the application of the DFP method in PlaneGCS 
and comprehensively evaluate its performance using the 
real engineering cases as test cases. At the same time, the 
selection criteria of geometric constraint solving algorithm 
proposed by us are verified. Specifically, our research aims 
to answer the following questions: 
- How is the DFP method implemented and verified in 

PlaneGCS? 
- How does the geometric constraint solving algorithm 

based on the DFP method compare to other 

algorithms? How to choose an algorithm in 
engineering practice? 

- What are the strengths and limitations of the DFP 
method for solving geometric constraints? 
By explicitly stating these research objectives and 

questions, we can better guide the investigation of the DFP 
method and geometric constraint solving algorithms based 
on PlaneGCS and help to choose a more suitable algorithm, 
leading to a deeper understanding of the performance and 
applicability of open-source geometric constraint solvers. 

We explore the application of numerical methods in 
open-source geometric constraint solvers using the 
FreeCAD CAD platform as an example. To investigate the 
application of the DFP method in PlaneGCS, we 
implemented and verified the DFP method in the PlaneGCS 
solver. We collected data through experiments to evaluate 
the performance of the geometric constraint solving 
algorithms, focusing on the solving state, solving time, 
adaptability, and number of iterations. The experimental 
data was obtained by testing the algorithms on a set of 
representative geometric constraint systems. 

In the following sections, we present our research results 
and analysis. 

Section 2 provides a literature review, summarising the 
existing research on geometric constraint solving methods 
and the solvers. 

Section 3 describes the research methodology, including 
an overview of the PlaneGCS constraint solving algorithms 
and the implementation and verification of the DFP method. 

Section 4 presents the results of our performance 
evaluation, including the experimental setup, data collection, 
and comparative analysis of solving state, solving time, 
adaptability, and number of iterations. 

In Section 5, we discuss the implications of the results, 
interpreting and comparing the performance of the 
algorithms, highlighting their strengths and limitations. 

Finally, in Section 6, we summarise our main research 
findings, answer the research objectives, discuss the 
contributions and significance of the study, acknowledge the 
limitations, and provide suggestions for future research. 

 
2 RELATED WORKS  
 

In many CAD modelling systems, 3D shapes are 
created by sweeping 2D profiles. In parametric systems, it 
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is common to add geometric constraints and dimensions to 
the approximate profile so that the final accurate shape can 
be calculated [3]. This section provides an overview of 
geometric constraint solving methods and the solvers. 

 
2.1 Overview of Geometric Constraint Solving Methods 

 
Geometric constraint solving methods are techniques 

used to resolve a geometric constraint system, as shown in 
Fig. 1.  

 

 
Figure 1 Geometric constraints in FreeCAD sketch 

 
According to the classification proposed by Samy Ait-

Aoudia et al. [2], these methods can be broadly categorized 
into three categories: algebraic methods, rule-oriented 
methods, and graph construction methods. Algebraic 
methods, in turn, encompass both numerical methods and 
symbolic methods, as illustrated in Fig. 2. 

The numerical method transforms a geometrically 
constrained system into a set of nonlinear equations and 
solves it using a numerical algorithm. This approach was 
initially introduced by Hillyard [4] at the University of 
Cambridge and further developed and improved by 
Gossard [5] at MIT, known as Variational Geometry. 
Although these equations are often multi-solvable, 

numerical methods typically find only one solution. As a 
result, they are used as a last resort when all other methods 
have failed. Borning [6], Hillyard and Braid [7], and 
Sutherland [8], use a relaxation method. This method 
perturbs the values assigned to the variables and minimizes 
some measure of the global error. In general, convergence 
to a solution is slow. The method most widely used is the 
Newton-Raphson iteration. It is used in the solvers 
described in Refs. [9-11]. Newton-Raphson is a local 
method and converges much faster than relaxation. The 
method does not apply to consistently over-constrained 
systems of equations unless special steps are taken, such as 
solving a least squares problem. 

The symbolic method, like the numerical method, also 
transforms the geometric constraint system into a set of 
nonlinear equations. However, it employs symbolic 
algebra to solve these constraints, using methods like the 
Grobner basis method [12] or Wu-Ritt characteristic 
column method [13]. If symbolic parameters are used in 
the system of nonlinear equations, the symbolic method 
can find a general solution to the geometric constraint 
system, making it a highly effective approach. However, 
this method has the disadvantage of being slower, with 
higher time and space complexity, so there are restrictions 
on the types of geometric elements and constraints that can 
be used. 

The rule-oriented geometric constraint solving method 
utilizes rules to define and carry out the construction 
process, hence the name "rule-construction solving 
method". This approach allows for clear representation of 
geometric knowledge, separating it from the processing 
stage, and makes it easy to expand the rule base. However, 
this method also has its drawbacks: the rules are often 
incomplete, the system is bulky, the solving speed is slow, 
and it is unable to solve cyclic constraints. 

 

 
Figure 2 Classification of geometric constraint solving methods 

 
The graph construction method transforms the 

geometric constraint system into a graph, deduces the 
construction process through analysis of the geometric 
constraint graph, and generates the geometric graphics 
based on the construction steps. Currently, some 
researchers use machine learning training datasets (such as 
SketchGraphs [14]) and frameworks (such as SketchGen 
[1]) to train models to automatically generate sketches, 
reducing design time and enabling new design workflows. 
This method is based on graph theory and is theoretically 
rigorous, fast, and efficient. However, it can only solve 

closed-loop constraints through numerical methods. 
Additionally, it is sensitive to the types of geometric 
elements and constraints used, so modifications to the 
solving algorithm are required when adding new geometric 
elements or constraints, making this method less general. 

The summary of geometric constraint solving methods 
is presented in Tab. 1. It is evident that the numerical 
method is widely used in practical geometric constraint 
solving due to its general applicability, and the focus of the 
research in this field is to improve its solving efficiency 
and stability. 

 
 

Algebraic Methods Rule-oriented Methods Graph Construction Methods 

Geometric Constraint Solving Methods 

Numerical Methods Symbolic Methods 
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Table 1 Summary of geometric constraint solving methods 
Methods Advantages Disadvantages Applicable scene 

Algebraic 
Numerical Fast, general 

Sensitive to initial value, only one 
solution 

Most systems 

Symbolic Effective, generic solution High time and space complexity 
Small systems with restricted elements 

and constraints 

Rule-oriented 
Separate knowledge and processing, avoid 

numerical instability 
Slow, difficult implementation Small systems 

Graph Construction Rigorous theory, fast solving 
Sensitive to types of elements and 

constraints 
Systems without new types of elements 

and constraints 

 
2.2 Limitations of Commercial Solvers 

 
Commercial geometric constraint solvers have played 

a prominent role in the field of computer-aided design 
(CAD). Tab. 2 shows some famous commercial geometric 
constraint solvers: 

 
Table 2 Some famous commercial geometric constraint solvers 

Name Developer Applied to CAD 
DCM (Dimensional 
Constraint Manager) 

[15] 

D-Cubed (a 
subsidiary of Siemens 

PLM Software) 

AutoCAD, 
SolidWorks, Creo, 

NX, Solid Edge etc. 
LGS (LEDAS 

Geometric Solver) 
[16] 

LEDAS (currently 
owned by Bricsys) 

Cimatron E, 
BricsCAD etc. 

DCS (Dimensional 
Constraint Solver) 

[17] 
Huatian Software CROWNCAD etc. 

 
However, they also possess certain limitations that 

have prompted the exploration and development of open-
source alternatives.  

Proprietary Nature: Commercial solvers are often 
proprietary technologies, meaning that their underlying 
algorithms and implementation details are not openly 
accessible to researchers and developers. This lack of 
transparency hinders a comprehensive understanding of 
the solver's inner workings, limiting customization and 
advanced research efforts. 

Limited Extensibility: Commercial solvers may have 
limited extensibility options, making it challenging for 
researchers and developers to integrate new algorithms or 
modify existing functionalities. The closed nature of these 
solvers restricts the flexibility required to adapt them to 
specific research needs or unique application domains. 

Cost and Licensing: Commercial solvers typically 
require a substantial financial investment due to licensing 
fees and maintenance costs. This cost factor can be 
prohibitive for individual researchers, small research 
groups, or organizations with limited budgets, limiting 
their access to advanced geometric constraint solving 
capabilities. 

Lack of Community Collaboration: The closed-source 
nature of commercial solvers often hampers collaboration 
and knowledge sharing among researchers and developers. 
This limitation prevents the community from collectively 
addressing challenges, improving algorithms, and 
contributing to the solver's overall development. 

Dependency on Vendor Support: Commercial solvers 
rely heavily on vendor support for updates, bug fixes, and 
technical assistance. The dependency on a single vendor 
for ongoing maintenance and support may lead to delays in 
obtaining critical bug fixes or feature enhancements, 
potentially affecting productivity and research progress. 

It is important to note that while commercial solvers 
have these limitations, they have also made significant 

contributions to the advancement of geometric constraint 
solving technology. However, the emergence of open-
source solvers has provided an opportunity to address these 
limitations and foster a more collaborative and 
customizable environment for geometric constraint solving 
research and development. 

 
2.3 Advantages of Open-Source Geometric Constraint 

Solvers 
 
Open-source geometric constraint solvers have 

emerged as a significant alternative to proprietary solvers, 
offering several advantages in terms of development and 
functionality:  

Accessibility: Open-source solvers are freely 
available, eliminating the need for costly licenses. This 
accessibility democratizes access to geometric constraint 
solving technology, making it available to a broader 
community of researchers, developers, and users. The open 
nature of the source code allows researchers and 
developers to scrutinize and understand the underlying 
algorithms and implementation details. This transparency 
facilitates code refinement, bug fixing, and customization 
according to specific requirements. 

Extensibility: Open-source solvers can be easily 
extended to incorporate additional features and algorithms, 
enabling researchers and developers to continually 
enhance their capabilities. This extensibility promotes 
innovation and facilitates the integration of novel 
techniques into the solver framework. 

Community Support: The open-source community 
surrounding these solvers often provides active support 
through forums, documentation, and collaborative 
problem-solving. This support network facilitates 
knowledge sharing and troubleshooting, fostering a vibrant 
and dynamic community. 

Overall, the development and advantages of open-
source geometric constraint solvers have revolutionized 
the field, enabling researchers, developers, and users to 
actively participate in the evolution and improvement of 
the solver technology. These solvers offer accessibility, 
extensibility, and a collaborative environment, 
empowering the CAD community to advance geometric 
constraint solving capabilities. 

There are several common open-source geometric 
constraint solvers: 

SolveSpace [18] is a software for 2D and 3D geometric 
modelling that allows the creation and modification of 
parametric or constraint-driven models, as well as export 
to a variety of formats. It uses a graph-based approach to 
solving geometric constraint systems. 

PlaneGCS [19] is a geometric constraint solver for 2D 
sketching, which is mainly used in open-source software 
such as FreeCAD and SALOME Shaper. It supports many 
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types of constraints such as distance, angle, parallel, 
perpendicular, tangent, etc. It uses numerical algorithms 
for solving systems of nonlinear equations such as BFGS. 

GeoSolver [20] is a software for 3D geometric 
constraint solving that handles constraint relationships 
between basic elements such as points, lines, surfaces, and 
bodies, as well as user-defined variables and functions. It 
uses a method based on interval analysis to solve geometric 
constraint systems. 

2.4 PlaneGCS and its Application in FreeCAD CAD 
Software 
 
The PlaneGCS is the geometric constraint solver used 

in FreeCAD, as illustrated in Fig. 3. The solver consists of 
several key modules, including: 

 

 
Figure 3 PlaneGCS frame 

 
(1) Geometry Module: As defined in the Geo.h file, 

this module serves several key functions: 
- It stores the parameters associated with the geometry 
- Maintains solver-specific information about the 

geometry 
- Assists in the construction of systems of parametric 

equations 
- Facilitates the definition of complex geometries. 

(2) Constraint Module: This module, defined in the 
Constraints.h file, performs a number of critical tasks: 
- It stores the parameters of the constraint 
- Determines the error caused by satisfying the 

constraint 
- Computes the gradient with respect to a given 

parameter 
- Limits the step size of the numerical algorithm 
- Manages the priority of constraints 
- Maintains the properties of the sketch workbench 

constraints. 
(3) Subsystem. As defined in SubSystem.h, the 

subsystems are classified into two categories: primary 
subsystems and auxiliary subsystems. The primary 
subsystems arise from constraints with no priority, while 
the auxiliary subsystems arise from priority constraints. 
The priority is utilized in certain procedures that involve 
extended solution or programmatic movement of 
geometric shapes. The class GCS::SubSystem in 
SubSystem.h performs various computational operations 
on the parameters and constraints of the subsystem, such as 
calculation of residuals, the Jacobian matrix, or gradient. 

These calculations are used by the solver algorithms 
defined in GCS:System, such as the Dogleg algorithm. 

(4) System. The class GCS::System defined in GCS.h 
is the core of the solver. It contains all the parameters and 
constraints for components with decoupled parameters. 
This system is divided into subsystems, which are subsets 
of parameters and constraints that can be solved 
independently. The GCS::System has two primary 
functions: initializing the geometric constraint system and 
solving it. 

The geometric constraint system initialization includes 
the following operations: 
- Diagnosis: to detect redundant and conflicting 

constraints, calculate the degrees of freedom of the 
system of equations, and determine parameters 
without complete constraints. 

- Dividing the system into decoupled components: using 
graphs to simplify the size of the problem. 

- Reducing component parameters and constraints: the 
solver looks for equivalent constraints and simplifies 
the parameters and constraints accordingly. 

- Organizing subsystems: based on the simplified 
parameters and constraints of the decoupled 
components, each component may create a subSystem, 
a subSystemsAux, or both. 
The geometric constraint system solving includes 

single-subsystem solving and dual-subsystems solving: 
- Single-subsystem solving uses subsystems without 

priority constraints and is used to perform redundancy 
solving during diagnosis. The most frequent solving 

Geometry Constraint Subsystem 

PlaneGCS 

subSystems subSystemsAux 

System Solver Interface 

Initialize Solve 

Single Subsystem Two Subsystem 

BFGS LM Dogleg 

Sketch Class 
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operation, it depends on the actual implementation of 
the solving algorithm, such as BFGS, LM, or Dogleg. 

- Dual-subsystem solving is the implementation of the 
SQP algorithm, which is the only algorithm that can 
solve two subsystems simultaneously. This algorithm 
gives priority to one subsystem over another and is 
used for programmatic movement operations, such as 
dragging. 
(5) Solver Interface. Defined in Sketch.h, the solver 

interface is responsible for communicating and exchanging 
data between the sketch workbench and the solver. It also 
facilitates programmatic movement of geometric shapes. 
Importantly, the solving algorithm of the solver is called 
here. The calling logic of the algorithm is as follows: first, 
the default algorithm is attempted. If the default algorithm 
fails, the other algorithms are called in a specific order. In 
PlaneGCS, the default solving algorithm is the Dogleg 
method, and the algorithm call order is Dogleg, LM, and 
BFGS. 

 
3 METHODOLOGY 
3.1 Selection and Explanation of Performance Evaluation 

Metrics 
 
In practical engineering applications, geometric 

constraint solvers lack criteria for selecting algorithms. We 
proposed the following four evaluation metrics to evaluate 
the performance of the DFP method and the other three 
algorithms in solving geometric constraint systems, 
providing an example to solve this problem 

Solving Time: This metric measures the amount of 
time required by the DFP method to solve a given 
constraint system. It provides a direct indication of the 
efficiency of the algorithm. 

Solving State: This metric reflects the adaptability of 
the DFP method, and it is the best indication of the 
strengths and weaknesses of the algorithm in practical use, 
because it reflects whether a typical test case has been 
solved successfully. PlaneGCS defines four solving states:  
- Success indicates that the algorithm has found a 

solution and the error of the constraint system tends to 
0.  

- Converged means that the algorithm has found a 
solution that minimizes the error of the constraint 
system, but the error may not meet the required 
tolerance level, resulting in a failure.  

- Failed state refers to the inability of the algorithm to 
find a solution.   

- SuccessfulSolutionInvalid means that the algorithm 
has found a solution, but the solution is not accepted 
by OCE (Open Cascade Community Edition).  
The solving state metric is a reflection of the 

adaptability of the DFP method, with Success > 
SuccessfulSolutionInvalid > Failed = Converged. 

Number of Iterations: This metric measures the 
number of iterations required by the DFP method to solve 
a given constraint system. It reflects the convergence 
performance of the algorithm. 

Systematic Error: This metric represents the 
difference between the results obtained by the DFP method 
and the expected results, and is a reflection of the accuracy 
of the algorithm. 

It is important to note that in our theoretical analysis 
and discussion, we have set an acceptable error threshold 
of 1e−20 for the solution. This means that we will analyse 
the number of iterations required by the DFP method when 
the systematic error is small enough to provide insight into 
the fundamental behaviour of the algorithm. 

 
3.2 Overview of Constraint Solving Algorithms in 

PlaneGCS 
 
The focus of this paper is on the single-subsystem 

solving algorithm of PlaneGCS. A brief overview of the 
principles of these three preset algorithms is provided 
below, and the detailed steps of the algorithms 
implemented in PlaneGCS can be found in the appendix. 

The BFGS method is an optimization algorithm that 
was independently introduced by Broyden [21], Fletcher 
[22], Goldfarb [23], and Shanno [24]. The formula for the 
BFGS method is given by Eq. (1), where kB  represents the 

inverse matrix of the approximate Hessian matrix kH  of 

the nonlinear systems of equations derived from the 
geometric constrained systems. The variables ks  and ky  

in the equation are defined as 1k kks x x   and 

1k k ky f f   , respectively. 

 

1

T T
BFGS k k k k k k
k k T T

k k k k k

y y B s s B
B B

y s s B s
     (1) 

 
The BFGS method is a quasi-Newton optimization 

method that uses the BFGS formula to correct the matrix. 

It is based on the assumption that both 1
BFGS
kB   and BFGS

kB  

are reversible. Using the Shermann-Morrison-Woodbury 
formula, a modified formula for kH  can be derived from 

Eq. (1), as shown in Eq. (2). 
 

1 1

        

T T
BFGS k k k k k
k k T T

k k k k

T T
k k k k k k

T
k k

y H y s s
H H

y s y s

s y H H y s

y s


 

    
 

 
   
 

 (2) 

 
The PlaneGCS algorithm uses the BFGS formula (Eq. 

(2)) to calculate the iteration direction, and then utilizes 
line search to determine the step size.  

The Gauss-Newton method may encounter difficulties 

when the matrix T
k kJ J  becomes singular. To resolve this 

issue, Levenberg [25] proposed using Eq. (3) to calculate 
the iteration direction, with 0kv  . The Levenberg-

Marquardt (LM) method, which has been widely adopted, 
was the result of the efforts of Marquardt [26] in 1964. The 
equation (Eq. (3)) is referred to as the LM equation, where 

kJ  is the Jacobian matrix of the residual function in the 

system, I is the identity matrix, d  is the iteration 
direction, and kr  is the residual. 

 

 T T
k k k k kJ J v I d J r     (3) 
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The correction of the parameter kv  is a crucial aspect 

of the LM method. PlaneGCS employs the method 
proposed by Nielsen [27]: 

 

 3
1

1

If 0,  max 1/ 3,1 (2 1)

If 0,  , : 2

k k k k

k k k

v v

v cv c c

 






    


  
 (4) 

 
where, k  is defined as the ratio of the actual reduction of 

 f x  from kx  to k kx d , to the reduction of the 

quadratic approximation function 
1

( ) ( ) ( )
2

T
k k k k kq d J d r J d r    of  kf x d . 

The Dogleg method, proposed by Powell [28], solves 
the trust region subproblem Eq. (5) in 1970. It is inspired 
by the influence of parameter kv in the LM method on the 

direction LM
kd . In the Dogleg method, the trust region 

radius is denoted by k . 

 

21
min || ||

2
s.t. || || 0

,

,  

k k

k k

J d r

d



   
  (5) 

 
The Dogleg method optimizes the iteration direction 

selection of the LM method. Its selection principle is 
illustrated in Fig. 4. 

 

   

If || ||GN
k kd   , 

make GN
k kd d  

Else, if || ||SD
k k kd   , 

make 
|| ||

SDk
k kSD

k

d d
d


  

Else，calculate 

 1 SD GN
k k k kd d d     , 

where make sure   makes k kd    
Figure 4 Schematic diagram of the Dogleg method 

 
3.3 Implementation and Verification of the DFP Method 

 
The DFP formula, shown in Eq. (6), which was first 

proposed by Davidon [29] in 1959 and later developed by 
Fletcher and Powell [30], is the first quasi-Newton method 
that lays the foundation for the establishment of quasi-
Newton methods. The DFP method is a quasi-Newton 
method that uses the DFP formula to correct the matrix. 
When compared to Eq. (1), it can be seen that kB and kH , 

ky  and ks  are swapped in the two equations, making 

BFGS method and DFP method dual to each other. This is 
also the reason why we choose the DFP method, which is 
similar in nature to the BFGS and is used to verify that our 
selection criteria are more representative. 

 

1

T T
DFP k k k k k k
k k T T

k k k k k

s s H y y H
H H

s y y H y
     (6) 

 

Assuming that both 1
DFP
kH   and DFP

kH  are reversible, 

the correction formula for kB  can be derived from Eq. (6) 

using the Shermann-Morrison-Woodbury formula. Eq. (7) 
shows the correction formula, which can also be seen as a 
duality formula with respect to Eq. (2). 

 

1 1
T T

DFP k k k k k
k k T T

k k k k

T T
k k k k k k

T
k k

s B s y y
B B

s y s y

y s H H s y

s y


 

     
 

 
  
 

 (7) 

 

The steps of the DFP method are as follows: 
Step 1  Start with an initial point 0x  in nR  and a 

symmetric positive definite matrix 0H  in n nR  , set a 

tolerance value 0 , and initialize the iteration counter 
  0k  . 

Step 2  Check the termination criteria. If satisfied, 
output the relevant information and stop the iteration. 

Step 3  Compute kH  using Eq. (6), and calculate the 

search direction kd  as k k kd H g  . 

Step 4  Use a line search method to find a positive 
step size k , and update the current estimate 

1  k k k kx x d   . 

Step 5  Correct kH  using Eq. (6) to obtain 1kH  , 

increment the iteration counter     1k k  , and go back 
to Step 2. 

According to the steps of DFP method, we 
implemented the DFP algorithm in PlaneGCS and verified 
its effectiveness. We have added options for the DFP 
method to the solver control panel on the left side of the 
FreeCAD interface, as shown in Fig. 5. 

Next, the time and space complexities of the DFP 
method are analyzed. We assume that the size of the 
geometric constraint system is n . 

The time complexity can be analyzed as follows: 
a. Finding the system error has a time complexity of 

 O n . 

b. The line search has a loop condition of 
1  2  3f f f  , meaning that the number of iterations is 

constant with regards to the acceptable error. The function 
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for finding err is called in each iteration, resulting in a time 
complexity of  O n . 

c. The termination condition of the DFP method is also 
tied to the error, and therefore, the number of iterations is 
constant. Among the internal functions called, finding error 
and the line search function both have a time complexity of 

 O n , while the time complexity for the gradient 

calculation function is 2( )O n . As a result, the overall time 

complexity of the DFP method is 2( )O n . 

The space complexity is determined by the data 
structures defined in the code for solving the problem, 
which are shown in Tab. 3. 

The space complexity is calculated according to the 

space occupied by H, namely 2( )O n . 

 
Table 3 The data structure used by the DFP method 

Matrix Vector 
H:  
approximate 
Hessian matrix 

x: 
parameter vector 

xdir: 
iteration direction 

grad: 
gradient vector 

s: 

1k kx x   

y: 

1k kg g   
Hy: 
H * y 

 

 
Figure 5 FreeCAD interface 

 
4 EXPERIMENT 
4.1 Experimental Setup and Data Collection 

 
The tests were conducted using the test environment 

and tools listed in Tab. 4. The development environment 
used was FreeCAD 0.19.1, compiled using CMake 3.20.1 
and Visual Studio 2019, and the operating system used was 
Windows 10. 

The testing was performed using the Test Framework 
workbench of FreeCAD, as shown in Fig. 6. The testing 

module selected was TestSketcherApp, which is used to 
test the functions of the Sketch workbench. Clicking the 
Start button executes the setup test cases, which are 
examples of actual user use, and Fig. 7 shows one of the 
test cases ("BasicFillet"). The advantage of testing in this 
way is that it is closer to the actual engineering application 
scenarios than simulation in software such as Matlab by 
constructing a system of equations. 

 
Table 4 Test/development environment 

Source Code Library Pack Compilation Tool Development Tool 
Interface Development 

Plugin 
Operating System 

FreeCAD-0.19.1 
FreeCADLibs_ 

12.5.3_x64_VC17 
CMake 3.20.1 Visual Studio 2019 Qt VS Tools 2.7.1 Windows 10 

 
To collect the data to evaluate the performance of the 

algorithms, two methods were used. The first method 
involved changing the default solving algorithm in 
PlaneGCS, and the second method involved changing the 

order in which the algorithms are called in PlaneGCS. As 
an example, the DFP method was used to modify the 
default algorithm, and the order of the algorithms was 
changed to DFP, BFGS, LM, and Dogleg. The test 



Yunlei SUN et al.: A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS 

Tehnički vjesnik 30, 6(2023), 2026-2035                                                                                                                                                                                                            2033 

information was recorded in the Report View on the right 
side of Fig. 5, which could be output as a log. However, the 
logs were long and cumbersome, so Python was used to 
extract and process the information. 

 

 
Figure 6 Test framework workbench interface 

 

 
Figure 7 Graphics of the test case "BasicFillet" 

 
4.2 Comparative Analysis of Algorithm Performance 
 

Tab. 5 provides an overview of the average solving 
time of multiple experiments of each algorithm for each 
test case. As can be seen: the DFP solves the "BasicFillet" 
in the shortest time of the four algorithms, the BFGS has 
the shortest time for four test cases, the LM has two, and 
the Dogleg is the fastest for most of the test cases. It is 
important to note that the LM method failed to solve the 
test case "Curve" due to the results being rejected by the 
OCE (Open Cascade community version). The DFP and 
BFGS methods were unable to solve the "Sketchslot" test 
case as the number of iterations exceeded the pre-set 
maximum of 100. Further analysis of the "Sketchslot" test 
case will be discussed in a later section of this paper. 

Table 5 The solving time of four algorithms for every test case (Unit: sec.) 

Test Case DFP BFGS LM Dogleg 

BasicFillet 0.0064 0.0074 0.0092 0.012 
Coincident 0.006 0.004 0.0048 0.0046 

Curve 0.0236 0.0176 0.025 0.0174 
Distance 0.0082 0.0068 0.0058 0.0058 

HorizontalVertical 0.0074 0.0052 0.004 0.0056 
OriginalCorner 0.007 0.0064 0.0056 0.004 
PointOnObject 0.0104 0.008 0.0096 0.0106 

Symmetric 0.0176 0.0126 0.0118 0.0114 
Tangent 0.0512 0.03 0.0218 0.016 

Unconnected 0.0076 0.0034 0.003 0.002 
UnconnectedCurve 0.0104 0.0052 0.0032 0.0028 

BlockConstraintTests 0.065 0.045 0.0384 0.0352 
SketchBox 0.0052 0.0046 0.0056 0.0046 
Issue3245 0.0062 0.003 0.0032 0.0028 

Issue3245_2 0.0008 0.0002 0.0004 0.0004 
SketchSlot 1.1428 0.2144 0.177 0.0632 

 
The data in Tab. 6 shows that the space complexity of 

LM and Dogleg methods is higher compared to the other 
two methods, DFP and BFGS. This may indicate that these 
two methods require more memory to solve the constraint 
system compared to the others. It should also be noted that 
the space complexity of an algorithm is an important factor 
in determining its performance and scalability, especially 
for large-scale geometric constraint solving problems. 
Thus, it is crucial to take this into consideration when 
choosing a suitable algorithm for a particular problem. 
 

Table 6 The data structure stored by the algorithm 
Data Structure DFP BFGS LM Dogleg 

Matrix 1 1 2 2 
Vector 6 6 7 8 

 
The solving results for the 16 test cases using the four 

algorithms are displayed in Tab. 7, including the illegal 
(OCE-Invalid) state, referred to as the 
SuccessfulSolutionInvalid state in Section 4.1. The results 
show that these four algorithms have a range of 
applicability with Dogleg performing the best, followed by 
LM, BFGS, and DFP, which is in line with the default 
algorithm call order of PlaneGCS. 

 
Table 7 The solving state of four algorithms for the 16 test cases 

State DFP BFGS LM Dogleg 
Success 15 15 15 16 

OCE-Invalid 
(SuccessfulSolutionInvalid) 

0 0 1 0 

Failed 1 1 0 0 

 
Table 8 The number of iterations and system error 

DFP BFGS LM Dogleg 
ite err ite err ite err ite err 
23 2.94E−22 14 8.58E−26 14 3.53E−19 4 1.07E−28 
56 1.61E−23 23 1.83E−21 14 1.16E−20 7 2.88E−25 
82 7.43E−28 8 5.10E−21 14 1.22E−19 5 1.07E−28 
74 8.04E−22 27 4.76E−22 14 3.38E−19 6 1.24E−25 
177 8.58E−22 45 9.03E−21 17 4.78E−19 7 2.96E−23 
125 9.40E−23 22 1.19E−23 15 3.40E−18 7 1.03E−27 
151 9.42E−21 27 2.18E−24 16 2.59E−20 6 2.10E−21 
168 3.90E−22 28 1.05E−21 16 9.52E−18 7 2.50E−24 
79 1.15E+00 168 1.21E−21 26 5.27E−18 10 7.39E−22 
214 1.17E−24 24 1.08E−22 15 1.78E−20 6 7.36E−25 

 
The results of the number of iterations and systematic 

error for the four algorithms used in PlaneGCS for the test 
case "Sketchslot" are presented in Tab. 8. The maximum 
number of iterations was increased during the test. As can 
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be seen, the LM and Dogleg methods were more efficient 
than the quasi-Newton methods DFP and BFGS. 
Furthermore, the Dogleg method performed better than 
LM, and BFGS performed better than DFP. 
 
4.3 Analysis of the Results 
 

From the test data, it can be found that: the DFP 
method is the best at handling fillet operations, it has the 
shortest solving time, and when the sketch designed by the 
user contains a large number of fillets, DFP will 
significantly reduce the sketch solving time. Another 
noteworthy phenomenon is that the Dogleg method has the 
best performance among the 16 test cases, it has the 
shortest solving time in solving most of the test cases, and 
has fewer iterations than the other three algorithms, but it 
uses the most storage space, and may get bottlenecked 
when dealing with larger scale sketch solving problems. A 
good idea for solving geometric constraints is to have DFP, 
BFGS and LM handle the operations that they are good at, 
such as DFP for fillet, BFGS for coincident, and LM for 
distance, and Dogleg as an alternative, which is applied 
when the other methods do not work well to make the 
problem solvable by using its wide applicability. 

 
5 DISCUSSION 
 

The superiority of the Dogleg method over the quasi-
Newton methods (DFP and BFGS) can be attributed to its 
trust region technique. Unlike the quasi-Newton methods, 
which determine the direction of iteration first and then the 
step size, the trust region method first sets limits on the step 
size and then determines both the direction and step size of 
iteration. This approach helps the iteration converge closer 
to the optimal solution, as it restricts the iteration from 
venturing too far in the wrong direction. 

As stated by Nocedal [31], the BFGS method is known 
to have a highly effective self-correcting property, which 
allows it to correct misestimations of the curvature in the 
objective function within a few steps. On the other hand, 
the DFP method is less effective in correcting such 
misestimations, which is considered to be the reason for its 
poor practical performance. 
 

 
Figure 8 Comparison of results obtained by line search method and trust region 

method 
 

The comparison between the Dogleg method and the 
two quasi-Newton methods is shown in Fig. 8, where kx  

represents the current iteration point, *x  represents the 
optimal solution of the problem, and the dashed line 
represents the contour line of  kq d . The next iteration 

point obtained by the line search method (quasi-Newton) is 

a k kx x d  , while the next iteration point obtained by the 

trust region method (Dogleg) is tx . It can be observed that 

tx  is closer to the minimum point *x  of the original 

problem than ax , demonstrating the effectiveness of the 

trust region in directing the iteration towards the optimal 
solution. 

We can see from the experimental results: the DFP 
method takes the shortest time among the four algorithms 
to solve the fillet problem, but it does not have an 
advantage in solving the other test cases, which also 
reflects that different algorithms are good at different areas 
in practical application scenarios. 

The objectives of our study were to investigate and 
evaluate the application of the DFP methodology in 
PlaneGCS and to comprehensively evaluate its 
performance in solving test cases as an empirical guide for 
subsequent research outlines based on open-source 
geometric constraint solvers. And help to choose the 
appropriate geometric constraint solving algorithm in 
different engineering scenes. Based on the results of our 
study, we succeeded in achieving these objectives. 

It is worth noting that although our findings are 
consistent with the purpose of the study, there are still some 
limitations. For example, our study was evaluated based on 
PlaneGCS only, and the application of other CAD 
platforms may be different. More algorithms need to be 
introduced to test the reliability of the selection criteria. In 
addition, our study could be further extended to explore the 
potential room for improvement and wider applicability of 
the DFP approach. 

 
6 CONCLUSIONS 

 
The conclusion of this paper highlights the study of the 

PlaneGCS geometric constraint solver of the open-source 
CAD software FreeCAD. The focus of the study was on 
the BFGS, LM, and Dogleg methods, with the addition of 
the DFP method. The research results were compared and 
analyzed in terms of solving time, adaptability, number of 
iterations, and systematic error. The study successfully 
explored the application and selection of numerical 
methods in an open-source geometric constraint solver and 
obtained the following main research findings:  
- The DFP method is successfully integrated into 

PlaneGCS and its effectiveness in geometric constraint 
solving is verified. 

- The DFP method shows faster solving speed in solving 
the fillet operation, which is advantageous compared 
with other algorithms. 

- Different geometric constraint solving methods are 
good at handling different problems, which can refer 
to our standards for selection in the real engineering 
scene. 
In this study, the way of applying DFP algorithm to 

PlaneGCS is put forward, which provides a new idea and 
method for improving the solution of geometric constraints 
in CAD field. By putting forward reasonable evaluation 
metrics and comparing DFP method with other algorithms, 
we provide an important reference for the selection of 
geometric constraint solving algorithms in CAD field. Our 
research results have important guiding significance for the 
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further development and improvement of open-source 
geometric constraint solver in CAD field, and provide 
practical experience and suggestions for related work. 

However, there are some limitations in this work that 
require improvement in the future. These include the need 
for more real engineering cases to test the adaptability of 
the solving algorithms and explore other sketch operations 
that DFP method is good at solving. 
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