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Energy principle application to response of viscoelastic bars

A wide range of practical engineering problems exists for which obtaining exact solutions 
directly is challenging. This is because of the complex nature of the governing differential 
equations or the difficulties arising from the boundary and initial conditions of the 
problem. To address these problems, scalar quantities, such as work and energy, are 
used as an alternative approach. The virtual work principle constitutes the basis for 
the energy and variational formulations. This study uses energy concepts to formulate 
viscoelastic structures and discuss the statically indeterminate axially loaded viscoelastic 
bar problem. A simple and efficient energy-based formulation for analysis is proposed. 
The total potential energy (TPE) expression in terms of the displacements of the nodes 
was obtained in Laplace space. The solutions that minimise the TPE expression are 
real displacements, and the inverse Laplace transform method is applied to transform 
the function back into the time domain. Different examples were considered to ensure 
accuracy and demonstrate the potential of the proposed solution technique. This method 
is convenient for obtaining a solution directly by following a few simple process steps, 
regardless of the change in the viscoelastic material model, the number of elements in 
the system, and the type of loading.
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Pregledni rad

Gülçin Tekin, Fethi Kadıoğlu

Primjena načela energije u izračunavanju odziva viskoelastičnih štapova

Za široki je raspon praktičnih problema u građevinarstvu teško pronaći točna rješenja. 
Razlog je tome u složenosti diferencijalnih jednadžbi koje opisuju problem ili u poteškoćama 
koje proizlaze iz rubnih i početnih uvjeta. Kao alternativni pristup rješavanju tih problema 
primjenjuju se skalarne veličine poput rada i energije. Načelo virtualnoga rada osnova je 
energijskih i varijacijskih pristupa. U ovom je istraživanju pomoću energijske formulacije 
viskoelastičnih konstrukcija obrađen problem statički neodređenoga viskoelastičnog 
aksijalno opterećenoga štapa. Za analizu je predložena jednostavna i učinkovita formulacija 
utemeljena na energiji. Izraz za ukupnu potencijalnu energiju u ovisnosti o pomacima 
čvorova izveden je u Laplaceovom prostoru. Rješenja koja smanjuju ukupnu potencijalnu 
energiju stvarni su pomaci, a inverzna Laplaceova transformacija primijenjena je za 
preslikavanje funkcije nazad u vremensku domenu. Analizirani su različiti primjeri kako bi 
se osigurala točnost i prikazao potencijal predložene metode. Ovom se metodom rješenje 
može dobiti neposredno u nekoliko jednostavnih koraka, neovisno o promjeni modela 
viskoelastičnoga materijala, broju elemenata u sistemu i vrsti opterećenja.

Ključne riječi:

viskoelastičnost, analiza ovisna o vremenu, načelo potencijalne energije, statički neodređen, Laplaceova 

domena, inverzna Laplaceova transformacija
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1. Introduction 

Linear elastic material behaviour is the simplest and most 
common idealisation. In most materials, such as polymers, 
metals at high temperatures, wood, and living tissue and cells, 
the effects of both elasticity and viscosity are noticeable. 
These effects are called viscoelasticity (VE). Instantaneous 
elasticity, creep, stress relaxation, instantaneous elastic 
recovery, delayed recovery, and permanent or viscous 
deformations occur in VE bodies. The deformation of VE 
materials is affected by the loading rate and duration of 
the applied load. Proper modelling of the time-dependent 
behaviour is essential for the accurate analysis of the 
structures made of VE materials. The behaviour of the VE 
materials was mathematically modelled using mechanical 
analogues consisting of springs and dashpots. The spring 
and dashpot are the basic elements used to model the elastic 
and viscous behaviours of VE materials, respectively. Various 
combinations of spring and dashpot elements in series and/
or parallel have been used to describe a wide range of linear 
VE materials. 
Different classification methods are used for engineering 
structures. The most common classification is based on 
a combination of the geometric configuration and loading 
characteristics of the structure. A bar (or rod) is the simplest 
structure from a geometric perspective. Depending on 
whether the load is tension, compression, torsion, or bending, 
a straight bar is often referred to as a rod, column, shaft, or 
beam. 
Linear VE has been used for structural analysis of time-
dependent materials. Laplace transformation, Fourier 
transformation, and the correspondence principle (the 
elastic–viscoelastic analogy) are used for analysing 
viscoelastic problems. The Laplace transform was applied 
to VE beams in Ref. [1]. A previous study used the elastic–
viscoelastic correspondence principle [2] to solve the VE beam 
field equations. Christensen [3] analysed the viscoelastic 
beam problem using the Fourier transform technique. 
Several studies have been conducted on the static and 
dynamic analyses of VE beam-type structures. The quasi-
static and dynamic (QS-DYN) behaviour of the linear VE and 
conventional Timoshenko beam was analysed in Ref. [4] using 
the Prony series. The time terms were removed using a hybrid 
Laplace transform. Based on Hamilton’s principle, a finite 
element (FE) solution can be obtained without performing an 
integral transformation. A previous study [5] reports the QS-
DYN analysis of the VE Timoshenko beam using the hybrid 
Laplace–Carson and FE method. The study used a hereditary 
integral representation of the constitutive relations. In the 
numerical examples, Kelvin and three-parameter solid models 
are used, and for numerical Laplace inversion, the Fourier 
series and Schapery methods are considered. 
Among the computational methods used for VE, the FE 
method is the most common and versatile. Several authors 

reported the application of the FE method to viscoelastic 
beam problems. [6] presented a procedure to determine 
the transient response of a VE-beam system. The multiple 
degrees of freedom (MDOF) FE model was used for the 
analysis. A fast Fourier transform (FFT) was applied to 
transform the frequency-domain equation into the time 
domain. [7] studied the VE-beam FE models based on different 
kinematic assumptions. Hamilton’s principle was used to 
derive the governing equations. The results are transformed 
into the time domain using a numerical inversion procedure. 
[8] proposed a Golla–Hughes method (GHM)-based sandwich 
FE model. The proposed formulation is based on a second-
order time-domain realisation of the Laplace-domain motion 
equations. The parameters characterising the viscoelastic 
material were experimentally determined. [9] developed 
a solid-shell FE method for free vibration analysis of VE 
sandwich beams. The general formulation of the problem is 
presented using different finite element discretisation while 
underlying their respective limitations. [10] developed an FE 
model based on the first-order shear deformation theory and 
the Hamilton principle for the vibration analysis of a sandwich 
beam with a viscoelastic material core sandwiched between 
two elastic layers. In the derivation of the FE equation, it 
was assumed that there was no relative sliding between 
the layers, and the effect of the moment of inertia was not 
considered. The numerical results were validated through 
the experimental testing of a VE sandwich cantilever beam. 
[11] applied analytical and numerical models to predict the 
serviceability limit states of flexural reinforced-concrete 
members. The considered beam elements were investigated 
under both short- and long-term bending loads. Two distinct 
mathematical models were applied in the analysis, namely a 
model with beam finite elements (1D analysis) and a model 
with plane stress elements (2D analysis). For long-term 
analysis, the time-dependent effects of concrete, creep, 
and shrinkage were employed in both models through the 
viscoelastic concrete behaviour. Numerical and analytical 
models were validated using existing experimental data. Most 
studies available in the literature provide good coverage of the 
vibration characteristics and stability of VE beams [12-25]. 
This study aims to apply the total potential energy (TPE) 
principle to determine the VE behaviour of bar-type structures. 
The TPE principle has a wide range of applications and is 
particularly adaptable to engineering structures, which are 
classified based on a combination of geometric configurations 
and loading characteristics, such as beams, frames, plates, 
and shells. However, these structures are assumed to be 
elastic (i.e., the magnitude of the response quantity, such as 
stress and displacement, is proportional to the magnitude of 
the applied load). 
Initially, researchers usually focused on elastic problems; 
however, when viscoelastic materials are widely utilised 
in practice, the need for studies on viscoelastic problems 
has increased. Assuming that the material is elastic, the 
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simplification of the analysis proves to be inconsistent with 
reality because most engineering materials exhibit noticeable 
time effects and are viscoelastic because of internal friction. 
Therefore, viscoelastic constitutive relations are more 
realistic than elastic constitutive relations in reflecting 
material behaviour. Consideration of the time-dependent 
feature of the VE material and the formation of the basis for 
real structural analysis has drawn much attention in research. 
The author and co-workers published studies devoted to 
implementing a simple and efficient computing procedure for 
the QS-DYN analyses of VE structural elements based on the 
concept of the Gâteaux differential. New functionals suitable 
for mixed FE formulations in the Laplace-Carson domain were 
developed for VE Kirchhoff plates by [26] and first-order shear 
deformable Mindlin–Reissner plates by [27].
The motivation for this study was derived from a literature 
survey. The principles of work and energy are fundamental 
and form the basis of various approximate methods of 
analysis. Despite extensive research on the development 
and application of work and energy methods for the analysis 
of elastic structural elements, this study proposes a total-
energy principle for viscoelastic problems. It is well known that 
there exists no explicit total energy representation for viscous 
problems in the time domain because the viscous term plays 
a non-conservation role in a structural system. In general, the 
virtual work principle is established for viscoelastic problems 
in time-domain computation. In the present study, it was 
demonstrated that an explicit total energy representation for 
viscous problems can exist in the Laplace domain.
In certain cases, viscoelastic evaluation is sufficiently 
complicated because modelling the behaviour of progressive 
deformations (i.e. suffering from creep, relaxation, and 
hysteresis problems) along the long-term structural response 
involves mathematical complexity. The main objective of 
this study is to discuss the linear VE behaviour of bar-type 
structures using the principles of work and energy. This is the 
first study that presents a new, simple, and efficient energy-
based formulation for the analysis of statically indeterminate 
VE bar-type structures. The proposed formulation is 
theoretically simple and easy to implement in practice. 
This proved to be efficient for obtaining the results of any 
constitutive model of linear viscoelasticity. Rebuilding the set 
of equations to be solved depending on the types of VE material 
models, loadings, geometries, and number of elements in 
which the body is divided into a few straightforward steps 
is the primary advantage of the proposed method. This 
study presents highly accurate solutions for both statically 
determinate and indeterminate VE systems. In the FE analysis, 
it is essential to use fine meshing to obtain more precise 
results; however, fine meshing is often time-consuming. The 
proposed method yields satisfactory results independent of 
the number of subdomains (elements) in which the body is 
divided, thereby saving time. The Kelvin-Voight model and 
standard linear solid (SLS) model were used to develop the 

VE constitutive equations. Using the convolution properties 
of the Laplace transform, the minimum potential energy 
principle was applied to analyse an axially loaded statically 
indeterminate bar-type structure. Because the governing 
equations are time-dependent, a solution method is 
proposed. Several examples are considered to validate the 
proposed formulation. Beginning with a simple bar structure, 
this study takes the author and her co-workers through 
increasingly complex problems of solid mechanics, such as VE 
structures, which consist of an assemblage of two or more 
bars and are subjected to bending, shear, and axial loads, 
called frames, and subject to axial forces, only called truss in 
2D or 3D, and problems involving deformations, stability, and 
vibrations of VE bodies. The methodology discussed in this 
study can be easily applied to the analysis of different types 
of VE structural members. It is simple, reliable, and efficient in 
terms of computation, and its results are accurate. The results 
of this study can serve as a benchmark for future research. 

2. Methodology

There are two different approaches for the analysis of 
engineering structures. One method aims to describe the 
states of stress and deformation throughout the structure by 
integrating differential equations that satisfy the appropriate 
boundary conditions. This approach has the advantage of 
generality; however, performing integration analytically seems 
nearly always impossible. Another alternative approach is to 
use scalar quantities such as work and energy. The first law 
of thermodynamics requires that the sum of the mechanical 
energy WE and heat energy Q supplied to the system be equal to 
the sum of the kinetic energy T and internal energy U as follows:

WE + Q = T + U (1)

Assuming that the deformation process is adiabatic, Q = 0. 
Additionally, the time at which the loads were applied very slowly 
(quasi-static) and a state of equilibrium was maintained; thus, T 
= 0. Under these assumptions, the first law is a restatement of 
energy conservation, such that 

WE = U (2)

The work performed by the applied forces during the loading 
process (WE) can be visualised as the area enclosed under the 
force curve. The work expression becomes:

 (3)

The applied force, denoted by F may represent a concentrated 
or distributed force or moment. Therefore, F and x are the 
generalised force and displacement, respectively. 
The internal energy U (called the strain energy) must be derived. 
The work done by the external load is stored as strain (internal) 
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energy U. To determine the strain energy, the material behaviour 
must be defined; therefore, the strain energy can be expressed in 
the form of stress. The time dependence of the VE response was 
comparably more involved than those of the elastic response of 
solids and the viscous response of fluids. Hysteresis is observed 
in the stress-strain curve of a VE material, and the stiffness of the 
material depends on the strain rate  = dε/dt or stress rate  = 
dσ/dt. Based on the assumption that the material is a linear VE, it 
follows that the mechanical work done by the applied forces is 
regained, and the energy lost during the loading cycle is equal to 
the area of the loop, as shown in Figure 1. 

Figure 1. Stress-strain curve for a VE material

New forms of developed materials exhibit mechanical 
properties that are neither perfectly elastic nor show viscous 
fluid idealisation. Mechanical energy is stored in perfectly 
elastic materials without energy dissipation. Nevertheless, an 
ideal real (viscous) fluid can dissipate the entire energy input in 
a state of non-hydrostatic stress. VE materials can store and 
dissipate energy. The constitutive equations of time-dependent 
(VE) materials include stress, strain, and time variables. To 
define the constitutive equations, one form uses integrals, and 
the other uses differential equations.
The one-dimensional VE constitutive relationship of an integral 
form considering Boltzmann’s superposition principle is 
expressed as follows: 

 (4)

 (5)

where M(t) is the relaxation modulus, and C(t) is the creep 
compliance, both of which change with elapsed time t. 
Temperature dependence is omitted based on a uniform 
constant temperature assumption.
Eqns. (4-5) show that the material has memory; in other words, 
the material response is determined by the current value of the 
action in addition to all past actions. 
The convolution integral allows the viscoelastic constitutive 
equations to be written in an elastic-like fashion [28] as follows: 

σ(t) = M(t-τ)∗dε(τ) = M∗dε (6)

ε(t) = C(t-τ)∗dσ(τ) = M∗dσ (7)

As the constitutive equations of the linear VE material 
correspond to convolution integrals, the Laplace transform 
can be applied to convert them into algebraic equations. The 
Laplace transform for any Piecewise Continuous function f(t) is 
defined as follows: 

 (8)

Using the two properties of the Laplace transform (called the 
transforms of the derivatives in Eq. (A.1) and the convolution of 
Eq. (A.2); see Appendix), the constitutive equations result in the 
following algebraic form: 

 (9)

 (10)

Here, s is the Laplace variable, and (s), (s), (s) and (s) are 
functions in the s-domain. Combining Eqns. (9) and (10) into an 
algebraic expression, the simple formula between the creep 
compliance and relaxation modulus in the Laplace transform 
plane is obtained as

 (11)

The expression for the strain energy per unit volume corresponds 
to the strain energy density; therefore, the expression is given 
by the integral on an interval (0, t), as follows [28]:

 (12)

3. Total potential energy (TPE) principle

The application of variational principles to several branches of 
mechanics has a long history of development. The calculus of 
variations involves determining the function which makes a 
given functional stationary [29].
The principle of virtual work (PVW), also called the 
principle of virtual displacement (PVD), forms the basis 
of the variational formulation. It should be noted that 
the virtual work principle is applied independently of the 
constitutive relations of the material, whereas the stress-
strain relations should be considered for the formulation of 
variational principles. 
In this section, the TPE principle will be derived from PVW, such 
that

δWE = δU (13)
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The PVW is equivalent to equilibrium equations for the system, 
and the external virtual work δWE done by the real forces during 
the virtual distortion is equal to the internal virtual work δU 
done by the real stresses during the virtual distortion. Here, the 
symbol δ represents a variation operator.
Eqn. (13) may be written as follows regarding δ as the virtual 
operator: 

δU-δWE = δ(U-WE) = 0 (14)

In which,

(U-WE) = Π (15)
and 
δΠ = 0 (16)

Here, Π is the TPE of the structure. The principle in Eqn. (16) 
indicates that among all displacements satisfying the prescribed 
boundary conditions, the actual displacement minimises the 
TPE. 

4.  Application of the TPE for the determination 
of time-dependent displacements in axially 
loaded statically indeterminate VE bar

The simplest application of the TPE principle is to determine 
the displacement of a statically indeterminate VE bar 
subjected to time-varying axial loading. One of the reasons 
for selecting this example is to illustrate the arguments 
underlying the method; another reason is that, to the authors’ 
best knowledge, this is the first study devoted to the analysis 
of statically indeterminate members (axially loaded only) that 
show VE characteristics via a systematic procedure based on 
the energy principle. 
In the case of a linear VE material, a constitutive relationship 
must be determined. VE behaviour can be modelled by 
considering simple mechanical analogues such as linear 
springs and dashpots. Simple rheological models widely used in 
theoretical studies consist of spring-dashpot systems, either in 
parallel or in series. The Maxwell model corresponds to a series 
arrangement and behaves as a fluid. The Kelvin–Voight model 
(Figure 2) corresponds to a parallel arrangement and exhibits 
solid behaviour.
The constitutive relationship for the Kelvin–Voight solid model 
is a linear first-order differential equation as follows: 

σ = σS+σD = Eε+η  (17)

Eq. (17) contains the time derivatives. Therefore, stress and 
strain were not proportional. A Kelvin–Voight-based statically 
indeterminate VE bar with length L, fixed support at both ends, 
and loaded by two axial loads P1 and P2 (these axial loads can 
be a function of time or a constant) at x = L1 and x = L1 + L2, 
respectively, is shown in Figure (3). 

Figure 2.  Schematic representation of Kelvin-Voight model and force 
balance

Our attention is restricted to the simpler case: the area of 
cross-section A is independent of x. Let us consider the bar to 
be composed of a set of N = 3 elements, each of length Li (i = 1, 
N), as shown in Figure 3 
The main aim was to construct a relationship between the nodal 
forces on an individual element and its end displacements. The 
time-dependent extension of the element is 

∆i = qi(t) - qi-1(t) (18)

The strain energy (U) of the bar is equal to the sum of the strain 
energies stored in all the members. In this case, the TPE in the 
Laplace domain is

 (19)

where  is the Laplace transform of the external virtual work. 
By substituting the Laplace transform into Eqs. (17) into an 
internal energy expression rewritten in the Laplace domain and 
integrated over the entire volume of the structure yields the 
total strain energy  in the Laplace domain: 
To apply the TPE principle, the total potential ( ) must be stated 
in terms of the unknown end displacements (  and ) as shown 
in Figure 3.

 (20)

 is the extremum of the true displacement field. Therefore, the 
variation in Eq. (20) for  and  yields the desired results in the 
Laplace domain.
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There are two independent quantities subject to variation in the 
functional:  and  with no subsidiary conditions. Taking 
variations with respect to these quantities requires δ  = 0 
which in the present case becomes 

 (21)

Eq. (21) provides a set of two simultaneous linear algebraic 
equations in which the two unknowns are  and . The matrix 
form of these equations is 

 (22)

where the matrices:

 (23)

are known as element stiffness matrices. The properties of the 
individual elements were used to assemble a global stiffness 
matrix. Proceeding element-by-element leads to the global 
stiffness matrix, as in Eq. (24):

Figure 3. A schematic of the statically indeterminate VE bar

 

(24)
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To solve this problem, the nodal force  must be determined, 
and the equation system must be set up as follows: 

F = Ku (25)

where F is the vector of the nodal forces for the entire 
structure, matrix K is the global stiffness matrix, and u is the 
nodal displacement vector. Condensed equations for the 
unknown displacements were created using the solutions of 

 and . The calculated displacements were used to obtain 
the  Laplace domain extension values from the Laplace 
transforms of Eqs. (18). The inverse Laplace transform 
technique is used to convert the results obtained in the real 
(time) domain. Through the constitutive relation of the 
material, the normal forces can be easily calculated, if 
desired. 

5. Numerical examples and discussion

In this section, three numerical applications are presented 
to ensure the accuracy and demonstrate the potential of 
the proposed procedure. For the first comparison example, 
the SLS VE material model was proposed based on a 
combination of springs and a dashpot to represent the VE 
behaviour of a statically determinate bar-type structure. 
Further examples were considered to present the solutions 
of statically indeterminate viscoelastic bar-type structures 
characterised by the Kelvin-Voight and SLS models. The 
steps for solving practical examples are as follows:
 - Determine the constitutive relation of the viscoelastic 

material model in the Laplace domain
 - Decide the number of sub domains that the body is 

divided
 - The internal energy expression. Eq. (12), in the Laplace 

domain. 
 - By applying the TPE principle to the Laplace domain, see Eq. 

(20)
 - Obtain unknowns (end-displacements) by using Eq. (24)
 - Use the inverse Laplace transform 

to convert the results in the time 
domain.

To the best of our knowledge, no 
systematic energy-based formulations 
are available in the current literature. To 
verify the validity of the proposed TPE 
formulation, the results were compared 
with those of the ABAQUS finite element 
analysis because analytical solutions are 
not available in the literature. A constant 
Poisson’s ratio (ν = 0.25) was used for 
the analysis. 

5.1. Comparison example: The SLS Model

This example, taken from [30], considers a rod with a length 
of 254 mm and diameter of 25.4 mm. One end of the rod was 
fixed, whereas the other end was subjected to suddenly applied 
axial stress with a magnitude of 0.689 MPa. The SLS model (see 
Figure 4) involves two systems in parallel. The Maxwell arm 
contains a spring (E2 = 62.01 MPa) and a dashpot (η = 62.01 
MPa.s), and the system contains only a spring (E1 = 6.89 MPa) 
and is used for modelling the viscoelastic rod. 

Figure 4. Rheological model of viscoelastic rod

The SLS material model has the following constitutive relation: 

 (26)

The strain-time history plot in the direction of the load obtained 
using the present TPE formulation and the SLS model in [30]
is illustrated in Figure 5. The proposed and reference study 
solutions were in good agreement. Using this example, the 
computational performance and accuracy of the proposed 
energy-based formulation were tested for statistically 
determinate systems. 

Figure 5. Comparison of solution of reference study and TPE formulation
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5.2.  Example 2: Statically indeterminate VE bar 
characterized by the Kelvin-Voight model

This example was used to evaluate the numerical accuracy of 
the TPE formulation. The statically indeterminate bar shown 
in Figure 6, which was fixed supported at both ends, was 
considered. The VE bar had a constant cross-sectional area A = 
900 cm2 and was subjected to loads of P1 = 200 N and P2 = 400 
N. Let us determine the time-dependent behaviour specified 
by using the Kelvin-Voight VE material with E = 4×105 Pa and 

η = 6×106 Pa.s. The accuracy of TPE application in an axially 
loaded VE bar with length L = L1+L2+L3 comprising a set of N = 
3 elements (L1 = 1 m, L2 = 2 m, and L3 = 3 m), was validated 
against the results of an axially loaded elastic bar. To obtain the 
displacement of an axially loaded elastic bar in the direction 
of the load, the coefficient of viscosity η was set to near zero 
in the developed formulation. The elastic and VE results (see 
Figures (7) and (8)) correspond well, and it is again proven that 
the presented formulation is efficient for calculations. 

5.3.  Example 3: Statically 
indeterminate VE bar 
characterized by the SLS 
model

In this example, the time-dependent 
displacement values of the VE bar in 
Figure (6) characterised by the SLS 
model were calculated. The geometrical 
properties used in the previous example 
were considered in the analysis. The 
material properties of the VE bar are 
E1 = E2 = 4×105 Pa and η = 6×106 Pa.s. 
The system was subjected to axial 
forces with magnitudes P1 = 200 N and 
P2 = 400 N. The results were compared 
with those obtained using the ABAQUS 
Finite element analysis software. In 
ABAQUS, the bar was divided into 60 
finite elements. The time-dependent 
displacements in the direction of the load 
are presented along with the ABAQUS 
results in Figure 9 and 10. The results of 
the TPE satisfactorily coincide with the 
corresponding ABAQUS results and are 
accurate to nearly five decimal places for 
different values of the time. 
The mesh density is a critical issue in 
finite element analysis. Usually, a smaller 
mesh yields more accurate results; 
however, the computing time is also 
significant. The accuracy of the proposed 
energy-based formulation appeared 
to be independent of the number of 
elements in the system.
Figures 7-8 and Figures 8-9 depict the 
displacement versus time results for the 
Kelvin-Voight model and SLS models, 
respectively. As predicted, the spring of 
the Kelvin model wants to stretch, but is 
restrained by the dashpot, which cannot 
react immediately. Therefore, the spring 
length did not change when a load was 
suddenly applied to the Kelvin model. 

Figure 8.  Displacement (at point C) versus time plot for statically indeterminate elastic and VE 
cases

Figure 7.  Displacement (at point B) versus time plot for statically indeterminate elastic and 
VE cases

Figure 6. Statically indeterminate VE bar
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The SLS model represents the instantaneous strain when a 
load is applied suddenly. With regard to this discussion, it can 
be concluded that the proposed formulation has good potential 
to represent the time-dependent behaviour of the VE medium 
subjected to loading. It is worth noting that the proposed 
method, which is theoretically simple to understand and easy 
to implement, proves to be efficient for building the results of 
any constitutive model of linear viscoelasticity. 
Rebuilding the set of equations to be solved depending on the 
type of VE material model and structural elements in a few 
straightforward steps is the primary advantage of the proposed 
method. The analysis of systems with different numbers of 
elements, viscoelastic material models, and loading types can 
be performed directly using a few simple steps. 

6. Conclusion

Understanding the role of material behaviour in engineering 
problems, which are mathematical models of physical 
situations, is crucial. Several newly developed materials 
exhibit viscoelastic characteristics that are difficult to 
quantify. This study was performed to help researchers gain 
a better understanding of a new solution technique based 
on the minimum potential energy principle for analysing 

viscoelastic bodies. The principle of the 
TPE is concerned with determining the 
function which makes a given functional 
stationary. The uniqueness of this 
study is that the energy functions of 
statically indeterminate VE bar-type 
structures in the Laplace domain were 
obtained for the first time. To convert 
the obtained results into the real 
domain, an inverse Laplace transform 
technique was applied. Three numerical 
examples were presented to ensure 
the accuracy and demonstrate the 
potential of the proposed procedure. 
Different mechanical analogues were 
used to represent the time-dependent 
behaviour of the viscoelastic materials.
The proposed formulation has good 
potential to represent the time-
dependent behaviour of a VE medium 
subjected to loading. It is worth noticing 
that the proposed method, which is 
theoretically simple to understand 
and easy to implement practically, 
proves efficient for building the results 
of any constitutive models of linear 
viscoelasticity. Rebuilding the set of 
equations to be solved depending on the 
type of VE material model and structural 
elements in a few straightforward 

steps is the primary advantage of the proposed method. This 
study presents highly accurate solutions for both statically 
determinate and indeterminate VE systems. To the best of 
our knowledge, this is the first study devoted to the analysis 
of statically indeterminate bar-type structures that exhibit 
VE characteristics using a systematic procedure based on 
the energy principle. The results presented here are novel. 
Beginning with a simple bar model, this study takes the author 
and her co-workers through increasingly complex problems 
of solid mechanics, such as VE structures, which consist of an 
assemblage of two or more bars and are subjected to bending, 
shear, and axial loads, called frames, and subject to axial 
forces, only called truss in 2D or 3D, and problems involving 
deformations, stability, and vibrations of VE bodies.

Appendix

A transform of the first derivative:

 (A.1)

Transform of the convolution: 

 (A.2)

Figure 9. Comparison of TPE formulation and ABAQUS result at B point

Figure 10. Comparison of TPE formulation and ABAQUS result at C point
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