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Abstract – Speech enhancement aims to eliminate or reduce undesirable noises and distortions, this processing should keep features 
of the speech to enhance the quality and intelligibility of degraded speech signals. In this study, we investigated a combined approach 
using single-frequency filtering (SFF) and a modified spectral subtraction method to enhance single-channel speech. The SFF method 
involves dividing the speech signal into uniform subband envelopes, and then performing spectral over-subtraction on each envelope. A 
smoothing parameter, determined by the a-posteriori signal-to-noise ratio (SNR), is used to estimate and update the noise without the need 
for explicitly detecting silence. To evaluate the performance of our algorithm, we employed objective measures such as segmental SNR 
(segSNR), extended short-term objective intelligibility (ESTOI), and perceptual evaluation of speech quality (PESQ). We tested our algorithm 
with various types of noise at different SNR levels and achieved results ranging from 4.24 to 15.41 for segSNR, 0.57 to 0.97 for ESTOI, and 
2.18 to 4.45 for PESQ. Compared to other standard and existing speech enhancement methods, our algorithm produces better results and 
performs well in reducing undesirable noises.

Keywords: speech enhancement, single frequency filtering, spectral subtraction, envelopes

1.		 INTRODUCTION

Speech enhancement is an active area of research 
that aims to improve the quality of degraded speech 
and preferably its intelligibility. One of the most sig-
nificant tasks of speech enhancement is to reduce or 
remove noise that has degraded speech quality, and 
this is an active area of research [1-3]. Noise reduction 
techniques are used in many applications such as mo-
bile phones [4], speech recognition [5], teleconferenc-
ing systems [6], voice over internet protocol (VoIP) [7], 
and hearing aids. Most speech enhancement systems 
use a single microphone for economic reasons, even 
though better results can be obtained using multiple 
microphones [8]. The field of single-channel speech 
enhancement continues to be a significant area of 
research due to its simplicity and computational ef-
ficiency. These systems, which are based on a single 

microphone, employ adaptive filtering techniques to 
reduce the impact of noisy regions in speech signals 
that have a low SNR while preserving those with a high 
SNR. Within this context, the short-term spectral ampli-
tude plays a crucial role in preserving speech quality 
and intelligibility, compared to phase information [9]. 
Furthermore, the speech enhancement algorithms can 
be classified as follows [10]: i) spectral subtraction al-
gorithms, ii) statistical model algorithms, iii) subspace 
algorithms, and iv) machine learning algorithms.

Spectral subtraction algorithms, developed in the 
late 1970s, are effective and widely used in the spectral 
domain [11]. This technique involves subtracting the 
estimated noise from the noisy speech, assuming that 
the noise is additive and uncorrelated with the clean 
speech signal. However, this approach is susceptible to 
generating musical noise, which can be bothersome to 
listeners. To reduce this side effect, several techniques 
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have been proposed, including applying a half-wave 
rectifier and setting all negative values to zero [12-14]. 
Another approach is to use an over-reduction factor 
and a spectral floor factor, but speech may be distorted 
and consequently lead to a loss of intelligibility [15, 16]. 
Due to the varying spectral distribution of the signal 
and noise across different frequency ranges, research-
ers have directed their attention toward subband pro-
cessing methods. A widely recognized technique in 
the field of audio signal enhancement is the multiband 
spectral subtraction (MBSS) method [17]. This approach 
involves decomposing the signal into subbands to ex-
ploit the spectral information and apply different noise 
treatments in each subband, considering the varying 
impact of noise on the speech spectrum. To further 
enhance the performance  of the multiband spectral 
subtraction approach, the authors in [18] propose a 
technique called MBSS_CBRS (multiband spectral sub-
traction with critical band rate scaling). This technique 
is designed to align with the characteristics of the au-
ditory system, aiming to approximate the benefits of 
human perception and to improve the effectiveness of 
speech enhancement algorithms. Other studies con-
centrate on speech production features. In the study 
described in [19], the authors specifically investigate 
the harmonic properties of vowels (SS_HP) and utilize 
the sigmoid function to empirically determine the val-
ues for over-subtraction and the spectral reservation 
factor. Furthermore, researchers have recognized that 
speech can be considered as an amplitude-modulated 
signal, leading them to explore speech enhancement 
techniques in the modulation domain. In [20]  the au-
thors specifically employed the coherent harmonic 
demodulation technique (SE_CHD) to get the subband 
signals. This approach relies on a prior signal-to-noise 
ratio (SNR) and utilizes a gain function derived using 
the minimum mean square error (MMSE) approach.

Traditionally, speech enhancement algorithms com-
monly rely on the short-term Fourier transform (STFT) 
to estimate the short-term spectrum of a signal [17, 19]. 
This involves dividing the signal into subband signals 
through consecutive windowing or filter bank opera-
tions [18, 20]. A novel approach known as single-fre-
quency filtering (SFF) has recently been introduced. 
[21]. This technique offers high spectral and temporal 
resolution and eliminates the effects of windowing 
through filtering. By employing filtering at the maxi-
mum frequency of fs/2, SFF can capture both amplitude 
and phase information at each frequency. SFF has been 
explored in various applications, including voice activ-
ity detection [21], epoch extraction [22], hyper-nasality 
assessment [23], and dysarthria evaluation [24, 25]. This 
approach is gaining popularity for segmenting speech 
into multiple frequency bands due to its exceptional 
time-frequency resolution.

In this work, our contribution includes the develop-
ment of a new algorithm combining the recent ap-
proach called SFF and the modified spectral subtrac-

tion method to enhance the quality and intelligibility 
of degraded speech signals. The integration of the SFF 
approach with noise estimation using the SNR is based 
on the identification of segments with high SNRs. In 
practice, the power of the noise tends to be lower near 
zero-bandwidth resonator of the single frequency, 
while the power of the speech signal, particularly if 
present, is relatively high. As a result, windows exhibit-
ing high SNR will appear at different times for various 
frequencies. Therefore, we used the SFF for calculat-
ing the envelopes which help to reduce or eliminate 
unwanted noise concentrated around one or more 
specific frequencies. For each envelope, we estimated 
the noise from previous speech frames and applied a 
smoothing parameter to balance noise reduction and 
speech quality preservation. The experiments were 
conducted on various types of real-world noise, includ-
ing car, train, restaurant, airport, and street noises, as 
well as machine-generated white Gaussian noise, to 
evaluate the performance of our proposed algorithm. 
The results demonstrate that our method outperforms 
the previously mentioned existing methods [17-20].

The paper is organized into three main sections. In 
Section 2, an analysis and synthesis of the single-fre-
quency approach, envelope manipulation, modified 
spectral subtraction, and noise estimation are covered. 
Section 3 provides detailed outcomes of the conduct-
ed experiments, highlighting the performance of the 
proposed method. Finally, Section 4 serves as the con-
clusion, summarizing the key findings and implications 
of the research.

2.	 Proposed speech enhancement model

This section aims to explore the potential of employ-
ing the single-frequency filtering (SFF) approach and 
modified spectral subtraction to enhance the degraded 
speech. The proposed method involves three main steps 
(Fig.1). First, the SFF analysis is performed to generate 
spectral envelopes at specific frequencies of interest. 
Then, the modified spectral subtraction is applied at each 
frame for each envelope. Finally, the SFF synthesis com-
bines the processed envelopes to reconstruct the original 
speech. Our objective is to develop an algorithm that uti-
lizes validated blocks to ensure the high quality and intel-
ligibility of the speech signal. In order to achieve this, we 
have verified that the SFF analysis-synthesis method does 
not have any negative impact on the quality and/or intel-
ligibility of the speech signal. This step aims to ensure that 
the SFF processing does not introduce any undesired ef-
fects or degradation to the processed signal.  The second 
step involves determining whether the enhancement 
should be focused on the envelope or the phase of the 
signal. Choosing the optimal element is important for im-
proving the quality and intelligibility of the speech signal. 
Finally, it is essential to define the suitable parameters for 
the spectral subtraction method to reduce the noise in 
the speech signal and achieve the best results in terms of 
improving its quality and intelligibility.
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Fig. 1. Block diagram of the proposed speech enhancement algorithm

2.1.	 SFF analysis-synthesis approach

The SFF approach is employed to achieve subband 
decomposition of the speech signal, allowing us to 
obtain the amplitude of the envelopes at a selected 
frequency for each instant. This technique helps to 
eliminate the block processing effect which can re-
duce the performance of the algorithms when using 
the Short-Time Fourier Transform (STFT) for speech 
enhancement. The analysis and synthesis blocks of the 
SFF technique are represented in Fig. 2. The amplitude 
envelope of the signal at any desired frequency is ob-
tained by:

•	 shifting the frequency signal of the signal x[n] at fre-
quency fk using Eq. (1) for n=1.2...N and k=0.1…. K-1, 
where N and K represent the number of samples 
and the number of frequencies, respectively.

(1)

•	 The shifted signal is then passed through a single 
pole resonator at the highest frequency fs/2 , where 
fs is the sampling frequency. The filter function trans-
fer is given by Eq. (2) and the filtered output is given 
by Eq. (3) where y[k, n] is a complex number that can 
be expressed in polar form as given by Eq. (4).

(2)

(4)

(3)

where the amplitude envelope v[k, n] and the phase  
ϕ[k, n] of the subband signal y[k, n] are defined by Eq. 
(5) and (6), respectively.

(5)

(6)

•	 The subband signal y[k, n] can be reconstructed 
from the amplitude envelope v[k, n] and phase ϕ[k, 
n] by applying Eq. (4) for the single frequency fil-

(7)

•	 The reconstructed signal is obtained by summing 
the outputs z[k, n] and dividing by the number of 
frequencies K using Eq. (8).

(8)

•	 The reconstructed signal and the original signal are 
combined using the following equation [26]:

(9)

Where K=(fs⁄2)/∆f , and r is less than 1 to ensure the 
stability of the filter.

The performance of the proposed algorithm is influ-
enced by the two major parameters r and K. The pri-
mary objective of this research is to enhance degraded 
speech. To achieve this goal, a value of r=0.99 was select-
ed, which offers higher temporal and spectral resolution. 
This resolution property enables a more precise and ac-
curate analysis of the degraded speech, facilitating ef-
fective application of enhancement techniques [26]. 
Additionally, the impact of the number of frequencies K 
on speech quality and intelligibility was evaluated in this 
study. Clean speech signals were analyzed and synthe-
sized at different K values while maintaining a sampling 
rate of 16 kHz. The resulting speech was then assessed 
using PESQ and ESTOI metrics. The findings presented 
in Table 1 show that reducing the frequency step size 
significantly improves speech quality and intelligibility. 
However, when using a frequency interval (∆f ) of 50 Hz, 
we obtain 160 envelopes, whereas using a smaller ∆f of 
20 Hz results in 400 envelopes. Therefore, reducing ∆f 
to 20 Hz can lead to improved quality and intelligibility 
of the processed speech. However, this reduction also 
increases the value of K and the number of envelopes, 
resulting in longer computation times. It is worth noting 
that utilizing the SFF method with ∆f=20 Hz allows for 
enhancing speech without introducing any distortion.

tering synthesis. The shifted output y[k, n] is shifted 
back to the original frequency using Eq. (7):

Volume 14, Number 9, 2023
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(a) (b)

Fig. 2. (a) SFF analysis, and (b) SFF synthesis

Fig. 3. Concept block diagram for the combinations of the clean and noisy temporal envelope with noisy 
and clean phase

Table 1. ESTOI and PESQ between original and SFF 
synthesized signals for different values of ∆f.

∆f 100 50 20 10 5

ESTOI 0.987 0.999 1 1 1

PESQ 4.17 4.359 4.64 4.64 4.64

The following step is to determine whether the SFF 
amplitude envelope or the SFF phase should be en-
hanced to improve speech quality and intelligibility.

2.2.	 The temporal envelope 

The significance of the temporal envelope and its ap-
plication in speech enhancement has been extensively 
explored in various studies [27-29]. The objective of 
this step is to verify and validate the hypothesis that 
"enhancing the temporal envelope of noisy speech can 
considerably enhance speech quality". To achieve this, 
we combined the clean envelope with the noisy phase 
and vice versa using samples from the TIMIT database, 

at 10 dB for white noise, with the envelope and phase 
calculated using the SFF technique. Fig.3 presents the 
adopted scheme for constructing all the combinations, 
while Table 2 presents the corresponding values of ES-
TOI and PESQ. The results indicate that the envelope 
plays a significant role in improving the quality and in-
telligibility of speech. Therefore, we recommend modi-
fying the amplitude of the SFF envelope to enhance 
speech in noisy environments.

Table 2. The average PESQ and ESTOI values were 
computed for all combinations of TIMIT speech 
degraded by 10 dB white noise with ∆f=20 Hz.

Combinations ESTOI PESQ

Clean envelopes - Clean phases 1 4,64

Clean envelopes - Noisy phases 0.91 1.89

Noisy envelopes - Clean phases 0.86 1.76

Noisy envelopes - Noisy phases 0.85 1.25
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2.3.	 Modified envelope spectral 
	subtraction

Based on the results obtained from PESQ and ESTOI, 
we have evaluated the effectiveness of SFF analysis-
synthesis and its associated envelope in enhancing 
speech quality and intelligibility. The findings indicate 
also that enhancing the temporal envelope, which is 
calculated using the SFF approach, can be utilized for 
speech enhancement, as the phase component has a 
negligible impact on human intelligibility. Considering 
its favorable performance across different noise condi-
tions and its low computational complexity, we pro-
pose implementing the spectral subtraction method 
for each frame of each envelope to improve both qual-
ity and intelligibility of the speech signal. The noise is 
estimated using an adaptive technique, and the over-
reduction factor is adjusted for each frame of each en-
velope Eq. (5). The equation provided below illustrates 
the spectrum of the enhanced kth envelope.

(10)

Where vk (m, n), dk̂ (m, n), and ŝk (m, n) represent the 
noisy envelope, estimated noise, and estimated en-
hanced envelope, respectively, for the nth FFT transform 
of the mth frame in the kth envelope. The parameter β is 
the spectral floor factor that typically ranges between 
0 and 1, and it is used to prevent the estimated nega-
tive speech spectrum in each envelope. To determine 
the over-reduction factor η(m, n) for the envelope k at 
frame m, we use the segmental signal-to-noise ratio 
(segSNR) as follows:

(11)

The segSNR is calculated using the formula:

(12)

where Nk represents the number of frames of the kth 
envelope. The over-reduction parameter η(m, n) is de-
termined based on η0 which represents the value of 
segSNR at 0 dB and controls the noise subtraction level 
for each envelope at every frame.

Accurate noise estimation is crucial for improving 
speech, as an incorrect estimate can result in residual 
noise or distorted speech. Traditional methods use voice 
activity detection (VAD) to estimate and adapt the noise 
spectra during speech silent periods, but this approach 
is not effective in real-time and noisy environments [30, 
31]. A common technique for estimating noise is recur-
sive averaging, where the noise spectrum is calculated 
by taking a weighted average of previous noise esti-
mates and the present noisy envelope spectrum, as de-
scribed in [32, 33]. The weight assigned to each estimate 
varies based on the a-posteriori signal-to-noise ratio 
(SNR) of each frequency. In our proposed technique, we 
independently estimate and update the noise spectrum 
for each frame in each envelope. Therefore, the noise 
spectrum estimation for each envelope is given by,

(13)

(14)

where δ is the smoothing parameter. In the recursive 
averaging technique, δ is chosen as a sigmoid function 
that depends on the a-posteriori SNR:

In this case, the variation of the noise is determined by 
the parameter "a" in the sigmoid function Eq. (14). The val-
ue of "a" ranges from 1 to 6 while keeping the parameter 
"T" constant. The parameter "T" in Eq. (14) represents the 
center offset of the transition curve in the sigmoid func-
tion, typically falling within the range of 3 to 5.

Fig. 4. Speech spectrograms for: (a) clean speech; (b-d) speech degraded by white and car noises, 
respectively, at 5 dB SNR; (c-e) the associated enhanced speech

(a)

(e)(d)

(c)(b)
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3.	 Experimental Results

In this section, we will present the results and per-
formance evaluation of our proposed speech enhance-
ment algorithm. Additionally, we will compare the re-
sults obtained using MATLAB software with other ex-
isting methods [17-20]. The evaluation was conducted 
on various types of noise, including real-world noises 
commonly encountered in daily life such as car, train, 
restaurant, airport, and street noises, as well as ma-
chine-generated white Gaussian noise. It is important 
to note that each type of noise exhibits a unique time-
frequency distribution in speech. 

To evaluate the performance of our speech enhance-
ment algorithm, the noisy speech was obtained from 
the TIMIT corpus and downsampled to 8 kHz. The en-
velopes were calculated using the SFF with an enve-
lope spacing of ∆f=20 Hz, which provided good perfor-
mance of speech quality and intelligibility as shown in 
Table 1. For each envelope, we applied a hamming win-
dow with a frame duration of 20 ms and a 70% overlap. 
The noise was estimated continuously and adaptively 
using Eq. (13) and the sigmoid function Eq. (14), with 
values of 'a' and 'T' set to 4 and 5, respectively. The 
over-subtraction factor η(m, n) was computed for each 
envelope. Moreover, we fixed the spectral floor param-
eter β at a value of 0.03 [17, 18].

3.1.	 Corpus

The TIMIT database, developed by the Massachusetts 
Institute of Technology with support from the US gov-
ernment, is a valuable resource for automatic speech 
recognition and other speech processing applications 
[34]. It comprises a vast collection of speech sounds 
and associated data. This extensive database includes 
recordings from 630 speakers representing different 
regions of the United States, each uttering 10 different 
phrases. It also provides transcriptions and annotations 
corresponding to the recorded speech. TIMIT has be-
come a fundamental tool in the study of speech rec-
ognition and other related technologies, contributing 
significantly to the advancement of the field of speech 
processing.

3.2.	 Performance evaluation

To assess the effectiveness of our proposed speech en-
hancement algorithm, we utilized objective quality and 
intelligibility measurement tests, including segmental 
signal-to-noise ratio (segSNR), extended short-term ob-
jective intelligibility (ESTOI) [35], and perceptual evalua-
tion of speech quality (PESQ) [36]. segSNR is frequently 
used to detect speech distortion, as it is more precise in 
identifying speech distortion compared to overall SNR. 
Higher values for segSNR indicate lower levels of speech 
distortion. ESTOI is a measure of speech intelligibility 
that considers the accuracy and timing of phoneme rec-
ognition. PESQ is a commonly used objective measure 
of speech quality that compares and predicts the per-

ceived quality of speech signals using a reference signal. 
Higher scores for both PESQ and ESTOI typically suggest 
better speech quality and intelligibility. These measures 
have strong correlations with subjective listening tests, 
making them valuable tools for assessing speech en-
hancement algorithms.

3.3.	 Results and discussions

We evaluated the performance of our proposed 
method (PM) on degraded speech corrupted by differ-
ent types of noise such as white Gaussian, car, restau-
rant, train, street, and airport noises. We tested the PM 
at various SNR levels including -5, 0, 5, and 10 dB. To as-
sess the effectiveness of the PM, we measured three pa-
rameters: segSNR, ESTOI, and PESQ. The average segSNR 
values obtained by the PM for different types of noise 
and SNR levels are presented in Table 3. For the -5 dB, 0 
dB, 5 dB, and 10 dB SNR levels, the segSNR values were 
5.30, 8.76, 10.07, and 13.64, respectively. It is worth not-
ing that these segSNR values are consistently positive 
and exhibit an increasing trend as the SNR improves. 
These findings demonstrate that the proposed method 
performs well in terms of distortion across various noise 
types. In terms of intelligibility, the PM achieved aver-
age ESTOI values of 0.66, 0.76, 0.86, and 0.93 for -5 dB, 
0 dB, 5 dB, and 10 dB SNR levels, respectively (Table 4). 
Specifically, ESTOI ranges from 0.57 to 0.74 for negative 
SNR values and from 0.65 to 0.97 for positive SNR values. 
These results provide that the PM algorithm significantly 
enhances the intelligibility of speech. To evaluate the 
speech quality, we calculated the average PESQ values, 
which ranged from 2.18 to 4.45 across all SNR levels (Ta-
ble 5). These results confirm that our PM performs well 
in terms of speech quality. Fig. 4, 5, and 6 illustrate the 
speech spectrograms of the noisy speech at 5 dB SNR 
alongside the enhanced speech obtained using the PM. 
These figures provide a visual representation of the im-
provements achieved by our method.

The results of the score comparison in terms of seg-
SNR, ESTOI, and PESQ for various types of noise at dif-
ferent levels of SNR, between our PM and MBSS [17], 
MBSS_CBRS [18], SS_HP [19], and SS_CHD [20], are pre-
sented in Tables 3, 4, and 5, respectively. The findings 
clearly demonstrate that our PM outperforms the other 
methods in terms of segSNR, indicating its effective-
ness in removing background noise while preserving 
speech components, regardless of whether the SNR is 
negative or positive. The PM achieves also higher ESTOI 
scores, indicating improved speech intelligibility across 
all SNR levels. Furthermore, the PM obtains the highest 
PESQ score in all conditions, indicating the preserva-
tion of speech quality.

Based on these results, it can be concluded that our 
PM significantly enhances speech quality and intelligi-
bility with minimal distortion compared to the meth-
ods defined previously. The effectiveness of the PM is 
supported by the utilization of the SFF to calculate the 
temporal envelopes with high-frequency resolution at 
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20 Hz, guided by PESQ and ESTOI scores. Moreover, our 
proposed method estimates the noise recursively from 
previous speech frames for each envelope and applies 
a smoothing parameter to achieve a balance between 
noise reduction and preservation of speech quality.

Furthermore, our PM algorithm was compared to re-
cent algorithms that utilize deep learning techniques 
for tasks such as estimating parameters (e.g., tuning fac-
tor of the Wiener filter [37] ) or extracting features (e.g., 
multi-frequency cepstral coefficients [38]).The compara-
tive analysis revealed that our PM algorithm outper-
forms these approaches in terms of both speech quality 
and intelligibility, as depicted in Fig. 7 and 8. Moreover, 
an added advantage of our PM algorithm is that it does 
not necessitate training data. This characteristic reduces 
its complexity and simplifies its implementation, making 
it a more practical and accessible solution for noise re-
duction and speech enhancement tasks.

(a)

(d)(c)

(b)

(a)

(d)

(c)

(b)

Fig. 5. Speech spectrograms for: (a-c) speech 
degraded by restaurant and train noises, 

respectively, at 5 dB SNR; (b-d) the associated 
enhanced speech

Fig. 6. Speech spectrograms for: (a-c) speech 
degraded by street and airport noises, respectively, 
at 5 dB SNR; (b-d) the associated enhanced speech

Table 3. Average segmental signal-to-noise ratio 
(segSNR) of enhanced speech signals from the TIMIT 

database at -5,0, 5, 10 dB

Noise type Enhancement 
methods

segSNR

-5 0 5 10

White

Noisy -7.59 -5.16 -1.92 1.72

MBSS 1.64 4.07 10 13.40

MBSS_CBRS 2.83 5.9 8.63 11.77

SS_HP 4.57 7.66 5.97 4.31

SE_CHD 0.90 1.09 1.59 1.81

PM 6.58 9.67 12.01 15.41

Car

Noisy -7.50 -5.02 -1.78 1.80

MBSS 0.64 2.68 6.86 9.39

MBSS_CBRS 2.72 4.23 9.05 12.05

SS_HP 3.90 6.45 4.86 3.73

SE_CHD 0.26 0.58 1.01 1.90

PM 5.91 8.46 11.06 14.06

Restaurant

Noisy -7.09 -4.63 -1.43 2.2

MBSS 0.43 2.52 5.84 9.29

MBSS_CBRS 1.79 2.14 7.25 9.96

SS_HP 3.69 6.17 4.86 3.48

SE_CHD 0.37 0.60 0.83 2.29

PM 5.70 8.18 9.26 11.97

Train

Noisy -7.46 -5.06 -1.77 1.85

MBSS 0.21 3.88 5.53 9.35

MBSS_CBRS 2.38 5.12 7.6 11.59

SS_HP 1.69 3.92 2.96 2.16

SE_CHD 0.28 0.41 0.53 2.10

PM 4.39 7.13 9.61 13.6

Street

Noisy -6.51 -3.9 -0.73 2.86

MBSS 0.43 1.71 5.39 9.22

MBSS_CBRS 2.27 9.81 7.02 11.36

SS_HP 1.98 6.98 4.65 3.29

SE_CHD 0.19 0.31 0.43 2.9

PM 4.28 11.82 9.03 13.37

Airport

Noisy -7.45 -5.02 -1.81 1.8

MBSS 1.49 3.78 6.53 8.81

MBSS_CBRS 2.91 5.26 7.43 11.44

SS_HP 2.08 3.75 3.04 2.64

SE_CHD 0.31 0.64 0.8 1.8

PM 4.92 7.27 9.44 13.45

Volume 14, Number 9, 2023
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Table 4. Average extended short-term objective 
intelligibility (ESTOI) results of enhanced speech 
signals from the TIMIT database at -5,0, 5, 10 dB

Table 5. Average perceptual evaluation of speech 
quality (PESQ) results of enhanced speech signals 

from the TIMIT database at -5,0, 5, 10 dB

Noise type Enhancement 
methods

ESTOI

-5 0 5 10

White

Noisy 0.25 0.39 0.55 0.68

MBSS 0.39 0.45 0.6 0.68

MBSS_CBRS 0.4 0.58 0.69 0.71

SS_HP 0.49 0.6 0.7 0.75

SE_CHD 0.18 0.15 0.21 0.24

PM 0.57 0.65 0.79 0.8

Car

Noisy 0.2 0.39 0.52 0.64

MBSS 0.39 0.48 0.57 0.71

MBSS_CBRS 0.43 0.51 0.62 0.78

SS_HP 0.59 0.63 0.79 0.82

SE_CHD 0.18 0.12 0.15 0.21

PM 0.69 0.73 0.89 0.92

Restaurant

Noisy 0.21 0.37 0.53 0.67

MBSS 0.38 0.53 0.69 0.71

MBSS_CBRS 0.43 0.67 0.72 0.77

SS_HP 0.59 0.74 0.78 0.86

SE_CHD 0.11 0.12 0.15 0.23

PM 0.69 0.84 0.88 0.96

Train

Noisy 0.34 0.46 0.57 0.66

MBSS 0.49 0.53 0.61 0.78

MBSS_CBRS 0.56 0.61 0.69 0.83

SS_HP 0.66 0.71 0.76 0.89

SE_CHD 0.13 0.15 0.17 0.28

PM 0.74 0.79 0.84 0.97

Street

Noisy 0.27 0.4 0.54 0.66

MBSS 0.35 0.49 0.67 0.75

MBSS_CBRS 0.41 0.54 0.73 0.79

SS_HP 0.52 0.69 0.79 0.86

SE_CHD 0.14 0.15 0.16 0.27

PM 0.6 0.77 0.87 0.94

Airport

Noisy 0.24 0.38 0.52 0.64

MBSS 0.36 0.47 0.61 0.73

MBSS_CBRS 0.41 0.59 0.75 0.81

SS_HP 0.59 0.68 0.8 0.89

SE_CHD 0.18 0.2 0.24 0.28

PM 0.67 0.76 0.88 0.97

Noise type Enhancement 
methods

PESQ

-5 0 5 10

White

Noisy 1.11 1.21 1.39 1.67

MBSS 1.31 1.53 1.82 2.22

MBSS_CBRS 1.49 1.65 1.97 2.3

SS_HP 1.87 2.19 2.58 2.95

SE_CHD 0.45 0.49 0.59 0.68

PM 2.18 3.69 4.08 4.45

Car

Noisy 1.1 1.18 1.32 1.55

MBSS 1.31 1.49 1.98 2.25

MBSS_CBRS 1.29 1.43 1.62 2.43

SS_HP 2.19 2.33 2.72 3.1

SE_CHD 0.47 0.59 0.7 0.7

PM 2.35 3.34 4.73 4.11

Restaurant

Noisy 1.12 1.19 1.3 1.5

MBSS 1.61 1.84 2.06 2.32

MBSS_CBRS 1.47 1.63 1.95 2.32

SS_HP 2.34 2.25 2.64 3.21

SE_CHD 0.56 0.67 0.69 0.7

PM 2.94 3.85 4.02 4.18

Train

Noisy 1.15 1.27 1.47 1.77

MBSS 1.31 1.51 1.69 2.14

MBSS_CBRS 1.4 1.52 1.61 2.14

SS_HP 1.98 2.05 2.43 2.82

SE_CHD 0.51 0.5 0.65 0.42

PM 2.58 3.65 4.03 4.42

Street

Noisy 1.17 1.27 1.45 1.72

MBSS 1.321 1.59 1.93 2.24

MBSS_CBRS 1.227 1.4 2.01 2.3

SS_HP 2.314 2.56 2.46 3.62

SE_CHD 0.47 0.48 0.52 0.61

PM 3.09 3.76 4.06 4.22

Airport

Noisy 1.12 1.2 1.34 1.57

MBSS 1.31 1.79 2.1 2.42

MBSS_CBRS 1.21 1.46 2.11 2.42

SS_HP 2.09 2.34 2.83 3.68

SE_CHD 0.4 0.35 0.5 0.63

PM 2.89 3.94 3.43 4.28



981

Fig. 7. Average performance comparison between 
the proposed method and methods used in [37] 

and [38] for all noises using PESQ.

Fig. 8. Average performance comparison between 
the proposed method and methods used in [37] 

and [38] for all noises using ESTOI.

4.	 CONCLUSION

The proposed method aims to enhance the quality and 
intelligibility of speech degraded by noises. It utilizes the 
single-frequency filtering approach and modified spec-
tral subtraction to effectively eliminate unwanted noise 
while minimizing distortion and preserving essential 
speech characteristics. The research demonstrates the ef-
fectiveness of this approach in improving speech quality 
and intelligibility under various noise types and different 
signal-to-noise ratio (SNR) levels. The performance of our 
algorithm is encouraging, and it can be suitable to meet 
the requirements and challenges of complex environ-
ments, by adjusting only the over-subtraction factor. It is 
important to note that our proposed method has a limi-
tation related to the over-subtraction process. This aspect 
highlights an area for improvement in our approach. In 
our future work, we will primarily concentrate on address-
ing this limitation by incorporating voice characteristics 
into the algorithm. By considering the specific features 
of the speech segments (voiced or unvoiced), we aim to 
enhance the noise reduction's accuracy and effectiveness, 
thereby improving our method's overall performance.
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