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Abstract

Continuous Wavelet Transformation (CWT) was applied to study the small-scale repetitive oscil-
lations of porosity distribution patterns in a 5 m silty-claystone core sample of the Boda Clay-
stone Formation. We handled the fluctuations in voxel porosity averages over unequal depth
distributions as signals over uneven time intervals. The strength of wavelet analysis lies in the
ability to study the fluctuation of a signal in detail, i.e., the wavelet transforms permit automatic
localization of the cyclic attributes’ sequences both in time (the depth domain) and according to
their frequency (the frequency domain). Thereupon, three main frequency branches (cycles) were
discerned: small scale (5, 6.67, and 11 cm), intermediate scale (20, 30 cm), and large scale
(66.67 cm).

Depending on the CWT coefficients magnitude plot, we were able to detect the developments
of porosity oscillation according to the depth variable. Thus, small-scale cycles were seen
throughout the core sample., the intermediate-scale cycles were strong in the upper parts of the
core sample and dwindled toward greater depths, and the large cycle was predominant in the
lower part of the core sample.

The cross-correlation of the wavelet coefficients of porosity and rock-forming components al-
lows a detailed study of the inter-dependence of such parameters as their relationship changes
over time. The distinct peaks at zero lag indicates that the measured wavelet coefficient series
were contemporaneously correlated; their strong positive correlations suggest that both exami-
ned series respond similarly and simultaneously to other exogenous factors. The results em-
phasize that cyclical porosity fluctuations at all scales would concern three main factors; sedi-
ment deposition, diagenetic processes, and structural deformation (i.e., convolute laminations).

1. INTRODUCTION

Time series analysis is the application of mathematical and sta-
tistical tests to time-varying data to quantify the variation and
gain some physical understanding of the system behaviour
(TEMPLETON, 2004). Many systems are monitored and evalu-
ated for their behaviour using time signals; additional informa-
tion about the properties of a time signal can be obtained by rep-
resenting the time signal by a series of coefficients based on an
analysis function. One example of a signal transformation is the
transformation from the time domain to the frequency domain.
The oldest and probably best-known method for this is the Fou-
rier transform (MERRY, 2005).

In the frequency domain, Fourier Transform (FT) deals with
infinite sines and cosines as base functions to decompose station-
ary time series (POTOCKI et al., 2017). This transform calculates
the relative intensity of each frequency component of the whole
signal (the global frequency content of signals), but the time in-
formation is lost (GURLEY & KAREEM, 1999A; SHOK-
ROLLAHI et al., 2013). That is to say, a short-duration, high-
frequency phenomenon is buried in a Fourier representation with
the average background spectral content (GURLEY & KA-
REEM, 1999A). This is overcome by the Short-Time Fourier
Transform (STFT), which divides a non-stationary signal into

small segments (stationary parts), calculates the Fourier trans-
form of a windowed part of the signal, and shifts the window over
the signal. The short-time Fourier transform gives the time-fre-
quency content of a signal with a constant frequency and time
resolution due to the fixed window length. Thus, a short temporal
window provides suitable time resolution, but the resulting fre-
quency resolution is low. If a larger temporal window is selected,
frequency resolution will be improved, but time resolution will
be reduced (TEMPLETON, 2004; MERRY, 2005; SHOKROL-
LAHI et al., 2013).

The Wavelet Transform is a computationally efficient tech-
nique for extracting information about transient and non-sinusoi-
dal signals. The Wavelet Transform (WT) and more particularly
the Continuous Wavelet Transform (CWT) is calculated analo-
gously to the Fourier Transform by the convolution between the
signal and analysis function. However, the trigonometric analysis
functions are replaced by a wavelet function (mother wavelet).
From this, the continuous wavelet transform retrieves the time-
frequency content information with an improved resolution com-
pared to the STFT (MERRY, 2005; LABAT, 2010; PANDA et al.,
2000; POTOCKI et al., 2017).

Wavelet analysis is a rapidly developing area in many disci-
plines of science and engineering. For example, the wavelet trans-
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form originated in geophysics in the early 1980’s for the analysis
of seismic signals and is now being exploited for the analysis of
several other geophysical processes such as spatio-temporal rain-
fall patterns, layered structures, and climate change. Moreover,
the application of one-directional wavelet analysis has become
wide spread in various fields of geosciences, such as gravity
analysis (MARTELET et al., 2001, OUADFEUL et al., 2010),
lithofacies segmentation (OUADFEUL & ALIOUANE, 2011),
geophysics (CHAMOLI, 2009), seismic data analysis (OUAD-
FEUL, 2007), hydrology and water resources, discharge and sus-
pended sediment, and reservoir-data analysis, i.e., permeability
data (LABAT, 2010; GURLEY & KAREEM, 1999A; PANDA
et al., 2000; POTOCKI et al., 2017), and also to detect gradual
and abrupt changes in the sedimentation rate, discontinuities, and
superimposed periodic cycles (PROKOPH & BARTHELMES,
1996).

In this study, the CWT was applied to track the small-scale
repetitive oscillations of porosity distribution patterns ina 5 m
silty-claystone core sample. The computed tomography scan im-
ages (CT) lay the foundation for obtaining voxel datasets on the
millimetre scale. Fluctuations in voxel porosity averages over
unequal depth distributions were handled as signals over uneven
time intervals. The cross-correlation of the wavelet coefficients
of the voxels dataset allows quantification of the similarities of
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the wavelet coefficients of porosity and rock-forming components
on large, medium, and small-scale cycles, both contemporane-
ously and at various lagged values.

Currently, there is no general framework for modeling or
tracking the repetitive oscillations of porosity distribution pat-
terns in clastic rocks. However, applying such a method grants a
unique insight into the cyclical behaviour of the studied parame-
ter (petrophysical properties, i.e., porosity) and provides a refer-
ence basis for interpreting the fluctuation patterns based on sedi-
ment depositions, structural deformation, and diagenetic processes
constraints.

2. GEOLOGICAL SETTING

We investigated a silty claystone core sample from the Boda
Claystone Formation (BCF). It is located within the Tisza Mega
unit, Southern Transdanubia, SW, Hungary. During the Permian,
this unit was located north of the equator and belonged to the
southern margin of the stable European plate (CSONTOS &
VOROS, 2004), where a thick continental clastic succession
accumulated. It was detached from the southern margin of
Variscan Europe during the Jurassic (HAAS & PERO, 2004;
BALLA, 1987; HORVATH, 1993) and eventually settled in the
southeastern half of the Pannonian Basin (Fig. 1). Thereby, in a
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Figure 1. Geological map of the Boda Claystone Formation (modified after Konrad et al., 2010); the star in the upper left corner shows the location of the studied

core sample (Ib-4).
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closed, subsiding basin under arid-semiarid climate conditions
(KONRAD et al., 2010; SCHNEIDER et al., 2006), the BCF was
deposited in a shallow-water lacustrine environment (playa
mudflat, playa lake).

The BCF occurs in two domains in the Western Mecsek
Mountains (WM Mits): The Boda block and the Gorica block.
Data from boreholes and geological mappings reveal that the ex-
tension of the BCF is around 150 km?; only about 15 km? is ex-
posed at the Boda village region in the WM Mts. Several deep
drillings reached the BCF in the Gorica block, but only borehole

Ib-4 recovered the BCF sequence in a significant thickness, c.a.
200 m (Fig. 1). The total thickness of the BCF is estimated to be
700-900 m in the peri-anticlinal structure of the WM Mts (Boda
block). In contrast, the overall thickness of the Gorica block does
not exceed 350 m (JAMBOR, 1964; BARABAS & BARABAS-
STUHL, 1998; MATHE, 1998; ARKAI et al., 2000; VARGA
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et al., 2005; LAZAR & MATHE, 2012; NEMETH & MATHE,
2016).

The lithology of the BCF is characterized by small grain size
(clay to silt) beds. It starts with fine-grained sandstone beds at the
base overlain by albitic claystone/siltstone, with successive clay-
stone, albitic clayey siltstone, and silty claystone, and finally do-
lomite at the top. The green and greenish-grey siltstones and clay-

stones occur infrequently. Desiccation cracks, dolomite
concretions, convolute laminations, and crossbedding are recog-
nized almost throughout the entire formation. (KONRAD et al,

2010). The stratigraphic position of the core sample studied
within the core sections is shown in Fig. 2.

The main rock-forming minerals of the BCF are clay miner-
als (10-55 wt%), detrital quartz (5-30 wt%), albite (20— 60 wt%),
carbonate minerals (calcite and dolomite; 10-50 wt%) and
haematite (5-10 wt%) (MATHE 1998, 2015; ARK AI et al. 2000;
FEDOR et al., 2018). The absolutely dominant clay mineral is
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Figure 2. General information on the studied core sample, involving stratigraphic position, geological description, textural composition, and voxel-porosity aver-
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illite—muscovite (15-50 wt%), with chlorite (0-35 wt%) as an-
other important clay mineral. Smectite, kaolinite, vermiculite and
mixed-layer clay minerals (illite/ smectite, chlorite/smectite) are
identified in minor amounts (MATHE 1998, 2015; ARK Al et al.
2000; VARGA et al., 2005, 2006). The illite-muscovite content
decreases in the greyish-black siltstones and claystone inter-
stratification, and chlorite becomes the dominant mineral (e.g.,
FEDOR et al., 2018).

The actual investigation of the Boda Claystone Formation as
a potential host rock for high-level nuclear waste (HLW) disposal
began in 1989 and has continued up to the present day. Since 1998
the Public Limited Company for Radioactive Waste Management
(PURAM), a Hungarian government agency, has the responsibil-
ity and monetary funds for coordinating the research. In 1999,
PURAM announced the BCF as a suitable host rock for a high-
level nuclear waste repository. This is due to a set of suitable prop-
erties of the BCF influencing radionuclide migration. For in-
stance, it is a rather massive and homogeneous host rock, with a
large extent and significant thickness (700-900 m), low bulk po-
rosity (0.6-1.4%), appropriate hydraulic conductivity, and absence
of organic residues.

3. FUNDAMENTAL PRINCIPLES OF X-RAY
COMPUTED TOMOGRAPHY (CT)

X-ray computed tomography (CT) can provide unrivaled infor-
mation about the internal structure of materials, non-destruc-
tively, from the metre down to the tens of nanometres scale
(ABUTAHA et al., 2022). It exploits the penetrating power of X-
rays to obtain a series of two-dimensional (2D) radiographs of
the object viewed from many different directions. This process
is called a CT scan. A computed reconstruction algorithm is then
used to create a stack of cross-sectional slices from the object’s
2D projections (radiographs) (WITHERS et al., 2021).

A single CT scan image is produced using a mono-energetic
X-ray. As each X-ray beam passes through the sample, it attenu-
ates varyingly, and the transmitted X-ray is received by a detec-
tor (HOUNSFIELD, 1973). The attenuation is measured at mul-
tiple angles and reconstructed in a 3D matrix. The 3D distribution
of the X-ray attenuation coefficient in reservoir or host rocks de-
pends on mineral composition variations (atomic number and
density), porosity, and saturation. X-ray attenuation is physically
determined mainly by photoelectric absorption and the Compton
effect. Photoelectric absorption is dependent on the effective
atomic number and is especially important at low energies
(YANG etal., 2019; WITHERS et al., 2021). The Compton effect
predominates at high energies, and the associated X-ray attenu-
ation is mainly controlled by density (WITHERS et al., 2021).
Just as 2D images are made up of 2D pixels, 3D images are made
up of many cubic volume elements called voxels (WITHERS et
al., 2021). The X-ray attenuation can be determined using Beer
Lambert’s law (Eq. 1). Each rotation of the X-ray source around
the sample produces a cross-sectional image, which can then be
stacked to form a 3D volume.

[=1Ijed (1)

where / is the intensity of the transmitted X-ray, /j is the initial
X-ray intensity, u the linear X-ray attenuation coefficient, and d
is the length of the X-ray path inside the object.

When X-ray energy and intensity are kept constant, linear
attenuation of X-ray occurs as a function of density, resulting in
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the sensitivity of CT images to density changes (HEISMANN
etal.,, 2003; DUCHESNE et al., 2009).

Series of X-ray attenuation measurements are numerically
processed (reconstructed) to show the spatial distribution of X-
ray attenuation coefficients within the sample; the signals at each
point in the reconstructed images are expressed in Hounsfield
units. The Hounsfield unit (HU) scale is a linear transformation
of the original linear attenuation coefficient measurement into
one in which the radiodensity of distilled water at standard pres-
sure and temperature (STP) is defined as zero Hounsfield units
(HU), while the radiodensity of air at STP is defined as — 1000
HU. The corresponding HU value is therefore given by:

HU =10° B Hw 5
Ky,
where p is the attenuation coefficient of the measured material,
and p,, is the attenuation coefficient of water. The X-ray attenu-
ation coefficient is represented as CT numbers for a medical CT,
calibrated to air with the value — 1000 and water with the value
of 0 according to the Hounsfield scale.

Grey-scale images are generally used to visualize the differ-
ences in X-ray attenuation. This process provides a digital 3D
grey-scale representation (often called a tomogram). This can be
quantitatively analyzed and virtually sliced in any direction, or
specific constituents can be digitally colour-coded to visualize
the 3D morphology. For example, bright colours (high values)
have low porosity, and dark shades (low values) have high poros-
ity in reservoir or host rocks with constant mineralogy and satu-
ration (FOLDES et al., 2004; WESOLOWSKI & LEV, 2005;
FOLDES, 2011).

Measurements with X-ray CT are subject to various errors
and image artifacts, including Beam hardening, star-shaped, po-
sitioning errors, and machine errors. Techniques used to mini-
mize them have been discussed in full by VAN GEET et al. 2000),
KETCHAM & CARLSON (2001), and AKIN & KOVSCEK
(2003).

3.1. APPLIED X-RAY COMPUTED TOMOGRAPHY

A core sample of BCF (Ib-4), about five m-long, was scanned at
a high-resolution X-ray CT facility at the Institute of Diagnostic
Imaging and Radiation Oncology, University of Kaposvar, Hun-
gary. The instrument operates at 120 kVp (peak kilovoltage), with
a250 mAs (milliampere-seconds) current, and sampling intervals
of 1.0 s. The lateral resolution was (0.1953 x 0.1953) mm? with a
1.25 mm scan-slice thickness. The image reconstruction matrix
was 512 x 512 pixels. The field of view (FOV) was approximately
9.99 cm (ABUTAHA et al., 2021A).

Scans were made using a modified dual-scanning approach
(BALAZS et al., 2018). Usually, rock samples are dried in a
vacuum oven at temperatures of 120 to 210 °F (50 to 100 °C).
Drying is terminated when the samples reach a stable weight
(SOEDER, 1986). After six hours of vacuuming the sample, all
pore water is removed, and CT measurements were acquired
(scan of the dry core). The next phase constituted pumping water
into the dried sample (saturation process). After an hour of relaxa-
tion, those slices that went under vacuum and saturated were
re-scanned. CT images were stored in a DICOM (Digital and
Imaging Communications in Medicine) format.

A DICOM file contains the scanning parameters and the
scanned object identification under different attributes in its meta-
data. Of these metadata, the pixel spacing, and slice thickness
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attributes are important for geoscientific applications as they re-
cord the dimension (in millimetres) of each voxel in the x, y, and
z-directions. Each CT number can be assigned a real-world dis-
tance (or depth), allowing CT number profiles to be constructed
to calculate the depth and geometrical measurements. DICOM
images can easily be read by ‘classical’ 3D volume rendering soft-
ware (ABUTAHA et al., 2021A, 2021B, 2022).

The laboratory guaranteed that the DICOM files were free
of any artifacts and that during the second scan, the same pixels
were measured as during the first one. We have calculated the
porosity values for each voxel of the image slices from both dry
and saturated scans (MOSS et al., 1990).

4. CONTINUOUS WAVELET ANALYSIS (CWT)

The time-frequency resolution problem caused by the Heisenberg
uncertainty principle exists regardless of the analysis technique
used. Simply, this principle states that one cannot know the exact
time-frequency representation of a signal, i.e., one cannot know
what spectral components exist at what instances of time. What
one can know is the time intervals in which certain bands of fre-
quencies exist, which is a resolution problem (POLIKAR, 1999).

By using an approach called multi-resolution analysis
(MRA) it is possible to analyze a signal at different frequencies
with different resolutions (WENG & LAU, 1994; WENG et al.,
2017). Every spectral component is not resolved equally, as was
the case in the STFT. The change in resolution is schematically
displayed in Fig. 3A, it is assumed that low frequencies last for
the entire duration of the signal, whereas high frequencies appear
from time to time as short bursts. This is often the case in practi-
cal applications.

The wavelet analysis calculates the correlation between the
signal under consideration and a wavelet function y(t), or the
mother wavelet. The similarity between the signal and the ana-
lyzing wavelet function is computed separately for different time
intervals and on different frequencies, resulting in a two-dimen-
sional representation (scalogram). The continuous wavelet trans-
form is defined as (ADDISON, 2002; POLIKAR, 1999):

1 oo
Xwr(z,s) = ﬁ_‘:mx(f)w*( Jd’ 3)

The transformed signal X7 (1, s) is a function of the trans-
lation parameter T and the scale parameter s. The mother wavelet
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is denoted by ; the * indicates that the complex conjugate is used
in case of a complex wavelet. The signal energy is normalized at
every scale by dividing the wavelet coefficients by 1/ |S|.This
ensures that the wavelets have the same energy at every scale.

The mother wavelet is contracted and dilated by changing
the scale parameters. The scale s is used instead of the frequency
for representing the results of the wavelet analysis. The transla-
tion parameter t specifies the wavelet’s location in time (MERRY,
2005). By changing t, the wavelet can be shifted over the signal
as shown in Fig. 3B. For constant scale s and varying translation
7, the rows of the time-scale plane are filled. Varying the scale s
and keeping the translation t constant fills the columns of the
time-scale plane. The elements in Xy (1, s) are called wavelet
coefficients. Each wavelet coefficient is associated with a scale
(frequency) and a point in the time domain.

The scale s is inversely proportional to the frequency
(SHOKROLLAHI et al., 2013; FOSTER, 1996). Thus, a large
scale corresponds to a low frequency (giving global information
about the signal), while small scales correspond to high frequen-
cies (providing detailed signal information) (TEMPLETON,
2004).

5. METHODS

The workflow followed is shown in Fig. 4. The major aspects of
the methodology are briefly addressed in three areas: Pre-pro-
cessing, wavelet implementation, and cross-correlation.

5.1. PRE-PROCESSING

Due to the cooperation between the University of Szeged, GEO-
CHEM, and the Public Limited Company for Radioactive Waste
Management (PURAM), the raw data sets of a (5 m) vacuumed
dry and saturated CT measurements of the BCF core sample were
transferred to the University of Szeged for further analyses ap-
plication. Only the texturally intact, unbroken parts of the
scanned sample were used. Five CT volume bricks of the core
sample thus served as the basis of the present work (Fig. 3).

A 3D-nearest neighbour algorithm was used to build the 3D
volumes of the five scanned core bricks. This process resulted in
two Hounsfield lattices, one for the vacuum dried and one for the
saturated core volumes. The voxel porosities of the scanned slices
were computed from the dual scan lattices subtraction. Their re-

Figure 3. A) Multi-resolution time-frequency plane, B) Continuous wavelet transform procedure.
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sults were normalized by saturated HU values (MOSS et al.,
1990; ABUTAHA et al., 2021 A).

Although the output of computed tomography lends itself to
straightforward interpretation, so-called scanning artifacts may
obscure details of interest or cause the CT value of a single ma-
terial to change in different parts of an image. The most encoun-
tered artifact in CT scanning is beam hardening. Various
methods have been developed to reduce or remove the effects of
beam hardening (e.g., VAN GEET et al., 2000; KETCHAM &
CARLSON, 2001; AKIN & KOVSCEK, 2003). One of these is
the so-called “subset” CT volumes in which the image’s outer
edges are removed, and only central volumes of the original
three-dimensional images are used for quantitative analysis.

Determination of the HU intervals and calculating the rela-
tive percentages of the rock-forming components for the dry-vac-
uum scan was necessary for finding out and determining small-
scale layers (CT layers). So, as soon as the compositional data of
the core sample was defined by layers, the dominant rock-forming
components were loaned the name of the rock type.

The HU intervals of BCF used in this paper, were defined by
PURAM as follows: detrital fragments: <2700 HU, fine siltstone:
2700 — 3150 HU, claystone: 3150 — 3300 HU, calcite and/or dolo-
mite: 3300 — 3600 HU, and albite: > 3600 HU.

5.2. WEIGHTED WAVELET Z-TRANSFORM (WW2Z)

The wavelet transform shows great promise as a method for pe-
riod analysis in time series, particularly for detecting the time evo-
lution of the parameters describing periodic signals. However,
when the wavelet transform is applied to unevenly sampled time
series, the response of the wavelet transformation is often more
dependent on irregularities in the number and spacing of available
data than on actual changes in the parameters of the signal. In
1996 Foster brought forward the idea of vector projection concern-
ing the wavelet transformation process of non-equal-interval data.
He pointed out that the analysis result could be greatly improved
if wavelet transformation was taken as a vector projection. Not
only could a desired period be more accurately calculated, but the
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period’s stability could be disclosed. He adopted a Morlete mother
wavelet which fluctuates according to a term of the form e”. The
wavelet function used in Fosters’ algorithm includes both a peri-
odic, sinusoidal test function of the form exponential (¢"¢~?) and
a Gaussian window function of the form (e **¢-9?) as a wavelet
generating function for transformation (f{z), see equation 4.

f(Z) - e—L‘(DZ(l—‘[)Z (eiw([—f) _ 8—1/46) (4)

The constant ¢ determines how rapidly the analyzing wave-
let decays; for example, a popular choice for ¢ is 1/872. However,
c could be treated as a parameter, where the wavelet transform
would be characterized by three parameters instead of two.

Foster (1996) viewed the wavelet transform not just as a pro-
jection onto a set of trial functions, but also as a weighted projec-
tion (the weighted wavelet transform (WWT)) in equation 5.

_ Wy =1V,
20

WwWT ®)
N, the effective number of data points. Vx is the weighted
variation of the data, and Vy is the weighted variation of the model
function. A better estimate of the frequency of a significant peak
would be obtained using a test statistic that was less sensitive to
the effective number of data. Fortunately, there is such a statistic
for projections; the weighted wavelet Z transform (WWZ) (Equa-

tion 6).
_ (Ney =3V,

2V, -V,) ©

The ratio of the WWZ to the WWT has been given in the
equation (7).

zZ (Ne_[f =3V, _ (Neﬁ' -3)

WWT)~ (Ngy =D, =V,) (N =1

A+S/N)) (D

the S/N is the estimated signal-to-noise ratio. As S/N is much less
than 1, there is almost no difference between the WIWZ and the
WWT, even in the limit of large data size N. Thus, at low S/N, the
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WWZ shares the drawbacks of the WWT. Otherwise, on a mode-
rate S/N ratio (=1), the WWZ would significantly be improved
than WWT.

As the wavelet function fits data (signal), it weighs the data
points by applying the sliding window function to the data. One
point of the time-scale plane is computed for every scale and time
(interval). Thereby, the computations at one scale construct the
rows of the time-scale plane, and the computations at different
scales construct the columns of the time-scale plane. (FOSTER,
1996; TEMPLETON, 2004).

The (WWZ) algorithm applied in this study is fixed at
¢ = 1/72, corresponding to the wavenumber of 6 that is usually
used in the equal (even) Wavelet Transform module. As the PAST
3.2 software package was used, we were able to handle the
fluctuations of voxel porosity averages of CT layers over unequal
depth distributions as signals over uneven time intervals.

5.3. CROSS-CORRELATION

We have calculated the cross-correlations of the continuous wave-
let transform spectrum at six representative frequencies, using
IBM SPSS Statistical Software, to quantify the similarities of the
wavelet coefficients of porosity and rock-forming components on
large, medium, and small-scale cycles contemporaneously and at
various lagged values. The scales in both variables are defined at
uniform frequencies, have a temporal dependency, and the sam-
pling interval in one succession is the same in the other (have the
same depth). Two information items may emerge from such a
comparison: the strength of the relationship between the two se-
ries and the lag or offset in time or distance between them at their
position of maximum equivalence.

The cross-correlation is simply the dot product of vectors x
and y (DAVIS, 1986). The number of data points the signal shifts
is called the lag. The version of the cross-correlation for the
matching position is given in equation 8.
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Figure 5. Cross-correlogram of two dissimilar series (modified after DEVIS
(1986). Shaded intervals indicate portions of A and B that are compared at two
lag positions. Zero lag positions indicate both series are aligned at their origin.

is the number of overlapped positions between the X and Y series.
The summations here are understood to extend only over the seg-
ments of the two sequences overlapped at the match position. py,
represents the cross-correlation for the matched position. the cal-
culated cross-correlation coefficients series were delineated by the
5% significance level (the 95.0% confidence level).

The zero-lag is often set where the origins of the two series
are aligned; negative lags represent an arbitrary choice of the
sense of the movement of one sequence past another. Since the
two series are not identical, the lags in which series A leads se-
ries B differ from those in which B leads A (Fig. 5). In our case,
wavelet coefficients of voxel-porosity lead the rock-forming com-
ponents series on positive lags.

The linear trend was removed as a pre-processing step of
cross-correlation by subtracting a linear regression line from the
transformed wavelet frequencies of the rock-forming components.

6. RESULTS

6.1. QUANTITATIVE ANALYSES OF ROCK TYPES

Based on the most frequent rock-forming constituent, we classi-
fied the stacked slices of CT volumes into 80 thin consecutive
layers (abbreviated as L). The entire estimation’s grid number of
the 80 CT layers is more than 40 million voxels. The statistical
properties as well as the averaged compositional rock compo-
nents of each defined CT layer, were calculated and are shown in
Table 1. Those 80 layers were used as input data to implement the
wavelet transformation.

The layer-averaged compositional frequency percentages
have proposed two major rock types; clayey siltstone and fine
siltstone (Table 1). The widest variability of the average fre-
quency percentages is noticed in the fine siltstone. Its range varies
from 39.24% to 64.84%. In comparison, the claystone variation
range is significantly smaller (from 23.76% to 41.18 %). Next, car-
bonate with an average frequency range extends from 7.15% to
23.41%. Then, the smallest average percentage of the detrital
fragments is 0.02%, and the largest is 2.22%. Lastly, the albite
average does not exceed 1% as a max, and its minimum is zero.

The total averaged percentages of rock-forming components
of each rock type are found to be as follows: in the fine siltstone
rock type, for the detrital fragments, it is 0.44, about 55.4 for fine
siltstone, 31.5 for claystone, 12.54 for carbonate, and 0.11 for al-
bite. However, the percentages of the rock-forming components
in the clayey-siltstone rock type are: 0.22 for the detrital frag-
ments, 45.74 for the fine siltstone, 35.63 for the claystone, 18.16
for carbonate, and 0.2 for the albite. That is to say, the coarser
compositional constituents’ percentages, such as detrital frag-
ments and siltstone, dominate the fine siltstone rock type. In con-
trast, the finer components of claystone, carbonate, and albite
show an occurrence in the clayey-siltstone rock type.

6.2. CONTINUOUS WAVELET TRANSFORMATION
(CWT) RESULTS

In Fig. 6A, the wavelet power spectrum graph (scalogram) plots
the absolute value of wavelet coefficients. Those X and Y axes
numbers show that the CWT was computed at 400 translations
(in 300 cm) and 100 scale locations on the translation-scale plane.

The parameter scale in the wavelet analysis is similar to the
scale used in maps. As in the case of maps, high scales correspond
to a non-detailed global view (of the signal), and low scales cor-
respond to a detailed view. Similarly, in terms of frequency, low
frequencies (high scales) correspond to global information about
a signal (that usually spans the entire signal), whereas high fre-
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Table 1. Summary for general characters of CT layers defined, including averaged compositional frequency percentages of rock-forming components, average po-
rosity mean, and standard deviations of porosity.

Averages of Rock-forming components %

s
. : s
s g & £ - s 2 p g
§ 5 § ? = 2z E g 2 § S S % Sedimentary features
= = = 5 & =2 ) o =
o = O (V]
L1 246 2.79 448 0.5 48.96 31.73 18.49 0.31
L2 6.63 246 4.09 0.17 427 35.63 20.94 0.29
L3 8.5 274 445 04 47.11 32.88 19.31 0.31
L4 s 270 437 023 42.60 3429 2237 042 Horizontal laminations, burrf)ws, and fractures
filled by calcite
L5 15.6 242 3.93 0.1 43.89 37.66 18.19 0.17
L6 16.6 2.66 4.40 0.41 44.96 33.12 21.06 0.46
L7 176 247 4.1 0.18 43.82 35.23 20.49 0.28
L8 19.5 261 425 0.25 4443 34.22 20.77 0.35
lamination
L9 20.6 293 461 0.61 56.56 28.71 13.92 0.2
1L
L10 25 2.35 3.83 0.47 4991 3144 179 0.29
L11 27.5 222 3.68 1.02 59.52 26.39 12.85 0.22
Convolute bedding &desiccation cracks
L12 29.8 2.66 429 0.41 60.4 27.68 11.44 0.07
L13 355 223 3.63 0.1 46.81 37.54 15.48 0.061
L14 389 2.36 3.84 0.12 48.61 35.48 15.7 0.1 -
L15 459 2.86 4.55 0.24 45.26 3445 19.8 0.25\
L16 526 2.21 3.67 0.05 4271 3991 17.26 0.07 Aleurolit intraclasts
L17 625 213 3.60 013 43.83 3741 18,52 0.11 And albite nests
L18 68.1 2.23 3.63 0.36 46.9 32.66 19.68 04
L19 69.5 2.30 3.65 0.03 43.09 39.27 17.54 0.07
L20 70.1 192 3.26 0.16 44 38.17 17.56 0.09
121 745 213 3.50 0.04 4323 3838 17.68 007 Sporadic Albite nests'; mass slides, fingerprints of
traction currents
L22 75.0 3.02 4.79 0.1 47.76 36.43 15.66 0.04
L23 77.3 2.08 341 0.04 43.11 3943 17.35 0.07
L24 80.7 2.64 4.27 0.17 48.44 34.75 16.51 0.13
L25 84.2 213 3.50 0.53 50.52 30.79 17.79 0.36
L26 86.1 2.09 345 0.17 50.32 3437 15.05 0.09
L27 875 244 3.95 0.87 49.19 29.39 19.87 0.68 Silt/dolomite intraclasts
L28 923 2.65 4307 0.07 4433 38.81 16.73 0.07
1L2
L29 95.8 2.16 3.53 0.26 46.35 34.77 18.49 0.12
L30 101 232 3.74 0.05 4448 38.97 16.44 0.05
L31 106 2.53 403 0.08 41.85 384 19.52 0.15
L32 112 2.28 3.69 0.21 45.16 34.51 19.86 0.25
L33 116 1.98 3.27 0.41 46.09 32.53 20.58 0.39
Homogeneous dark-red Clayey-siltstone
L34 120 2.08 337 0.17 48.63 35.13 15.97 0.097
L35 124 3.64 5.26 0.61 52.95 29.98 16.2 0.26
L36 130 231 3.72 0.17 49.07 35.09 15.57 0.1
L37 134 2.75 435 0.27 41.25 34.87 2341 0.48
Albite nests, silty intraclasts
L38 138 2488 3.92 0.14 46.55 36.33 17.04 0.08
L39 148 217 347 0.02 4192 41.81 16.22 0.03
Albite nests
L40 167 2.05 333 0.05 46.61 39.02 14.28 0.03
L41 173 2.72 419 0.09 56.06 34.24 9.59 0.01
L42 176 2.88 4.50 0.354 60.59 3191 7.15 0.004
Grain size tendency: fining upward, silty intraclasts
L43 177 2387 4.64 0.06 55.7 3543 8.79 0.01
211
L44 181 220 3.55 0.26 5491 327 12.08 0.05
L45 181 215 3.39 2.22 5834 28.2 11.18 0.06
L46 186 218 3.52 033 53.03 32.29 14.24 0.1
Silty intraclasts, albite nests, desiccation cracks
L47 192 241 3.82 0.21 56.54 32.58 10.63 0.03
L48 194 248 4.01 0.42 58.12 29.85 11.54 0.07
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X s Averages of Rock-forming components %
(<] o = o
= = = E 5 3 = £ L 2 2
i g = 28 £ 8 2 Z ¢ 5 S < % Sedimentary features
= 5 S s g8 =£ k) e <
a = O (W]
L49 195 3.05 474 0.544 47604 32289 19192 0371 Dolomite intercalation, convolute bedding,
L50 199 2510 407 0.048 41532 39763 16,612 0.045 vertically oriented calcite fillings
L51 202 273 427 0.301 45.628 33.949 19.798 0.324
L52 205 2.88 4.50 0.145 476 35.599 16.518 0.138 Albite nests and aleurolit intraclasts
L53 210 275 437 0.53 48.214 32.048 18.892 0315
L54 216 2.35 3.72 0.147 47.899 35.98 15.894 0.081 Dolomite lenses and horizontal laminations
L55 218 3.00 464 0.809 53.608 30.382 15.052 0.148
Abundant albite nests on bedding surfaces
L56 222 287 4.64 0.072 44.942 37.823 17.089 0.073
411 L57 224 244 3.94 0.0809 43.774 38.021 18.021 0.104
L58 233 2.86 456 0.341 43597 33.103 22.488 0471 Desiccation cracks, intraclasts, and convolutions
L59 236 2.55 4.10 0.045 44.656 38.405 16.849 0.046
L60 237 2.89 4.51 0.062 47.02 37.349 15.504 0.064
Abundant albite nests on bedding surfaces
L61 239 220 3.54 0.326 53.564 31.943 14.041 0.126
L62 239 223 3.57 0.589 50.354 31.935 16.803 0.319
L63 243 2.02 3.29 0.354 63.61 27.558 8.362 0.097
Albite nests and aleurolit intraclasts
L64 246 230 374 0.92 64.843 23.764 10.409 0.065
L65 249 2.70 4.24 0.062 39.236 38.707 21.802 0.192
L66 254 246 391 0.082 48.115 37.178 14.572 0.052 Albite nests & cracks
L67 255 227 3.64 0.123 48.644 36.141 15.017 0.076
L68 257 260 410 0497 48.266 31281 19.537 0419 Dominantly structure'les.s, but bioturbation and
aleurolite intraclast
L69 259 291 442 0.2396 49.636 33.639 16.03 0.16
L70 260 237 3.75 0.439 48.782 32.246 18.215 0.318
L71 261 235 3.72 0.277 51.159 33.376 15.081 0.107 -
L72 263 236 373 0.084 51.264 36.645 11.98 0.027
412 L73 267 1.93 324 0.698 48.948 32976 17.488 0.241 Crossbedding with parallel set boundaries.
L74 273 259 3.96 0.074 51.888 35.668 12321 0.046 Synsedimentary fault, with abundant albite nests
L75 280 251 4.02 0.282 54.474 29.63 14.937 0.262
L76 282 215 3.51 0074 56732 33832 9.344 0018 Crossbedding with parallel set boundaries.
L77 283 312 483 0.282 54501 32326 12.78 0.11 Synsedimentary fault, with abundant albite nests
L78 292 2.28 3.67 0.068 50.614 36917 12.37 0.03
L79 294 2.830 436 0.192 44.045 35.051 20416 0.296
Calcite precipitations in the cracks
L80 303 2.360 373 0.061 44.399 38.71 16.755 0.076

quencies (low scales) correspond to detailed information about a
hidden pattern in the signal. They typically appear from time to
time as short bursts or spikes. Therefore, three main frequency
branches (cycles) are discerned in bold dashed lines in Fig. 6A:
small scale (5, 6.67, and 11 cm), intermediate scale (20, 30 cm),
and large