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1 Introduction
The presence of organic compounds in natural water 
sources is regarded as a high-priority environmental is-
sue. In particular, polar pharmaceutical active compounds 
(PPhACs) can be highly mobile in water, potentially reach-
ing source waters and even treated drinking water. The 
PPhACs are highly polar chemicals that tend to accumu-
late in nanofiltration and reverse osmosis membranes due 
to their low degradation properties and slow adsorption 
kinetics in water.1,2

Pharmaceutical active compounds can be removed using 
advanced technologies. Membrane processes such as re-
verse osmosis (RO) and nanofiltration (NF) are excellent 
technological solutions for removing pharmaceutical active 
compounds and protecting both humans and the environ-
ment. In fact, several studies have demonstrated that nano-
filtration and reverse osmosis (NF/RO) processes can effec-
tively remove pharmaceutical active compounds. Globally, 
studies have assessed retention efficiency with complex 
interactions between solutes and membranes, including 
steric hindrance, electrostatic repulsion, and hydropho-
bic-adsorption interactions. The interactions between sol-
utes and membranes are, in turn, influenced by the char-
acteristics of the compounds (including molecular size, 
polarity, charge, and hydrophobicity), the properties of the 
membrane (porosity, polarity, and electrostatic charges), 
and the conditions under the which filtration takes place 
(such as pH, pressure, permeate flux, temperature, mem-
brane fouling, recovery, and cross-flow velocity).2–4

Modelling the retention of organic compounds by NF/RO 
membranes is a very important tool for developing robust 

high-pressure membrane technologies. However, there 
have been fewer models available to accurately predict 
the retention of organic compounds due to the complexity 
of the underlying mechanisms.5–9 These research studies 
were conducted to investigate the utilisation of various 
modelling approaches, such as multiple linear regression 
(MLR), artificial neural network (ANN), bootstrap aggre-
gated neural network (BANN), partial least squares (PLS), 
and support vector machines (SVM), based on quantitative 
structure-activity relationship (QSAR) to establish correla-
tions, models, and predictions for the retention of organ-
ic compounds (neutral and ionic) by NF/RO membranes. 
There is no modelling study conducted on the retention of 
organic compounds by NF/RO membranes using feedfor-
ward neural networks with radial basis function (RBF).

In this study, we attempted to estimate the retention of the 
PPhACs by NF/RO membranes using three artificial intelli-
gence approaches: multi-layer perceptron (MLP), RBF, and 
SVM. These three approaches will consider a similar set 
of inputs, including the effective diameter of the organic 
compound in water dc, log Dow, dipole moment, molecular 
length, molecular equivalent width, molecular weight cut-
off, sodium chloride salt rejection, zeta potential, contact 
angle, pH, pressure, temperature, and recovery.

2	Prediction of PPhACs retention using 
hybrid learning architecture

2.1 Feedforward neural networks

The feedforward neural network (FNN) is presented graph-
ically by a set of connected neurons (Fig. 1). Information 
flows in one direction only, from the input layer to the out-
put layer without turning back. It can be seen that the FFN 
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is acyclic and structured in such a way that neurons within 
the same layer are not connected. Each layer receives sig-
nals from the previous layer and transmits the results of its 
processing to the next layer. The two outermost layers cor-
respond to the input layer, which receives its inputs from 
the external environment, and the output layer, which pro-
vides the results of the performed treatments. The interme-
diate layers, known as hidden layers, can vary in number.10

MLP and RBF are the most commonly used FFNs. MLP 
can solve nonlinearly separable and complicated logic 
problems.11 It requires supervised training.12 RBF networks 
were proposed by Moody and Darken. RBF can be used in 
similar types of problems as MLP, such as classification and 
function approximation.

2.2 Support vector machine

Similar to the neural network, the primary concept un-
derlying SVM is that neurons are organised in two layers 
(Fig. 2). However, unlike FFNs, SVM is based on statistical 
learning theory, which implements structural risk minimi-
sation theory and various error optimisation techniques.12

The nonlinear relationship between inputs and outputs in 
SVM model can be utilised by the regression function. The 
outputs of the SVM model are obtained using the following 
equation:12

(1)

f(xi) is the predicted value of the SVM model, ∅(xi) repre-
sents the nonlinear function that maps input finite-dimen-
sional space into a higher-dimensional space which is im-
plicitly created, ω is the weight vector of the SVM model to 
be optimised, and b represents the bias of the SVM model 
to be optimised.

The database has a D-dimensional input vector xi ∈ RD and 
a scalar output yi ∈ R.

The SVM model for the training database is given as fol-
lows:

(2)

C is the parameter used to balance the empirical risk and 
model complexity term w2 and ξi

* represents the slack var-
iable to denote the distance of the ith sample outside of the 
ε-tube.
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Fig. 1 – Structure of feedforward neural network: i, j, and k are numbers of neurons in the input, hidden, and output 
layers, respectively; xi is the input to the ith neuron of the input layer; wi

I and wj
H are the weights of input and 

hidden layers, respectively; bj
H and bl

0 are the bias of the hidden and output layers, respectively; and fH and f0 
are the transfer functions in the hidden and output layer, respectively
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2.3	Experimental data of polar pharmaceutical 
active compounds

Scientific literature6,7,13–25 were reviewed to select 541 re-
tention data on 21 PPhACs. The PPhACs were assigned 
to three categories based on their physicochemical prop-
erties: hydrophobicity (log Dow), polarity (dipole moment), 
and size (effective diameter of PPhACs in water dc, molecu-
lar length, and molecular equivalent width “eqwidth”). The 
retention mechanisms of PPhACs by NF/RO membranes 
are based on the sieving effect, electrostatic interactions, 
and hydrophobic/adsorption interactions between solutes 
and membranes. These solute–membrane interactions are 

determined by properties of PPhACs, membrane charac-
teristics (molecular weight cut-off “MWCO”, sodium chlo-
ride salt rejection “SR(NaCl)”, surface membrane charge 
“zeta potential” and membrane hydrophobicity “contact 
angle”), as well as filtration conditions (pH, pressure, tem-
perature, and recovery). The first step in constructing a 
prediction model, such as MLP, RBF, and SVM, is to deter-
mine the input variables or factors. The input and output 
variables considered in this study and statistical analysis 
data are mentioned in Table 1. The statistical analysis of 
the input and output data was performed in terms of the 
domain studied and their standard deviation “SD”.
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Fig. 2 – Sketch of the support vector machine model

Table 1 – Most important information on the data adjusted in this work17,26

Variable category Factors Unit Domain SD

Inputs

dc g mol−1 [0.5855, 0.8899] 0.0859
log Dow – [−9.6200, 3.7200] 2.3319

dipole moment D [1.2200, 16.7300] 4.0622
length nm [0.1500, 1.9970] 0.3946

eqwidth17 nm [0.1100, 1.1290] 0.1862
MWCO Da [100.0000, 405.0000] 87.7269
SR(NaCl) – [0.1210, 0.9950] 0.2432

zeta potential mV [−77.8600, 3.1000] 17.4296
contact angle ° [15.1200, 80.0000] 15.5034

pH – [3.0000, 9.0000] 1.1355
pressure kPa [280.0000, 4100.0000] 570.1369
recovery % [0.0300, 98.4800] 23.8393

temperature °C [0.0000, 45.0000] 8.1209
Output retention % [1.2900, 100.0000] 16.4552

eqwidth molecular width molecular depth= ⋅
0.438

c 0.065 molecular weightd = ⋅  
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3 Modelling details
3.1 Model development

Three models: MLP, RBF, and SVM, were implemented and 
evaluated for the prediction of the retention of PPhACs by 
NF/RO membranes. We developed all models using the 
STATISTICA software. Fig. 3 illustrates the procedure used 
to develop and optimise the architecture of the models. 
The samples were divided into two subsets: training and 
testing data set. 

All MLP models tested in this study had one hidden layer. 
To create the optimal MLP models, we utilised the BFGS 
quasi-Newton (trainbfg) training algorithm, with four ac-
tivation functions in the hidden layer: hyperbolic tangent 
sigmoid (tansig), log sigmoid (logsig), sine (sin), and expo-
nential function, and one pure linear (purelin) activation 
function in the output layer. We varied the number of hid-
den neurons from 3 to 25 until the best model was ob-
tained. A trial-and-error method was employed to obtain 
the optimal MLP models.

To construct the RBF model, we utilised the Gaussian ra-
dial basis activation function for the hidden layer and the 
linear activation function for the output layer. We adjusted 
the number of hidden neurons, ranging from 3 to 25, until 
the best model was obtained.

As stated previously in this article, the selection of the ker-
nel functions is a crucial role in the performance of the 

model. STATISTICA offers several kernel functions that can 
be utilised in SVM models. We calculated over the penalty 
term of the Gaussian radial basis function parameters with 
C = 10.0000, nu = 0.5000, and Gamma = 3.51, for the 
SVM model and determined the optimal values for the tar-
get parameters.

3.2 Evaluation criteria

In this paper, we used three measures to evaluate the 
quality of prediction models: correlation coefficient (R), 
mean absolute error (MAE), and root mean squared error 
(RMSE).10

4 Results and discussion
In this study, we developed and evaluated nine models: 
three MLP, three RBF, and three SVM models, to predict 
the retention of PPhACs by NF/RO membranes; all models 
had similar inputs.

Fig. 4 illustrates the influence of the division of the data 
set into two subsets (the training and the testing set) on 
the coefficient of correlation. This was done to determine 
the optimal division of the data set for tested models (MLP, 
RBF, and SVM). We used three different divisions of the 
data set: division 1 (325 data for the training data set 

Phase of collection of experimental data as complete as possible  
(441 Retentions of 21 Polar Pharmaceutical Active Compounds

Support Vector Machine (SVM) Creation

•	Kernels function:  
Gaussian radial basis function

•	C = 10.0000
•	nu = 0.5000
•	Gamma = 3.51
•	 Splitting database into two 

subsets (training and testing data)

•	Training algorithm (BFGS)
•	Activation function in hidden layer  

(tanh, logsig, sin, and exponential)
•	Neurons in the hidden layer (3:25)
•	Activation function in the output layer 

(linear)

•	Training algorithm (RBFT)
•	Activation function in hidden layer  

(Gaussian radial basis function)
•	Neurons in the hidden layer (1:20)
•	Activation function in the output layer 
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Fig. 3 – Flow diagram of the development of multi-layer perceptron (MLP), feedforward neural network with radial basis function 
(RBF), and support vector machine (SVM) models
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(60 %), and 216 data for the testing data set (40 %)), divi-
sion 2 (379 data for the training data set (70 %), and 162 
data for the testing data set (30 %)), and division 3 (433 
data for the training data set (80 %), and 108 data for the 
testing data set (20 %)). The results suggested that models 
using division 3 had better ability to predict the retention 
of PPhACs. MLP and SVM models showed high correlation 
coefficients, while those for the RBF model were lower, 
indicating that RBF models may not be as accurate in pre-
dicting the retention of PPhACs as the other two models.
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Fig. 4 – Effect of dividing the entire data set

The structures of the MLP models used are given in Ta-
ble 2.

Table 2 – Structures of the optimised MLP models

Training 
algorithm

Input 
layer Hidden layer Output layer

No. of 
neurons

No. of 
neurons

Activation 
function

No. of 
neurons

Activation 
function

M
LP

 1

trainbfg 13

9 tansig

1 purelin

M
LP

 2

10 tansig

M
LP

 3

15 logsig

Table  3 displays the results of RBF models comprising 
various numbers of hidden neurons. Among the training, 
the testing, and the entire data sets of the RBF 3 model, 
15 hidden neurons gave the best R, MAE, and RMSE val-
ues (0.7901, 7.0832, and 0.1025 for the training data set 
and 0.7448, 8.2519, and 10.9558 for the testing data set, 
0.7807, 7.3165, and 10.2785 for entire data set, respec-
tively). Based on the performance statistics in the testing 
data set and the entire data set, the RBF 3 (13–15–1) mod-
el was selected as the best RBF model for predicting the 
retention of polar PPhACs.

Table 3 – Comparative performance of FNN-RBF models for 
various data sets

RBF 1 RBF 2 RBF 3
Number of hidden neurons 20 16 15

Training data set
R 0.7935 0.7811 0.7901

MAE ⁄ % 7.3671 7.2760 7.0832
RMSE ⁄ % 10.0334 10.1888 10.1025

Testing data set
R 0.7272 0.7256 0.7448

MAE ⁄ % 8.3071 8.6494 8.2519
RMSE ⁄ % 11.3000 11.5152 10.9558

Entire data set
R 0.7672 0.7643 0.7807

MAE ⁄ % 7.7424 7.6873 7.3165
RMSE ⁄ % 10.5573 10.6034 10.2785

Table 4 summarises the accuracy of the SVM models for 
the training, the testing, and the entire data set. It is ob-
served that in the various data sets, SVM 3 had the lowest 
MAE and RMSE, and the highest R (2.9686, 4.1598, and 
0.9677, respectively). However, in the entire data set, SVM 
1 got the highest MAE and RMSE and lowest R (3.3278, 
6.6650, and 0.9160, respectively).

Table 4 – Comparative performance of SVM models for various 
data sets

SVM 1 SVM 2 SVM 3

Number of support 
vectors

156 
(30 bounded)

159 
(22 bounded)

169
(21 bounded)

Training 
data set

R 0.9770 0.9759 0.9766
MAE ⁄ % 2.7243 2.6525 2.6889
RMSE ⁄ % 3.3866 3.4656 3.5399

Testing 
data set

R 0.8513 0.9373 0.9342
MAE ⁄ % 5.8435 4.3916 4.0772
RMSE ⁄ % 9.9717 6.4406 6.0183

Entire 
data set

R 0.9160 0.9612 0.9677
MAE ⁄ % 3.3278 3.1765 2.9686
RMSE ⁄ % 6.6650 4.5706 4.1598

The contribution of the input variables (dc, log Dow, length, 
eqwidth, MWCO, SR(NaCl), contact angle, zeta potential, 
pH, pressure, recovery, and temperature) on the output 
(retention of PPhACs) was determined by a sensitivity anal-
ysis for MLP 3 model.

The results on the relative importance (RI) and contribution 
analysis are presented in Fig. 5. Contact angle, zeta poten-
tial, SR(NaCl), MWCO, dc, pressure, recovery, temperature, 
dipole moment, length, log Dow, eqwidth, and pH that may 
influence the retention of PPhACs. All input variables were 
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found to have a significant contribution (RI > 2). Sensitivity 
analysis identified the importance of variables used for the 
modelling of the retention of PPhACs and confirmed the 
correctness of the variables selected in this study.

Fig. 5 shows that the membrane polarity interactions (hy-
drophobicity/hydrophilicity) measured by contact angle 
were even more important than surface membrane charge 
measured by zeta potential, steric hindrance measured 
by SR(NaCl), and MWCO, with RI values of 75.68, 58.88, 
54.73, and 32.25  %, respectively. These results confirm 
that the retention of PPhACs by NF/RO membranes de-
pends on three interactions arranged in descending or-
der: polarity interactions (hydrophobicity/hydrophilicity), 
electrostatic repulsion (charge effect), and steric hindrance 
(sieving effect). This research suggests that the PPhACs re-
tention on NF/RO membranes strongly depends on the 
topological polar surface area.
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Fig. 5 – Plot of the relative importance (RI) of the MLP 3 model 
for modelling the retention of PPhACs by NF/RO mem-
branes

To assess the predictive ability of the MLP 3, RBF 3, and 
SVM 3 models, the matching between predicted and ex-
perimental retentions was analysed for the entire data set. 
The MATLAB function “postreg” was used to obtain the 
plot of the predicted versus experimental values and the 
parameters of the linear regression.

Fig. 6 shows the agreement plot between predicted and 
experimental values of PPhACs retention. The results indi-
cated acceptable robustness of RBF model and the poten-
tial for prediction of different parameters that characterise 
the retention of PPhACs by NF/RO membranes. The values 
for SVM demonstrated the strong reliability of the model 
and the potential to predict accurately various parameters 
that characterise the retention of PPhACs. Fig. 6c demon-
strates the predictive ability and accuracy of MLP model, 
revealing the ideal modelling of the entire data set by the 
optimised MLP.

5	Analysis and comparison of 
prediction models

We assessed the MLP model’s predictive performance for 
PPhACs retention by NF/RO membranes, and compared it 
with the performance of RBF and SVM models. We eval-
uated the accuracy of models using R, MAE, and RMSE. 
Table 5 compares performance of optimal models in terms 
of the errors (R, MAE, RMSE) for the entire data set. It is 
clear that the MLP model achieved the lowest errors in the 
entire data set (0.9714, 2.4410 %, 3.9139, respectively). 
These results demonstrate that the MLP model outper-
formed the RBF and SVM models. Our findings suggested 
that the MLP model might serve as a viable alternative to 
the RBF and SVM models for predicting the retention of 
PPhACs by NF/RO membranes.

Table 5 – Comparative performance of optimal models for the 
entire data set

MLP RBF SVM
R 0.9714 0.7807 0.9677

MAE ⁄ % 2.4410 7.3165 2.9686
RMSE ⁄ % 3.9139 10.2785 4.1598

6 Applicability domain
In the present study, the Leverage mathematical technique 
was used to find outliers. This technique uses the residual 
values and a Hat matrix. To calculate the normalised resid-
uals, we compare the experimental retention data with the 
values predicted by the model.

( )
−

= = …
−

exp cal

exp cal

retention retention_ ,   1,  
var retention retention

i i
iR Norm i m (3)

Normalised residuals falling within the range of ±3 are 
considered acceptable for validated data, while those out-
side this range are classified as suspected data. Further-
more, any data point with a Hat value greater than the 
threshold H* is also flagged as suspected data. The results 
of the outlier analysis are presented in Fig.  7. As shown 
in the figure, the critical threshold for the Hat value is de-
termined to be H* = 0.0776. Only the data points pre-
sented by red circles are considered valid data, and these 
points confirm the accuracy of the model. The analysis of 
the outliers of the MLP 3 model using the trainbr and log-
sig is shown in Fig. 7(a). The plot indicates that 513/541 
data points (94.82 %) fall within the valid domain, while 
only 28/541 data points (5.18 %) are outside the applica-
ble range of the optimised MLP 3 model. Fig. 7(b) shows 
the William’s plot for the optimal RBF 3 model. The plot 
reveals that 518/541 data points (95.75 %) are considered 
valid, while 23/541 data points (4.25 %) are classified as 
suspected. Fig. 7(c) presents the William’s plot for the opti-
mised SVM model. The plot shows that out of the 541 data 
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points, 518 (95.75 %) are considered valid, while only 23 
(4.25 %) are classified as outside the applicability domain.

7 Conclusions
The prediction of the retention of PPhACs by NF/RO mem-
branes was performed using three types of algorithms: MLP, 
RBF, and SVM. MLP and RBF models were optimised using 
the Quasi-Newton BFGS algorithm. This algorithm pro-
vided better results in terms of speed, convergence, and 
performance generation for the MLP models. The results 
demonstrated a high training and predictive capacity for 
the retention of PPhACs by NF/RO membranes with high 
correlation coefficient (R = 0.9714), and a low root mean 
squared error (RMSE = 3.9139 %) for the entire data set. 

Furthermore, the statistical indicators of robustness helped 
in selecting a better training algorithm, activation function, 
and network architecture [13 15 1] (thirteen neurons in 
the input, fifteen in the hidden layer, and one in the out-
put layer). The prediction by the MLP also demonstrated 
a strong correlation between the experimental and pre-
dicted values of PPhACs retention. This suggested that the 
MLP model had superior predictive power. The sensitivity 
analysis was conducted, which highlighted that the reten-
tion of PPhACs is governed by three interactions arranged 
in descending order of importance: the polarity interac-
tions (hydrophobicity/hydrophilicity), electrostatic repul-
sion (charge effect), and steric hindrance (sieving effect). 
This research suggests that the retention of PPhACs on the 
NF/RO membranes strongly depends on the topological 
polar surface area.
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Fig. 6 – Predicted vs. experimental data for: (a) RBF 3, (b) SVM 3, and (c) MLP 3
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List of abbreviations and symbols

ANN – artificial neural network
BANN – bootstrap aggregated neural network 
BFGS – Broyden–Fletcher–Goldfarb–Shanno
bo – bias of the output layer
bH – bias of the hidden layer
dc – effective diameter of the organic compound in water 
MLP – multi-layer perceptron
RBF – feedforward neural networks with radial basis function
j – number of neurons in hidden layer
i – number of neurons in input layer
log Dow – distribution coefficient
MAE – mean absolute error 
MLR – multiple linear regression
NF – nanofiltration
NF/RO – nanofiltration and reverse osmosis
PLS – partial least squares
PPhACs – polar pharmaceutical active compounds
QSAR – quantitative structure-activity relationship
R – correlation coefficient
RMSE – root mean squared error
RO – reverse osmosis
SVM – support vector machines
wH – hidden layer output connection weight
wI – connection weight between input and hidden layer 
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SAŽETAK
Strojno učenje i neuronske mreže u modeliranju zadržavanja polarnih 

farmaceutski aktivnih tvari nanofiltracijom i reverznom osmozom
Yamina Ammi,* Cherif Si-Moussa i Salah Hanini

Zadržavanje polarnih farmaceutski aktivnih tvari (PPhAC) tijekom nanofiltracije i reverzne osmoze 
(NF/RO) od iznimne je važnosti u membranskim separacijskim procesima. Membransko zadr-
žavanje 21 PPhAC-a korelirano je sa svojstvima PPhAC-a, karakteristikama membrane i uvjeti-
ma provedbe procesa filtracije. Pri tome su primijenjene tehnike umjetne inteligencije: višeslojni 
perceptron (MLP), neuronska mreža s radijalnom baznom funkcijom (RBF) i metoda potpornih 
vektora (SVM). Iz literature je prikupljena 541 vrijednost zadržavanja. Rezultati su pokazali visok 
kapacitet predviđanja MLP modela za cijeli skup podataka, s vrlo visokom vrijednošću koefi-
cijenta korelacije (R = 0,9714) i vrlo niskom vrijednošću korijena srednje kvadratne pogreške 
(RMSE = 3,9139 %). Usporedba s preostala dva modela (RBF i SVM) pokazala je superiornost 
MLP modela. Analiza osjetljivosti ukazala je na to da zadržavanjem PPhAC-a upravljaju tri interak-
cije i to (padajućim redoslijedom): polarne interakcije (hidrofobnost/hidrofilnost), elektrostatsko 
odbijanje i steričke smetnje. Provedenoo istraživanje sugerira da zadržavanje PPhACs na NF/RO 
membrani snažno ovisi o topologiji polarne površine.

Ključne riječi 
Strojno učenje, neuronske mreže, modeliranje, zadržavanje, PPhACs, nanofiltracija, 
reverzna osmoza

Izvorni znanstveni rad
Prispjelo 30. prosinca 2022.

Prihvaćeno 29. svibnja 2023.

Laboratory of Biomaterials and Transport 
Phenomena (LBMPT), University of Médéa, 
26 000 Médéa, Alžir

https://doi.org/10.1016/S1001-0742(10)60545-1
https://doi.org/10.1016/S1001-0742(10)60545-1
https://doi.org/10.1007/s11356-012-0782-7
https://doi.org/10.1007/s11270-012-1377-0
https://doi.org/10.1016/j.seppur.2013.04.042
https://doi.org/10.1016/j.seppur.2013.04.042
https://doi.org/10.1016/j.watres.2017.08.070
https://doi.org/10.1016/j.jwpe.2018.08.002
https://doi.org/10.1016/j.jwpe.2018.08.002
https://doi.org/10.1016/j.seppur.2018.11.040
https://doi.org/10.1016/j.seppur.2018.11.040
https://doi.org/10.1016/j.memsci.2018.06.047
https://doi.org/10.1016/j.memsci.2018.06.047
https://doi.org/10.1016/j.jwpe.2019.101029
https://doi.org/10.1016/j.jwpe.2019.101029
http://www.chemspider.com

