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ABSTRACT

The arrival of comprehensive genome sequencing has ac-
celerated the understanding of genetically aberrant
advanced cancers and target identification for possible
cancer treatment. Fibroblast growth factor receptor
(FGFR) gene alterations are frequent findings in various
rare and advanced cancers refractive to mainstay chemo-
therapy or surgical interventions. Several FGFR inhibitors
have been developed for addressing these genetically
altered FGFR-harboring malignancies, and some have
performed well in clinical trials. In contrast, others are
still being investigated in different phases of clinical
trials. FDA has approved four anticancer agents such as
erdafitinib, pemigatinib, infigratinib, and futibatinib, for
clinical use in oncogenic FGFR-driven malignancies.
These include cholangiocarcinoma, urothelial carcinoma,
and myeloid/lymphoid malignancies. Pemigatinib is the
only FGFR inhibitor globally approved (USA, EU, and
Japan) and available as a targeted therapy for two types of
cancer, including FGFR2 fusion or other rearrangements
harboring cholangiocarcinoma and relapsed/refractory
myeloid/lymphoid neoplasms with FGFR1 rearrange-
ments. Myeloid/lymphoid neoplasm is the latest area of
application added to the therapeutic armamentarium of
FGFR inhibitors. Furthermore, futibatinib is the first-in-
class covalent or irreversible pan-FGFR inhibitor that has
received FDA approval for locally advanced or metastatic
intrahepatic cholangiocarcinoma harboring FGFR2 gene
aberrations. This review highlights the current clinical
progress concerning the safety and efficacy of all the
approved FGFR-TKIs (tyrosine kinase inhibitors) and
their ongoing investigations in clinical trials for other
oncogenic FGFR-driven malignancies.
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INTRODUCTION

A plethora of evidence indicates the involvement of fibroblast growth factor — fibro-
blast growth factor receptor (FGF-FGFR) — signaling in regulating multiple physiological
processes, including angiogenesis, wound healing, and tissue regeneration (1). Dysregula-
tion of this signaling pathway has been linked with tumorigenesis, tumor progression,
and drug resistance to anticancer treatment in varieties of cancer (2). FGFRs are single-pass
trans-membrane proteins in the receptor tyrosine kinases (RTK) family. Notably, the FGFR
family has five members, namely, FGFR1, FGFR2, FGFR3, FGFR4 and FGFR5. Because of
frequently observed aberration in the FGF-FGFR axis in cancers, FGFR targeting has
received considerable attention as a potential therapeutic target. Four members of the
FGEFR family, i.e.,, FGFR1-4, have emerged as potential targets in different cancers (3).

This review aims to provide clinical data on the FDA-approved selective FGFR tyro-
sine kinase inhibitors (TKIs) for treating various malignancies, emphasizing the mecha-
nism of action, pharmacological activities, toxicity, and resistance mechanisms. Addition-
ally, we will briefly summarize ongoing investigations for unapproved therapeutic
indications in clinical trials.

FGF-FGFR pathway

The mammalian FGF family comprises 23 proteins (FGF1-FGF23), classified as intra-
cellular and secreted FGFs. The intracellular FGFs (FGF11-14) proteins act as cofactors for
voltage-gated sodium channels and do not bind to cell surface receptors, whereas secreted
FGFs act extra-cellularly by binding to FGFRs to initiate signal transduction (4). Secreted
FGFs are further categorized as endocrine FGFs, including FGF15/19, 21, and 23, and
canonical FGFs, such as FGF1-10, 6-18, 20 and 22. Both types of FGFs exhibit their biological
effects by binding with FGFRs on target cell membranes (5). Still, they differ in the distance
before their binding to FGFRs. While canonical FGFs interact as autocrine or paracrine
factors, with heparan sulfate proteoglycans (HSPGs) as cofactors, endocrine FGFs travel a
considerable distance in blood circulation before binding FGFRs with the help of the
Klotho protein family, comprising aKlotho, fKlotho, and yKlotho (3, 5-8). The canonical
FGFs and FGFRs interaction mediates cellular survival, metabolism, proliferation, tissue
metabolism, organogenesis, inflammatory responses, and repair. In addition to the
canonical FGFs’ action, endocrine FGFs contribute to bile acids, lipids, and glucose
metabolisms (3, 5, 9). Deregulation of FGF’s expression, secretion, and degradation may
influence multiple biological activities such as metabolism, organogenesis, and wound
healing, and may even lead to various cancers (10).

The FGFR family includes four protein kinases (FGFR1-4) and a non-protein kinase,
FGFR5 or FGFRLI (11). These receptors differ in ligand-binding selectivity and tissue distri-
bution (12). Similarly, alternative splicing is the source of heterogeneity and ligand speci-
ficity for the four receptors involving splicing into 48 different isoforms. The FGFR protein
comprises three external immunoglobulin-like domains (IgI-1II), a transmembrane helix,
and an intracellular kinase domain. An acid box composed of a short stretch of aspartates
and glutamates is present between Igl and Igll, which exhibits auto-inhibitory function
along with the Ig-I domain in the absence of FGF-binding, whereas, Igll and IgIII domains
are required for ligand binding. The FGFR1-3's ligand selectivity is regulated by alterna-
tively spliced IgllIb/c loop variants of the receptors with different biological consequences,
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predominantly expressed in epithelial and mesenchymal cells, resp. (13, 14). The encoded
IgIIl domains in FGFR4 do not undergo alternative splicing. The tissue-specific expression
of the IgIlIb/c variants governs the interaction in cancer, embryogenesis, tissue repair, and
maintenance (15-17).

The FGF binding to FGFR results in dimerization, transphosphorylation, and activa-
tion of the tyrosine kinase domain, which subsequently activates several downstream
signaling pathways (18). Activated FGFRs require various proteins to activate downstream
signaling pathways, such as FRFR substrate 2 protein (FRS2) and other interacting pro-
teins, including GAB1, GRB2, SOS, and PLC-y. Various downstream signaling mechanisms
are involved in the FGF-FGFR axis associated with multiple physiological functions. Fig. 1
presents the PLC-y/PKC, PI3K/AKT/mTOR, PI3K/AKT/MAPK, RAS/RAF/MEK/ERK and
JAK-STAT pathways as a flow chart (19-23). Regarding downstream signaling, the four
receptors (FGFR1-4) differ from one another due to variances in their affinities and speci-
ficities for intracellular adaptor proteins, subcellular transport patterns after receptor acti-
vation, and rates of receptor endocytosis. The activation of downstream pathways shows
similarities between FGFR1 and FGFR2. Nevertheless, significant differences can be
observed when compared to FGFR3 and FGFR4 (12). Depending on the type of FGFs and
the receptor, the FGF-FGFR pathway is engaged in multiple physiological processes. FGFR1
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Fig. 1. FGF-FGFR signaling pathway. FGFR structure: the receptor contains three extracellular immu-
noglobulin-like domains (ED): Igl, IgIl, and Iglll, an intracellular tyrosine kinase domain (ID), and a
trans-membrane domain (TMD). The Igl and Igll domains comprise the FGF binding site. FGFR path-
way: the binding of FGF to FGFR tyrosine kinase domain may activate several signaling pathways
required for cellular survival, proliferation, migration, differentiation, and angiogenesis, including
the JAK-STAT pathway, the PI3K-AKT-mTOR pathway, and the RAS-RAF-MEK-ERK pathways.
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is crucial for embryo development, cell cycle regulation, wound healing, and phosphorus
homeostasis. The main functions of FGFR2-3 are blood vessel creation, wound healing, cell
cycle regulation, and embryonic development. Although FGFR4 is implicated in tissue
repair, embryogenesis, and angiogenesis, it has substrate-specific effects on glucose
homeostasis, bile acid metabolism, and vitamin D homeostasis (10, 24).

Therapeutic potential of FGFR tyrosine kinase inhibition

The FGER tyrosine kinase family is the major driving factor for carcinogenesis mediated
by FGF overexpression, FGFR genetic alterations, angiogenesis, and immune tolerance in the
tumor microenvironment (25). A next-generation sequencing investigation of 4,853 solid
tumors revealed FGFR abnormalities in 7.1 % of malignancies. Among the reported FGFR
aberrations, gene amplification accounted for the major contribution towards malignancies,
followed by gene mutations and gene rearrangements. Receptor-wise, the most changes were
found in FGFR1 (49 %), followed by FGFR3 (23 %), FGFR2 (19 %), and FGFR4 (7 %) (26).

Another next-generation sequencing analysis of 5557 Chinese patients with solid
tumors found FGFR1-4 mutations in 9.2 % of cases, with almost 50 % of cases, gene ampli-
fications, and mutations were the most frequent, and gene rearrangements (10.0 %) were
the least frequent (27). Of the 5557 cases studied, 4.6 % were associated with FGFR1, 2.1 %
with FGFR2, 1.6 % with FGFR3 and 1.4 % with FGFR4. FGFR1-4 mutant malignancies were
seen in almost all types of solid tumors, with breast cancer, endometrial carcinoma, gastric
cancer, and sarcoma being the most common types. Other atypical anatomical sites
include skin, reproductive organs, bone, digestive, nervous, and hematological systems
harboring FGFR1-3 gene alterations (25).

With the growing understanding of FGFR-driven cancer therapeutics, FGFR inhibi-
tion has emerged as a potential targeted strategy. Various FGF ligand traps and monoclo-
nal antibodies have been developed to target FGFR on extracellular receptor domains.
Multiple small molecule inhibitors targeting FGFR intracellular tyrosine kinase domain
are also explored. These small-molecule inhibitors can be FGFR selective or non-selective,
inhibiting other tyrosine kinases such as PDGF and VEGEF (3, 10, 28). Even though kinase
inhibitors were introduced as a cancer treatment in the twentieth century, today, a multi-
tude of kinase inhibitors are being studied in clinical or preclinical research to specifically
target FGFR-altered carcinomas and to overcome the drug-resistance in chemotherapy and
other targeted therapies (29, 30). A recent study has shown that FGFR inhibitors have the
potential to be used off-label in a wide range of cancer types and patient populations (31).
Based on population cancer statistics and the frequency of molecular alterations, off-label
use may be three times more common than on-label use. In the following section classifica-
tion of small-molecule FGFR-TKIs is discussed.

Classification of FGFR inhibitors

Promising results have been documented with FGFR inhibitors as a drug class, which
target FGFR receptor abnormalities in various cancers (32). Small molecule FGFR-TKIs may
be classified into two generations. The first-generation TKIs include ponatinib, lucitanib,
nintedanib, dovitinib, derazantinib, and anlotinib, which act as non-selective TKIs of mul-
tiple tyrosine kinases, including FGFR, BCR-ABL, VEGEFR, c-Kit, PDGFR and FLT-3 (3, 33).
Due to the conservation of the hinge region and activation loops around the ATP-binding
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Fig. 2. Classification of FGFR-TKIs.

site in FGFR-related receptor tyrosine kinases, most first-generation TKIs were multi-
-kinase FGFR inhibitors (25). On the other hand, second-generation TKIs have selective
inhibitory activity against FGFRs. Based on target specificities, selective FGFR TKIs may
be categorized as FGFR1-3 inhibitors, FGFR4 inhibitors, dual kinase inhibitors, and pan-
-FGEFR inhibitors (Fig. 2) (25).

Further categorization of FGFR TKIs includes reversible and irreversible inhibitors (34,
35). A recent review divided the small molecule protein kinase inhibitors into seven main
groups: type I, I, IL, III, IV, V, and VI inhibitors (36). The first six types were categorized as
reversible or non-covalent inhibitors, and type VIinhibitors bind irreversibly to the targeted
receptors via covalent bonding. Among categorized groups, types I, I;,, and II inhibitors
exhibit binding in and around the ATP binding pockets of the receptors. Type I and 1,
inhibitors bind to FGFR’s ATP-binding domain in the active DFG-in configuration, and type
II inhibitors bind to FGFR’s ATP-binding domain in the inactive DFG-out configuration. For
instance, AZD4547, a type I inhibitor, binds to FGFRs in the active DFG-in configuration,
whereas ponatinib, a type Il inhibitor, binds to the inactive DFG-out configuration of FGFRs
and other RTKs (37, 38). Furthermore, types I;,, and I antagonists are further divided into A
and B subtypes based on whether binding extends to hydrophobic back cleft (A) or not (B).

Type Il and IV inhibitors demonstrate allosteric binding either next to the ATP-bind-
ing site or at a distance away from the ATP-binding site (39). Allosteric FGFR inhibitors are
small molecule inhibitors that impede the signaling pathway by attaching to a place other
than the ATP-binding site in FGFRs. Alofanib (RPT835) is a representative of this class of
inhibitors. Alofanib inhibits FGF2-induced phosphorylation of FRS2 in FGFR2-expressing
cancer cells by binding selectively to the extracellular IgIIl subdomain of FGFR?2 in the
nanomolar range. SSR128129E is another orally active, allosteric FGFR1 inhibitor that pro-
motes crucial conformational changes in the FGFR1 IgIIl subdomain, resulting in faulty
FGEFR internalization (40). Type V inhibitors are bivalent inhibitors spanning two kinase
domain regions of the targeted kinases. Moreover, antagonists that form covalent bonds
with their targets were categorized as type VI inhibitors (29). Covalent (irreversible)
inhibitors are thought to have increased binding affinity and selectivity. Futibatinib, BLU-
554, and FGF401 are irreversible covalent inhibitors of FGFRs (30).
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FDA-APPROVED SELECTIVE FGFR INHIBITORS

Several FGFR-TKIs have been developed; the FDA has approved four selective FGFR
TKIs, including erdafitinib, pemigatinib, infigratinib and futibatinib (chemical profile
summarized in Table I), as a treatment against oncogenic FGFR-driven cancers such as
urothelial carcinoma, intrahepatic cholangiocarcinoma, and relapsed or refractory

myeloid/lymphoid neoplasms.

Table I. Chemical profile of FDA-approved selective FGFR-TKIs

FGFR-TKI Chemical structure PubChem profile
/N
- N—
NZ Compound CID: 67462786
lN Molecular formula:
Erdafitinib CosHygNOy M, = 4465

/O\@/N\/\NJ\
H
-

IUPAC name: N'-(3,5-dimethoxyphenyl)-
N’-[3-(1-methylpyrazol-4-yl)quinoxalin-
6-yl]-N-propan-2-yl-ethane-1,2-diamine

<\‘ O F OoO—
Pemigatinib (\ N = _<\|
\) HN \_/

Compound CID: 86705695

Molecular formula:

C,,H,,F,N;O,; M, = 487.5

IUPAC name: 11-(2,6-difluoro-3,5-
dimethoxyphenyl)-13-ethyl-
4-(morpholin-4-ylmethyl)-5,7,11,13-
tetrazatricyclo [7.4.0.02,6]
trideca-1,3,6,8-tetraen-12-one

\O (\N
Infigratinib Yo N /©/ " \)
[
oA AL,

L

Compound CID: 53235510

Molecular formula:

C,sH3C,N,O4 M, =560.5

IUPAC name: 3-(2,6-dichloro-3,5-
dimethoxyphenyl)-1-[6-[4-(4-ethylpiper-
azin-l-yl)anilino]pyrimidin-4-yl]-
1-methylurea

Futibatinib

Compound CID: 71621331

Molecular formula:

Cp,H,,NOy M, =418.4

IUPAC name: 1-[(35)-3-[4-amino-3-[2-
(3,5-dimethoxyphenyl)ethynyl]
pyrazolo[3,4-d]pyrimidin-1-yl]-pyrro-
lidin-1-yl]prop-2-en-1-one

CID - PubChem compound identification number (assessed from https:/pubchem.ncbi.nlm.nih.gov/)
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Erdafitinib

Erdafitinib, also known as JNJ-47856493, first developed by Janssen Pharmaceutical
Co. in collaboration with Astex Pharmaceuticals, is an orally active, small, potent pan-
-FGFR tyrosine kinase inhibitor (41). Erdafitinib is a quinoxaline derivative, potently
inhibiting FGFR1-4 kinases with ICs, values in the range of 1.2-5.7 nmol L. Erdafitinib
binds to the FGFR kinase in an inactive DFG-in conformation via the formation of hydro-
gen bonds with Ala564 and Asp641 residues in the hinge region and the DFG motif, resp.
The molecular interactions of erdafitinib with FGFR are presented (Fig. 3a) according to
the co-crystallized complex retrieved from the server of the protein data bank (PDB) bear-
ing the ID 5EWS. A favourable intermolecular hydrogen bonding interaction was noted
between the nitrogen atom of the quinoxaline core and the H-N group of the aliphatic

b) Pemigatinib complexed with FGFR1 (PDB: 7wcl) d) Futibatinib complexed with FGFR1 (PDB: 6mzw)

Fig. 3. Binding interactions of a) erdafitinib, b) pemigatinib, c) infigratinib and d) futibatinib to FGFR1.
The chemical structures of all four drugs are presented in atom-coloured thick tube model, green
coloured lines representing the hydrogen bond, whereas red-coloured text indicates the name of the
amino acid involved in crucial hydrogen bonding interaction. The yellow line in d) presents the
covalent type of irreversible inhibition between futibatinib and CYS488.



N. Kumar Jain et al.: A comprehensive overview of selective and novel fibroblast growth factor receptor inhibitors as a potential anticancer
modality, Acta Pharm. 74 (2024) 1-36.

amino acid Ala564. Heteroatoms of the drug structure binding specifically to this amino
acid alanine (Ala564) are very crucial for the inhibition of the functional aspects of FGFR.
Thus, this hydrogen bonding interaction is considered to be significant along with other
interactions. The pyrazolyl moiety in erdafitinib was surrounded by simple aliphatic
amino acid Gly567, while, the aliphatic side chain showed hydrophobic interactions with
Leu630. Further, dimethoxy substituted aromatic ring in erdafitinib exhibited hydropho-
bic aromatic interactions with the amino acid residues such as Asn628, Ala640, Val492, and
Leu484. Erdafitinib demonstrates modest off-target effects against other kinases, such as
BLK, RET, ABL1, LYN, LCK, TIE1, KIT, PDGFRA-B, and VEGFR2. Similarly, in a cell assay
against various cancer cell lines with FGFR genetic aberrations, erdafitinib exhibited
potent inhibitory potentials with nanomolar IC;, values (42, 43). A preclinical study also
investigated the anticancer and radiosensitizing potentials of erdafitinib in colorectal can-
cer (44). In the results, erdafitinib effectively suppresses cell proliferation and cell survival
in vitro and in vivo in NCI-H716 cell lines with the highest expression of FGFR2. However,
erdafitinib showed no radio-sensitizing effect on NCI-H716 cells either in vitro or in vivo.

Based on the findings from preclinical studies, erdafitinib was studied in an open-
label phase II trial (NCT02365597) to assess the safety and efficacy in patients with meta-
static or surgically unresectable urothelial cancers harboring specific FGFR genomic
alterations (45). A total of 99 patients received an average of five cycles of erdafitinib [8§ mg
QD continuously, 9 mg QD as bioactivity-guided dose escalation (QD — quaque die, namely,
once-a-day)]. Using the erdafitinib was accompanied by a confirmed response rate of 40 %
in patients who had had chemotherapy or neoadjuvant/adjuvant chemotherapy in the past,
3 % of patients had a complete response and 37 % had a partial tumor response rate.
Treatment-related grade 3 or higher adverse events, manageable by dose adjustments, were
recorded in nearly half the patients, with zero mortality. The most commonly reported
adverse effects were hyperphosphatemia (72 %), skin changes (48 %), nail changes (51 %)
and eye disorders (51 %).

Similarly, 24 months longer follow-up study was carried out, including 101 patients at
126 medical centers in 14 different countries (46). The findings showed a safety profile
similar to the initial study; 72 % of patients experienced treatment-related adverse events
in grades 3—4. The most common adverse events were stomatitis (14 %) and hyponatremia
(11 %) (47).

An exploratory association between serum phosphate levels and efficacy or safety
outcomes was examined in a different investigation (48). The Cox proportional hazard or
logistic regression models used in the exposure-response analyses on 177 patients pro-
vided evidence in support of the notion that the incidences of specific adverse events
related to erdafitinib treatment increase with higher serum phosphate levels and that
activity-guided dose titration may be used to optimize erdafitinib’s therapeutic benefit-
-risk ratio. On March 15, 2018, the FDA designated erdafitinib as a breakthrough treatment
for urothelial carcinoma, the sixth most prevalent type of cancer in the USA, premised on
impressive outcomes from this clinical trial.

Erdafitinib was subsequently given expedited FDA approval on April 12, 2019, to treat
adult patients with locally advanced or metastatic urothelial cancer who had progressed
during or after at least one line of prior platinum-containing chemotherapy, and had spe-
cific FGFR3 mutations or FGFR2 or FGFR3 fusion. The FDA-approved companion diagnos-
tic test (therascreen FGFR RGQ RT-PCR kit; QTAGEN GmbH - Germany.) should be used
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to select the patient for erdafitinib treatment (49). A comparative phase III study is recruit-
ing patients with advanced urothelial cancer and FGFR alterations to compare erdafitinib
with the standard of care treatment consisting of chemotherapy (docetaxel or vinflunine)
or anti-programmed death ligand-1 (PD-L1) agent pembrolizumab (NCT03390504).

Eventually, erdafitinib emerged as the first FDA-authorized selective FGFR tyrosine
kinase inhibitor and is now being explored as a therapeutic option for liver cancer, cholan-
giocarcinoma, non-small cell lung cancer, lymphoma, prostate cancer, breast cancer, and
esophageal cancer. Erdafitinib was administered in ascending doses ranging from 0.5-12 mg
QD continuously or 10-12 mg intermittently (7 days-on/off) to patients with advanced
solid tumors in a phase I dose escalation trial (NCT01703481). The recommended phase II
dose (RP2D) was selected as a 10 mg dose (seven days on/off), and dose-dependent hyper-
phosphatemia was more evident for 4-9 mg QD dosage (50). In the following parts 2—-4 of
the phase I study (NCT01703481), erdafitinib showed tolerability and clinical activity
against FGFR genomic alterations susceptible urothelial carcinoma and cholangiocarci-
noma, with the objective response rates of 46.2 and 27.3 %, resp. Hyperphosphatemia,
stomatitis, and asthenia of grade 1/2 severity were the most frequently reported side-
-effects (51). Moreover, no change in QTc interval or other ECG parameters was observed
while analyzing the effect of erdafitinib on ECG parameters and the plasma concentration
and QTc interval change correlation in advanced or refractory solid tumors (52). In
another phase I study on the Japanese population with advanced solid tumors
(NCTO01962532), erdafitinib was administered on a 2-6 mg QD schedule on a three-week
cycle or 10-12 mg intermittently (7 days-on/off) of a four-week cycle (53). Erdafitinib at 10
mg alternate 7 days regimen was well tolerated in Japanese patients and selected as an
RP2D for further studies.

Similarly, erdafitinib is being studied in a multicenter, open-label phase II clinical
study (NCT02699606) for the treatment of Asian individuals who have advanced non-small
cell lung cancer, esophageal cancer, urothelial cancer, and cholangiocarcinoma. Erdafitinib
has also been evaluated for safety, pharmacology, and clinical response in Asian patients
with hepatocellular carcinoma under phase I/II multicenter investigation (NCT02421185);
results are yet to be published. Two phase II clinical studies, NCT03999515 and
NCT04754425, sponsored by the University of Washington (Seattle, Washington, USA) and
the University of Texas MD Anderson Cancer Center (Houston, Texas, USA), are recruiting
patients to evaluate erdafitinib activity in treating castration-resistant prostate carcinoma
and double-negative prostate cancer patients, resp. (Table II). Recently, in an Australian
open-label phase II study, erdafitinib enhanced the antitumor effect of androgen depriva-
tion therapy in patients with treatment-naive prostate cancer (54). However, this combina-
tion is not recommended in clinical settings due to patients” poor tolerability.

Erdafitinib is primarily metabolized by CYP2C9 and CYP3A4 enzymes (55). The par-
ticipation of CYP2C9 and CYP3A4 enzymes in eliminating erdafitinib is estimated to
account for 39 and 20 %, resp., of the total clearance. Erdafitinib, in its original form,
remained the primary drug-related component in the plasma, with no detectable metabo-
lites found in circulation. Metabolic clearance was the major elimination mechanism in
humans. The primary pathway was O-demethylation to form O-desmethyl erdafitinib
metabolite (M6). This metabolite is reported to be a major metabolite in human excreta (24
%) other than unchanged erdafitinib (14.1-22.6 %). Another faecal metabolite is M8, formed
via the N-dealkylation pathway. The metabolism scheme of erdafitinib in humans is
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Fig. 4. Metabolism scheme of erdafitinib in humans.

depicted in Fig. 4. An open-label, parallel-group phase 1 trial (NCT03135106) was con-
ducted to investigate the pharmacokinetics and safety of erdafitinib in healthy volunteers
when co-administered with a moderate-to-strong CYP2C9, CYP3A4 and P-glycoprotein
inhibitors (fluconazole and itraconazole) (56). Both the inhibitors on co-administration
with erdafitinib resulted in increased plasma exposure to erdafitinib in healthy adult par-
ticipants, potentially necessitating erdafitinib dose reduction, or use of alternative con-
comitant medicine with little or no CYP2C9 or CYP3A4 inhibition. The concurrent admini-
stration of erdafitinib with other medicines that have the potential to influence blood phos-
phate levels is contraindicated as it may result in an increase or decrease in the levels of
serum phosphate. Erdafitinib is a low extraction ratio drug exhibiting high protein binding
with alpha-1-acid glycoprotein with varying free fraction concentration across populations
(57). Hence, free erdafitinib concentration characterization is critical to account for the dif-
ference in free fraction and its clinical relevance across the population.

Pemigatinib

Pemigatinib, also known as INCB054828 and Pemazyre®, is an orally active, potent
small molecule, selective and reversible ATP-competitive inhibitor of FGFR1-3 tyrosine
kinases discovered by Incyte Corporation (58). Pemigatinib potently inhibits FGFR1-4
kinases with corresponding ICy, values in the 0.4-30 nanomolar range. Pemigatinib is cate-
gorized as an FGFR1-3 tyrosine kinase inhibitor that primarily targets FGFR1-3. However,
it can also affect FGFR4, albeit only at a much higher dose (30 folds IC;, value) than the
other FGFRs. Notably, pemigatinib exhibits a strong affinity for FGFR kinases and does not
impact any other protein kinases with ICy, values lower than 1,000 nmol L™, except for
KDR, VEGFR2 and ¢-KIT, for which the IC;, values are 70, 182, and 266 nmol L7, resp. In
vitro, pemigatinib inhibited Ba/F3 cell lines expressing FGFR1 and FGFR3 kinase domain
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fusion with ICy, values of 3 and 4 nmol L7, resp. Preclinically, pemigatinib demonstrated
potent antitumor activity in cancer cell lines and tumor xenograft models with FGFR1
(KG1/KGla, 8pll-positive acute myeloid leukemia), FGFR2 (KATO III, cholangiocarci-
noma) and FGFR3 (RT-4/RT112, urothelial carcinoma) translocation with greater sensitiv-
ity than cell lines lacking FGFR genetic aberrations (59). Because of its favorable preclinical
safety record, pemigatinib was given priority in human clinical trials. The potential inhi-
bition by the drug pemigatinib can be substantiated by an investigation of its molecular
interactions and binding orientation within the binding site of FGFR. X-ray solved crystal
structure of the FGFR in complex with pemigatinib was extracted from PDB (ID: 7wcl) and
analyzed (Fig. 3b) (60). Three characteristic hydrogen bonding interactions were observed
between pemigatinib and FGFR. A strong H-bonding (2.9 A) was noted between the
oxygen of methoxy group on the aromatic ring and an amino group of the acidic amino
acid Asp641. Similarly, a couple of other two hydrogen bondings were observed between
nitrogens of pyrazolyl and pyridinyl moiety with the crucial aliphatic amino acid Ala564
ata distance of 2.84 A and 3.0 A, resp. The heterocyclic core moiety was buried around the
residues of Lys482, Leu484, and Tyr563. Moreover, the dimethoxy-substituted phenyl ring
showed hydrophobic interactions with amino acids such as Leu630, Val492, and Lys514. All
these critical molecular interactions of pemigatinib to FGFR supported the potent inhibi-
tion of FGFR in various cancer cell lines.

In a two-part pivotal phase I/II study (FIGHT-101, NCT02393248) on patients with
refractory advanced malignancies with or without FGFR genetic alterations, pemigatinib
demonstrated a double safety profile and pharmacological activity, with higher overall
response rate (ORR) in patients with FGFR fusion/rearrangements than in those with
FGFR mutations (ORR, =5, 25 % vs. n =3, 23.1 %) (61). Although the MTD was not obtained
in the dose escalation part, the pharmacologically active dose was reported to be > 4 mg
QD with the terminal t,,, of 15 h (62). In the part 2 dose expansion study, the RP2D was
reportedly 13.5 mg QD, supporting sustained inhibition of FGFR signaling. Alopecia, sto-
matitis, pneumonia, hyperphosphatemia, tiredness, and dry mouth were the most fre-
quently reported all-cause/grade adverse effects (61). No clinically significant dose-depen-
dent drug effect on heart rate and cardiac repolarization (QTc) was observed in pemigatinib
treatment (63).

In another crucial phase II clinical trial (FIGHT-202, NCT02924376) among previously
treated 107 patients of locally advanced or metastatic cholangiocarcinoma with or without
FGFR2 gene abnormalities, pemigatinib was orally administered at a dose of 13.5 mg QD
on a three-week cycle (two weeks on and one week off) until progression of the disease,
unacceptable toxicity, physician decision or withdrawal of consent (64). Thirty-eight
patients met the primary endpoint, i.e, ORR (36 %), with 3 complete and 35 partial
responses. The most frequent adverse effect was hyperphosphatemia; no treatment-related
death was reported, irrespective of grade/cause (64). Based on the clinical trial findings,
the FDA approved pemigatinib for the treatment of adults with an FGFR2 fusion or other
rearrangements harboring metastatic or locally advanced cholangiocarcinoma. FDA has
recommended an oral dose of pemigatinib to be 13.5 mg QD for two weeks followed by a
one-week interval. For the diagnosis of such FGFR2 fusion or gene rearrangements, the
FDA has approved FoundationOne® CDX kit (Foundation Medicine, Inc,, Massachusetts,
USA.
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Table IIT demonstrates the FDA-approved selective FGFR-TKIs, their target kinases,
specific clinical trials, and the approval dates.

In addition, a post hoc analysis of progression-free survival (PFS) found that patients
with FGFR2 fusions or rearrangements had a median PFS of 7 months after receiving
second-line treatment with pemigatinib in the phase II FIGHT-202 study, despite having
previously been treated with first- or second-line systemic therapy for metastatic or
advanced cholangiocarcinoma (69). Pemigatinib is also under investigation in a phase III
clinical trial (FIGHT-302, NCT03656536) to be evaluated as first-line treatment for patients
with FGFR2 rearrangements containing unresectable or metastatic cholangiocarcinoma in
comparison with standard chemotherapy (gemcitabine and cisplatin) (70). The FIGHT-302
trial is a global, multicenter study with PFS as the primary endpoint and ORR, response
duration, overall survival, safety, and quality of life as secondary endpoints, utilizing an
open-label, randomized controlled design. Till the writing of this manuscript, the study is
still recruiting patients.

Recently, on August 26, 2022, the FDA approved pemigatinib with a recommended
dose of 13.5 mg QD continuously for treating adults with relapsed or refractory myelopro-
liferative neoplasms (MPN), rare hematologic neoplasms with FGFR1 rearrangements,
based on the outcomes of an open-label, multicenter, single-arm, phase II FIGHT 203
clinical trial (NCT03011372) including 28 patients which were either ineligible or relapsed
after chemotherapy or allogeneic hematopoietic stem cell transplantation (71).

Pemigatinib treatment continued until unacceptable toxicity, disease progression, or
until patients became eligible for allogeneic hematopoietic stem cell transplantation (72).
Pemigatinib demonstrated high safety and efficacy in all 28 patients with a complete cyto-
genetic response rate of 79 % (22/28), suggesting pemigatinib as the first therapy to offer a
long-term treatment option for FGFR1 rearrangement MPNs. The most common treat-
ment-related adverse events were hyperphosphatemia, alopecia, stomatitis, diarrhea, ane-
mia, nail toxicity, and ocular toxicity. Pharmacokinetically, pemigatinib is primarily
metabolized by CYP3A4, with little renal elimination. Fig. 5 demonstrates that CYP3A4 is
solely responsible for the O-demethylation of pemigatinib, forming O-desmethyl
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Fig. 5. Main metabolic pathways of pemigatinib in humans.
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pemigatinib (M2). This major metabolite and its secondary metabolites (glucuronide (M7)
and sulfate (M9)) account for 76.9 % of the metabolite burden in urine and feces (73). Bis-
-O-demethylation is another important pathway in the metabolic clearance of pemigatinib
in humans. Nevertheless, a dosage adjustment is indicated in patients with severe hepatic
or renal impairment, and no dose modification is required in patients with mild hepatic
impairment (74). Co-administration of pemigatinib with a strong or moderate CYP3A
inducer decreases pemigatinib plasma concentrations, which may reduce the efficacy of
pemigatinib. Thus, concomitant use of strong and moderate CYP3A inducers such as itra-
conazole with pemigatinib is contraindicated (75). Similarly, concomitant use of a moder-
ate CYP3A inducer decreases pemigatinib exposure by more than 50 %. No other clini-
cally significant interactions have been observed with proton pump inhibitors
(esomeprazole), histamine-2 antagonists, and OCT2/MATEL1 substrates (metformin) on
concurrent administration with pemigatinib. Several other phase I/II clinical trials are
either completed or are in the active/recruiting phase for treating cancers with FGFR gene
alterations, such as urothelial cancer (NCT02872714, NCT03914794, NCT04294277), pan-
creas cancer (NCT05216120), colorectal cancer (NCT04096417), non-small cell lung cancer
(NCT05004974, NCT05287386, NCT05253807), breast cancer (NCT05560334), gastrointesti-
nal cancer (NCT05559775, NCT05202236, NCT05529667), glioblastoma (NCT05267106),
endometrial cancer (NCT04463771), and acute myeloid leukemia (NCT04659616) (Table II).

Infigratinib

Infigratinib, also referred to as BGJ398 and TRUSELTIQ™, is an orally active, ATP-
-competitive, selective FGFR1-4 kinase inhibitor having IC;, values in the range of 1.1-61
nmol L™ (66). IC, values for other kinases were > 1000 nmol L™ except for VEGFR2, KIT
and LYN. Infigratinib was initially developed by QED Therapeutics, Palo Alto, California,
USA, as an anticancer agent against bladder cancer with FGFR kinase genetic alterations. In
vivo, this pharmaceutical agent demonstrated significant antitumor activity against wild-
type FGFR3 overexpressing RT112 bladder cancer xenograft models (76). Subsequently, high-
-throughput cell line profiling revealed that infigratinib inhibits FGFR signaling and
reduces cell growth in cancer cell lines with FGFR genetic mutations (77). An examination
of the complex of infigratinib in the FGFR binding site at a molecular level (PDB ID: 3TT0)
revealed significant molecular interactions responsible for its anticancer potential (76).
According to Fig. 3¢, the phenylamine NH and the pyrimidine ring nitrogen in infigratinib
demonstrated crucial hydrogen bonding interactions with the carbonyl oxygen and the
amino groups of the significant amino acid Ala564 at a distance of 2.72 and 3.04 A, resp.
Similarly, one more hydrogen bonding (3.21 A) was observed between the oxygen of the
methoxy group on the aromatic ring and the amino group of the acidic amino acid Asp641.
Hence, these three hydrogen bonding interactions contributed majorly towards the anti-
cancer activity of infigratinib through inhibition of FGFR. Further, the dimethoxy-substi-
tuted aromatic ring was placed within the pocket surrounded by amino acids such as
Leu484, Val492, Glu562, and Tyr563 of the binding site, thus conferring the selectivity of
the drug against FGFR.

Clinically, in a global first-in-human phase I study in the patients with advanced
solid tumors possessing FGFR gene alterations (amplifications, mutations, or fusions),
infigratinib treatment was tolerable, and the maximum tolerated dose (MTD)/RP2D was
determined to be 125 mg QD (3-weeks-on and 1-week-off cycle) (78). Moreover, infigratinib
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demonstrated antitumor activity in FGFR alterations driven squamous non-small cell lung
cancer (FGFR1 amplification), cholangiocarcinoma (FGFR2 fusion/mutation), and bladder
cancer/urothelial carcinoma (FGFR3 mutations), supporting parent clinical investigations
in phase II study.

Similarly, a phase Ib study (NCT02257541) focused on investigating the safety of infi-
gratinib with imatinib mesylate in advanced gastrointestinal stromal tumor (GIST);
toxicity was encountered with the combination therapy leading to early withdrawal of the
study before identification of RP2D or dosing schedule (79).

In a multicentric, open-label phase II clinical trial (NCT02150967) on chemotherapy-
-refractory 108 patients with unresectable, locally advanced, or metastatic cholangiocarci-
noma containing FGFR2 fusion or rearrangements, infigratinib was administered 125 mg
QD for continuous three weeks followed by one week off (four-week cycle), until disease
progression or worsening of the symptoms (80). The pharmaceutical agent showed a BICR-
-assessed ORR of 23 % (25/108) with one complete response and 24 partial responses. No
death was reported; the most common adverse events were hyperphosphatemia, stomati-
tis, fatigue, alopecia, and dry eyes (81). Based on these encouraging findings, the FDA on
May 28, 2021, granted infigratinib accelerated approval for treating previously treated
patients with unresectable, advanced, or metastatic cholangiocarcinoma with an FGFR2
fusion or rearrangements, identified explicitly by the FDA-approved FoundationOne®
CDX test (Foundation Medicine, Inc., Massachusetts, USA) (66). The recommended dose of
infigratinib is 125 mg QD for 21 days continuously, followed by 7 days off (28 days cycle).

Likewise, a multisite, randomized, open-label phase III PROOF 301 (NCT03773302)
clinical study is underway to investigate infigratinib in the front-line setting compared to
standard-of-care chemotherapy (cisplatin and gemcitabine) in advanced or metastatic
cholangiocarcinoma containing FGFR2 translocations (82). The efficacy and antitumor
activity of orally administered infigratinib (125 mg QD for 3 weeks every 28 days) was also
appraised on previously treated patients (1 = 67) with advanced urothelial cancer contain-
ing FGFR3 alterations in phase II prospective, open-label, clinical trial. Infigratinib
achieved its primary endpoint with an ORR of 33.3 % and a disease control rate of 75 %.
The most common undesirable effect was hyperphosphatemia (78 %, 48/67 patients) (83).
The safety and effectiveness of infigratinib as adjuvant therapy for patients with FGFR3
genetic alterations driven invasive urothelial carcinoma are now being inspected in a mul-
tipoint, randomized, double-blind, placebo-controlled, phase III clinical trial (PROOF-302,
NCT04197986); the primary outcome measure is centrally determined disease-free sur-
vival (84).

Similarly, a multicenter, single-arm, open-label, phase Il trial evaluated the effectiveness
of infigratinib in FGFR-altered recurrent gliomas (85). When used as monotherapy, infigra-
tinib produced limited efficacy in patients but had a stable disease control lasting more than
a year. Hyperphosphatemia was the most common treatment-related side-effect. Several
other indications are being investigated for infigratinib in multiple phase I/II clinical trials,
such as achondroplasia (NCT04035811, NCT04265651, NCT05145010), gastric cancer, and
gastroesophageal junction adenocarcinoma (NCT05019794) and BRAF-melanoma
(NCT02159066) (Table II).

Pharmacokinetically, infigratinib is primarily metabolized by CYP3A4. Based on in
vitro research, it has been observed that around 94 % of infigratinib undergoes metabolism
mediated by the enzyme CYP3A4, while approximately 6 % of the drug is metabolized by
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Fig. 6. In vitro and in vivo bioactivation pathways and reactive metabolites of infigratinib in rats.

flavin-containing monooxygenase 3 (FMO3) (66). Approximately 38 % of the administered
dose of infigratinib is present as unchanged in the plasma. Additionally, two significant
metabolites of infigratinib, viz.,, BHS697 and CQM157, are detected at levels exceeding 10 %
of the administered dose. BHS697 and CQM157 exhibit pharmacological action in addition
to infigratinib, with BHS697 accounting for around 16 to 33 % of the overall pharmaco-
logical activity, while CQM157 contributes approximately 9 to 12 %. BHS697 is subject to
additional metabolic processes facilitated by the enzyme CYP3A4, while CQM157 under-
goes biotransformation via both phase I and phase II routes. Further investigation is re-
quired to properly characterize the precise metabolic pathways and structural properties
of BHS697 and CQM157. Recently, an in vitro and in vivo metabolic profiling study in rats
elucidated the involvement of various phase I and II bioactivation pathways for infigra-
tinib metabolism (86). Phase I pathways include hydroxylation, N-demethylation, dechlo-
rination, O-demethylation, and N-dealkylation (Fig. 6). Sulfation and glucuronic acid con-
jugation were the main phase II pathways for infigratinib metabolism. N-ethyl piperazine
ring and 2,6-dichloro-3,5-dimethoxyphenyl ring of the infigratinib were reported to be the
key sites of metabolism. In vitro bioactivation assessment also revealed the formation of
two highly reactive intermediates, such as iminium ions and 1,4-benzoquinones, suggest-
ing a possible mechanism of infigratinib toxic effects. Individuals with abnormal renal or
hepatic function had a higher corresponding potency adjusted steady-state AUC for infig-
ratinib and its metabolic products; hence, dose reduction is indicated in patients with mild-
to-moderate renal or hepatic impairment to avert unwanted toxicity (66). CYP3A primarily
metabolizes infigratinib. Hence, concurrent use of infigratinib with strong or moderate
inducers or inhibitors of CYP3A may decrease or increase the plasma concentration of infi-
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gratinib, compromising its antitumor activity. Similarly, infigratinib should not be admini-
stered with gastric acid-reducing agents such as proton pump inhibitors and histamine-2
antagonists due to their plasma concentration decreasing potential.

Futibatinib

Futibatinib also recognized as TAS-120 and LYTGOBI®, is an oral, potent, selective,
covalently bound, and irreversible small molecule inhibitor of FGFR1-4 kinase with ICj,
values ranging from 1.8 to 3.7 nmol L (87, 88). Taiho Oncology, Princeton, New Jersey, USA,
and Taiho Pharmaceutical, Tokyo, Japan discovered futibatinib as a potential therapy for
individuals suffering from advanced tumors carrying FGFR1-4 genetic anomalies, including
cholangiocarcinoma, who had previously been treated with chemotherapeutic agents or
other anticancer treatments (67). Futibatinib preferentially and irreversibly links to the ATP
binding region of FGFR1-4, disrupting FGFR-mediated pathways of signal transduction,
decreasing tumor proliferation, and promoting tumor cell death in cancers with FGFR1-4
genetic variations. A molecular binding interaction analysis of futibatinib with FGFR was
investigated using the X-ray-resolved co-crystallized complex acquired from PDB (ID:
6MZW) (88). According to Fig. 3d, the free primary amino group on the pyrimidine ring
showed a strong hydrogen bonding interaction with the oxygen atom of the acidic amino
acid Glu562 at a distance of 2.72 A, whereas the heterocyclic nitrogen of pyrimidine inter-
acted with the crucial amino acid Ala564 by forming a significant hydrogen bond at a dis-
tance of 2.87 A. Both of these interactions are observed in the hinge region of the active-site
amino acids of FGER. Further, the dimethoxy-substituted aromatic ring was buried within
the pocket surrounded by hydrophobic aliphatic amino acids such as Val492, Lys514, Val559,
and Leu630. On the other side, the pyrrolidine side chain of futibatinib was enclosed by the
residues of Leu484, Gly485, Val492 and Tyr563. The major reason for the irreversible covalent
inhibition of FGFR by futibatinib is the presence of acrylamide moiety and in particular, the
terminal carbon of acrylamido moiety in futibatinib exhibited a characteristic covalent
interaction with the sulfur atom of the amino acid Cys488. This could be possible only if the
pyrrolidine ring is positioned upward direction to meet P-loop active site amino acids. It is
also very important to note that Cys488 is an amino acid from P-loop amino acids and its
interaction with futibatinib has been confirmed through experimental mass spectrometry
(LC-MS/MS fragmentation) analysis. This has been further supported by an investigation
into the extreme kinetics of the reactivity by X-ray crystallography experiments. It was
deduced that the acrylamide moiety of futibatinib confers exclusively a cis configuration
while interacting with FGFR by forming an irreversible drug-receptor complex. Thus, the
“bent” P-loop approaches closely to the acrylamide moiety of futibatinib to tolerate the thia-
-Michael addition type of reaction. The scheme with relevant chemical reaction is presented
in Fig. 7. Preclinically, futibatinib showed potent and selective growth inhibition (GI5, rang-
ing from 1 to ~50 nmol L) of a wide range of malignant cell lines inhibiting FGFR genetic
aberrations, such as gastric, myeloma, lung, endometrial, bladder and breast cancer cell lines
by impeding phosphorylation of FGFR and MAPKs and PI3K/Akt downstream signaling
pathways. Similarly, in vivo futibatinib in oral administration resulted in dose-dependent
tumor shrinkage in carcinogenic FGFR-driven human xenograft carcinoma models, sup-
porting clinical exploration in individuals with FGFR-driven cancers (87).

In a phase I dose escalation study (FOENIX-101, NCT02052778), futibatinib’s safety,
efficacy, and pharmacokinetic/pharmacodynamics were evaluated in individuals (1 = 86)
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with advanced solid tumors expressing FGF/FGFR aberrations (89). Futibatinib adminis-
tration displayed satisfactory safety and pharmacodynamic effects in adults with MTD
and RP2D at 20 mg QD; however, the 24 mg QD dose indicated dose-limiting toxicity. The
most common adverse reactions documented were hyperphosphatemia, constipation, and
diarrhea). Similarly, in a phase I dose-expansion study on 197 participants with an
advanced solid tumor, futibatinib demonstrated broad-spectrum antitumor activity in an
array of tumors (gastric, cholangiocarcinoma, urothelial, head and neck, urothelial and
breast cancer) harboring both recognized and uncharacterized FGFR1-3 genetic alterations
(90). The ORR was 13.7 %, with the highest activity against FGFR2 fusion or rearrange-
ment-bearing cholangiocarcinoma (ORR, 25.4 %).

Based on favorable results from the phase I study, futibatinib advanced to a decisive
phase II clinical trial (FOENIX-CCA?2) in which participants with unresectable, metastatic
cholangiocarcinoma bearing FGFR2 fusion/rearrangements and had disease progression
even after more than one prior chemotherapy session were administered with futibatinib
(20 mg QD) until progression of the disease or intolerability (91). Across 103 patients, the
ORR was 42 % (43/107), with all examinees achieving partial responses. Responses were
durable; the median duration of response was 9.7 months. Commonly documented treat-
ment-related adverse events were hyperphosphatemia, alopecia, dry mouth, stomatitis,
nail toxicity, dysgeusia, dry eye, constipation, diarrhea, musculoskeletal pain, abdominal
pain, dry skin, urinary tract infection, fatigue, decreased appetite, arthralgia, nausea, and
vomiting. Subsequently, on September 30, 2022, the FDA approved futibatinib, with a rec-
ommended dose of 20 mg QD for treatment-experienced, unresectable, advanced/meta-
static cholangiocarcinoma patients bearing various FGFR2 genetic abnormalities, includ-
ing rearrangements and fusions (67).

In vitro pharmacokinetics studies on futibatinib revealed that it is metabolized by
CYP3A4 like other FGFR TKIs (92). Primary metabolic pathways of futibatinib were evalu-
ated in a phase I study using “C-futibatinib single oral 20-mg dose in healthy participants.
Unchanged futibatinib was reported to be a major circulating constituent in the plasma,
accounting for almost 60 percent of circulating radioactivity. However, a negligible
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concentration of parent futibatinib was observed in feces and urine, indicating complete
metabolism before elimination. This agent is primarily metabolized by cytochrome P450
enzyme-mediated O-demethylation as the main oxidation pathway and glutathione con-
jugation (Fig. 8). Cysteinylglycine-conjugated futibatinib and desmethyl futibatinib were
the most abundant metabolites in plasma and feces, resp. Similarly, glucuronide and sul-
fate of desmethyl futibatinib and glutathione- and cysteine-conjugated futibatinib were
the key metabolites in human hepatocytes. It takes a median time of 2 hours to reach
maximum plasma concentration (t,,,,), and AUC and c,,,, were observed to be reduced by
11 and 42 %, resp., in healthy individuals after consuming a high-fat, high-calorie meal.
However, futibatinib may be administered with or without food. Almost 91 % of the radio-
activity excreted after a single oral dose of radioisotope-tagged futibatinib (20 mg) was
found in the stool, while only nine percent was found in the urine, and there was almost
no unchanged futibatinib in either form (67, 88, 93). Owing to the CYP3A and P-gp inhibi-
tory potential of futibatinib, the drug-drug interactions of futibatinib with itraconazole (a
dual P-gp and strong CYP3A inhibitor), rifampin (a dual P-gp and strong CYP3A inducer),
or midazolam (a sensitive CYP3A substrate) in healthy adult participants were investi-
gated in a phase I study. The study results suggest that coadministration of dual P-gp and
strong CYP3A inhibitors or inducers with futibatinib should be avoided (94). However,
futibatinib can be concomitantly administered with other drugs metabolized by CYP3A.
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In another drug-drug and drug-food interaction investigation, no significant differences
in futibatinib exposure between futibatinib plus lansoprazole and futibatinib alone were
observed (95). Similar interactions were observed with food, suggesting futibatinib may
be used with or without food and concomitantly with proton pump inhibitors.

Several other clinical studies investigate futibatinib for treating various FGFR
genomic aberrant-driven tumors. In addition to the currently underway phase II clinical
study in cholangiocarcinoma (based on which FDA approval was granted), an open-label,
global, parallel two-arm, randomized phase III clinical trial (FOENIX-CCA3, NCT04093362)
is recruiting patients with advanced cholangiocarcinoma bearing FGFR2 gene rearrange-
ments. The primary outcome measure is PFS. Another phase III trial in patients with
advanced biliary cancer is recruiting patients with a primary endpoint and secondary
endpoint PFS and ORR, resp. Multiple phase I and II studies are also at the recruitment
stage for investigating futibatinib safety and efficacy either as monotherapy or in combina-
tion with chemotherapeutics in FGFR-driven cancers like advanced KRAS mutant cancer
(NCT04965818), advanced or metastatic urothelial cancer (NCT04601857), advanced hepa-
tocellular carcinoma (NCT04828486), metastatic microsatellite stable endometrial carci-
noma (NCT05036681) and metastatic breast cancer (NCT04024436) (Table II).

FGFR INHIBITORS AS ANTICANCER MODALITY

Cholangiocarcinomas are rare, genetically heterogeneous, and highly aggressive can-
cers with incidence rates below 6/100,000. FGFR2 fusions are an emerging class of drug
targets in cholangiocarcinoma oncology, detected in almost 10-15 % of patients (96). Due
to the late onset of clinical symptoms, the majority of patients arrive with locally advanced
or metastatic conditions, and most have rapid recurrence even after complete resection.
Therefore, palliative treatments with chemotherapeutics are the mainstay of cholangiocar-
cinoma therapy (97). However, the first-line treatment with chemotherapy offers limited
benefits due to higher incidences of chemotherapy-refractory cholangiocarcinoma with a
median overall survival rate of 11-13 months. Efficient second-line treatments are lacking.
Based on promising results reported from various phase II clinical studies, FGFR2 fusions,
one of the common generic alterations associated with cholangiocarcinoma, have become
promising targets for precision therapeutics, highlighting the importance of FGFR2-directed
therapy as a meaningful second-line treatment of cholangiocarcinoma (98). The FDA has
approved two reversible, selective FGFR inhibitors (pemigatinib, infigratinib) and one
irreversible selective inhibitor (futibatinib) for the locally advanced and metastatic cholan-
giocarcinoma as the second-line treatment. All three approvals came from the results of
phase II clinical trials. Further clinical trials are comparing the effect of these approved
FGFR-TKI with chemotherapeutics, like cisplatin plus gemcitabine, as a potential first-line
or rescue treatment (NCT03656536, NCT03773302, NCT04093362).

Several other small molecule FGFR inhibitors, including erdafitinib, derazantinib, and
Debio 1347, are under investigation for their efficacy in cholangiocarcinoma malignancies
(99). Derazantinib, a multi-kinase inhibitor with FGFR1-4 inhibitory potential, in phase I/
II clinical investigation (NCT01752920), has displayed good safety and efficacy in chemo-
refractory, unresectable, and advanced cholangiocarcinoma patients with FGFR2 fusion.
Another pivotal single-arm phase II trial (NCT03230318) on 148 patients with inoperable
or advanced cholangiocarcinoma with FGFR2 genetic aberrations has been completed, but
results are yet to be published.
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Urothelial carcinoma, the sixth most common cancer in the USA, is known to encom-
pass divergent molecular alterations and morphologic subtypes (100). The FGFR pathway
is a recognized oncogenic driver in urothelial cancer, leading to a new era of targeted drug
development. FGFR3 gene alterations are common in urothelial cancer, with a higher rate
of incidences in the upper tract than in lower tract cancers. As a result, several FGFR-
-directed targeted treatments have been developed and tested in clinical trials with uro-
thelial cancers and other solid tumors with FGFR mutations (101). Erdafitinib is one such
FDA-approved FGFR inhibitor for the treatment of platinum chemotherapy-refractory
metastatic urothelial cancer containing FGFR2/3 genetic alterations. Other FGFR-directed
inhibitors, including derazantinib (NCT04045613), ASP5878 (NCT02038673), PRN1371
(NCT02608125), rogaratinib (NCT03410693) and AZD4547 (NCT05086666) are under inves-
tigation in various phase I or II clinical studies, either alone or in combination with
immunotherapeutics for oncogenic FGFR-driven urothelial carcinoma. Among these
inhibitors, rogaratinib, a pan-FGFR inhibitor, showed comparable safety and efficacy in an
open-label, randomized phase II/III clinical trial (FORT-1, NCT03410693) on comparing
chemotherapy with FGFR-directed therapy in FGFR1/3 mRNA overexpression positive
urothelial carcinoma patients (102).

Myeloid/lymphoid neoplasms with FGFR1 rearrangements are rare, hematologically
and genetically heterogeneous malignancies with eosinophilia as the most frequent pre-
sentation (103). Recently, pemigatinib became the first FDA-approved targeted treatment
for patients with FGFR1 gene arrangements in relapsed or refractory myeloid/lymphoid
neoplasms.

PAN-FGFR/SELECTIVE FGFR INHIBITORS

In addition to the reviewed selective FGFR inhibitors, several other FGFR-TKIs are
under development and investigated in different phases of clinical trials, including selec-
tive FGFR inhibitors (pan-FGFR inhibitors, FGFR1-3 inhibitors, and FGFR4 inhibitors),
covalent FGFR inhibitors, and non-selective multi-kinase inhibitors (104). Furthermore,
some of them are showing promising results in clinical trials. Surprisingly, all four
approved FGFR inhibitors are pan-FGFR inhibitors. Other pan-FGFR inhibitors under
investigation in different phases of clinical trials include PRN1371 (NCT02608125), ASP5878
(NCT02038673), LY2874455 (NCT01212107), AZD-4547 (NCT04439240) and rogaratinib
(NCTO03410693). Similarly, various FGFR1,2,3 inhibitors are also under investigation, for
example, Debio1347 (NCT03344536), E7090 (NCT04238715), and HMPL-453 (NCT05173142).
Debio 1347 showed promising efficacy and tolerability up to 80 mg per day in a phase I
study with advanced solid tumor patients with FGFR genetic alterations (105). Recently a
multicenter, investigator-initiated phase II clinical trial (NCT04962867) was designed and
registered to assess the safety and efficacy of E7090 (tasurgratinib) in advanced or recur-
rent solid tumors containing FGFR genetic alterations (106).

A few non-selective multi-kinase inhibitors are directed against FGFR-driven malig-
nancies. Dovitinib, a pan-kinase inhibitor of VEGFR, FGFR, PDGFR-beta, and c-KIT, was
investigated in a phase II non-randomized trial (NCT01379534), as second-line therapy in
advanced or metastatic endometrial cancer patients with FGFR2 mutation; in the results,
it did not meet the prespecified endpoints (107). However, another multi-kinase inhibitor,
derazantinib, could potentially treat cholangiocarcinoma with a mutated FGFR2 gene in
separate phase I/II clinical trials (NCT01752920) (99).
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Hepatocellular carcinoma is reported to harbor aberrant FGF19-FGFR4 signaling in
almost 1020 % of cases (108). Moreover, amplified FGF19-FGFR4 signaling is linked with
disease progression and unfavorable prognosis in clinic-pathological examinations, sug-
gesting FGFR4 is the suitable target for hepatocellular carcinoma treatment. Owing to fre-
quent overexpression of FGFR4 in the pathogenesis of hepatocellular carcinoma, several
selective FGFR4 inhibitors have been developed and pushed into different phases of clini-
cal trials, including ISIS-FGFR4RX (NCT02476019), fisogatinib (BLU-554, NCT02508467,
NCT04194801), roblitinib (FGF-401, NCT02325739), U3-1784 (NCT02690350) and H3B-6527
(NCT02834780) (109). Among these inhibitors, ISIS-FGFR4RX and fisogatinib have entered
the phase Il stage of clinical trials for obesity and hepatocellular carcinoma, resp. Recently,
in a first-in-human phase I trial, roblitinib showed a promising safety profile in FGFR4/
KLB* hepatocellular carcinoma or advanced solid tumors patients, both monotherapy and
combined with spartalizumab, an anti-PD-1 antibody (110). However, none of these FGFR4
inhibitors has been approved for clinical use. Future research in advanced clinical trial
phases with these inhibitors can revolutionize the therapeutic options for FGFR4 gene-
-altered carcinomas, including hepatocellular cancer.

RESISTANCE AND ADVERSE EVENTS TO FGFR INHIBITORS

According to many preclinical and clinical research findings, resistance to FGFR TKIs
has emerged as a significant challenge. Resistance has been attributed to various mecha-
nisms: gatekeeper mutation-induced steric clashes, alternative signaling pathways feedback
activation (RAS-MAPK, PI3K-AKT), lysosome sequestration-mediated TKI sequestration,
and gene fusions (104). Moreover, several studies have shown acquired resistance in patients
taking non-covalent FGFR inhibitors such as erdafitinib and infigratinib on disease progres-
sion. Futibatinib is the only approved covalent-irreversible inhibitor reported to overcome
FGFR2 mutations related to Debio 1347 or infigratinib-associated acquired resistance in
patients with FGFR2 gene-altered cholangiocarcinoma (111). Thus, covalent or extracellu-
larly acting inhibitors, or even combination treatment with other onco-therapeutic agents,
may be worth investigating for their potential to reduce FGFR-TKI resistance.

Across all four FDA-approved FGFR inhibitors, the most common adverse events
reported were hyperphosphatemia, alopecia, stomatitis, nail changes, ocular disorders,
skin changes, dry mouth, diarrhea, asthenia, fatigue, and nausea, irrespective of disease
type. Although, as per clinical results, all the adverse effects are manageable, certain cases
may require dose adjustment or discontinuation of therapy. Hyperphosphatemia is a well-
-understood, mechanism-based toxicity of FGFR inhibitors and is suggested to be a predic-
tive biomarker for FGFR-TKI treatment response. It is usually reversible and easily mana-
geable. In summary, a thorough understanding of unique side effects and proper sensitiza-
tion of patients about side effects may help prevent unnecessary treatment interruptions
and dose adjustments.

CONCLUSIONS

Deregulated FGF/FGEFR signaling is regarded as a driver in multiple advanced carci-
nomas for their proliferation, invasion, and migration mediated by various FGF/FGFR
genomic aberrations. Comprehensive genomic profiling has shown frequent tumor FGFR
alterations in multiple cancers, including genetic amplifications, mutations, rearrange-
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ments, and fusions. FGFR targeting has been established as a potential therapeutical target
leading to several FGFR inhibitors, either in therapy or in the developmental pipeline to
address these altered receptors as a novel drug category.

The present review discussed four FGFR inhibitors that received FDA approval for
malignancies, including cholangiocarcinoma, urothelial carcinoma, and myeloid/lym-
phoid neoplasms. These agents are erdafitinib, pemigatinib, infigratinib, and futibatinib.
The kinase inhibitory activity and pharmacological applications of four drugs were also
summarized. In addition, all four drugs showed CYP3A4-mediated metabolism in in vitro
pharmacokinetic studies. Pemigatinib is the only FGFR inhibitor that has also been
approved by EMA and PMDA on March 26, 2021, and March 23, 2021, resp., for treating
FGFR2 fusion or other rearrangements containing locally advanced or metastatic cholan-
giocarcinoma. Moreover, pemigatinib is the only drug approved for multiple therapeutic
indications, viz., cholangiocarcinoma and myeloid/lymphoid neoplasms. Further investi-
gation in this area may open new horizons in genetically altered cancer treatment.

Abbreviations, acronyms, symbols. — ABL1 — tyrosine-protein kinase ABL1, AKT — protein kinase
B, ATP — adenosine triphosphate, BICR — blinded independent central review, BLK — B-cell lympho-
cyte kinase, c-KIT — receptor tyrosine kinase type III, CYP — cytochrome P450, ERK — extracellular
signal-regulated kinase, FGFR - fibroblast growth factor receptor-tyrosine kinase, FLT-3 — FMS-like
tyrosine kinase 3, GAB1 — GRB2 associated binding protein 1, GRB2 — growth factor receptor-bound
protein 2, JAK - Janus kinase, KDR - kinase insert domain receptor, KG1/KGla — acute myelogenous
leukemia cell lines, LCK - lymphocyte-specific protein tyrosine kinase, LYN — LCK/Yes, novel tyro-
sine kinase, MAPK — mitogen-activated protein kinase, MEK — mitogen-activated protein kinase,
mTOR - mammalian target of rapamycin, PDGF — platelet-derived growth factor, PDGFRA - platelet-
-derived growth factor receptor alpha, PDGFRB - platelet-derived growth factor receptor beta, PI3K
- phosphoinositide 3-kinase, PKC — protein kinase C, PLC-y — phospholipase C gamma 1, QD — once-
-a-day, RAF - rapidly accelerated fibrosarcoma, RAS — rat sarcoma virus, RET — rearranged during
transfection tyrosine kinase receptor, SOS — son of sevenless protein, STAT - signal transducer and
activator of transcription, TIE1 — tyrosine kinase with immunoglobulin-like and EGF-like domains
1, VEGF - vascular endothelial growth factor, VEGFR - vascular endothelial growth factor receptors,
VEGFR?2 - vascular endothelial growth factor receptor 2.
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