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Abstract

Uncontrolled spread of eastern red cedar invades the United States Great Plains prairie eco-
systems and lowers biodiversity across native grasslands. The eastern red cedar (ERC) infes-
tations cause significant challenges for ranchers and landowners, including the high costs of 
removing mature red cedars, reduced livestock forage feed, and reduced revenue from hunting 
leases. Therefore, a fleet of autonomous ground vehicles (AGV) is proposed to address the ERC 
infestation. However, detecting the target tree or trunk in a rangeland environment is critical 
in automating an ERC cutting operation. A tree trunk detection method was developed in this 
study for ERC trees trained in natural rangeland environments using a deep learning-based 
YOLOv5 model. An action camera acquired RGB images in a natural rangeland environment. 
A transfer learning method was adopted, and the YOLOv5 was trained to detect the varying 
size of the ERC tree trunk. A trained model precision, recall, and average precision were 87.8%, 
84.3%, and 88.9%. The model accurately predicted the varying tree trunk sizes and differen-
tiated between trunk and branches. This study demonstrated the potential for using pretrained 
deep learning models for tree trunk detection with RGB images. The developed machine vision 
system could be effectively integrated with a fleet of AGVs for ERC cutting. The proposed ERC 
tree trunk detection models would serve as a fundamental element for the AGV fleet, which 
would assist in effective rangeland management to maintain the ecological balance of grassland 
systems.
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1. Introduction
An invasion of eastern red cedar, popularly known 

as »Juniperus virginiana L.« on rangelands, grasslands, 
and prairies of North America has become a severe 
threat to ecosystem functioning (Knapp et al. 2008, 
Van 2009, Ratajczak et al. 2012, Anadon et al. 2014, 
Archer et al. 2017, Wang et al. 2018). The scale of inva-
sion is significant (Wang et al. 2018) and continuing 
(Meneguzzo and Liknes 2015, Symstad and Leis 2017), 
with annual additions of new eastern red cedar (ERC) 
forests of approximately 25,000 acres in Nebraska 
(Nebraska Forest Service 2016), 300,000 acres in 
Oklahoma (Drake and Todd 2002), and a 23,000 per-
cent increase by volume in Kansas in the last 45 years 
(Atchison et al. 2015). Similar increases in ERC acreage 

have been recorded in Missouri grasslands (Harr et al. 
2014), and invasive junipers are present throughout 
the Great Plains ecoregion (Natural Resources Conser-
vation Service 2010). The impact of the redcedar inva-
sion on Great Plains grasslands has been likened to the 
1930s Dust Bowl environmental crisis, identified as the 
most dominant ecological change occurring on range-
lands (Engle et al. 2008, Twidwell et al. 2013a) and 
described as a »green glacier« overtaking the prairies 
(Bragg and Hulbert 1976, Gehring and Bragg 1992, 
Briggs et al. 2002a, Briggs et al. 2002b, Engle et al. 
2008). As rangelands change from grassland to dense 
ERC forests, there are numerous negative consequenc-
es, including reduced streamflow (Zou et al. 2018), 
reduced grassland continuity (Coppedge et al. 2001b), 
reduced grassland bird and mammal abundance and 
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richness (Coppedge et al. 2001a, Horncastle et al. 2005, 
Knapp et al. 2008), poorer wildlife nutritional condi-
tion (Symstad and Leis 2017) and increased popula-
tions of disease-vector ticks (Noden and Dubie 2017). 
These consequences are concerning. ERC infestations 
cause significant challenges for ranchers and land-
owners, including prohibitively high costs for remov-
ing mature red cedars (Engle 1996, Taylor 2008, Natural 
Resources Conservation Service 2014), difficulty in 
handling livestock (Knezevic et al. 2005), and reduced 
revenue from hunting leases (Coffey 2011, Simonsen 
et al. 2015). The largest single economic impact is the 
loss of forage under ERC canopies, resulting in de-
creased livestock production (Engle 1996, Briggs et al. 
2002a). The ERC infestation has resulted in significant 
economic losses. For example, since 2000, the state of 
Nebraska has lost nearly half a million acres of grazing 
land with an estimated economic impact of $18.7 million 
(University of Nebraska Lincoln 2022). ERC plays a 
key role in Great Plains wildfires because its branches 
are often low to the ground, readily burn due to their 
volatile oil content and act as ladder fuels to carry a 
ground fire up into the tree canopy (Oklahoma For-
estry Service 2014). ERC presence in grasslands can 
intensify wildfires to the point that they are uncontrol-
lable by ground-based firefighters (Twidwell et al. 
2013b, Morrison 2016).

The primary options for ERC control are prescribed 
burning and mechanical tree removal. The prescribed 
burning method is low cost (Briggs et al. 2002a, Bidwell 
et al. 2017) and also offers other ecosystem benefits 
(Fuhlendorf et al. 2011). However, some ranchers and 
landowners cannot or prefer not to burn because of 
safety concerns (Harr et al. 2014, Starr et al. 2019), or 
there is insufficient fuel load available on ERC to carry 
a prescribed burn (Engle 1996, Twidwell et al. 2009). 
The advantages of mechanical control include a 100% 
mortality rate for each tree cut (Coffey 2011) and the 
ability to kill mature trees that might escape a pre-
scribed burn (Engle 1996, Ansley and Rasmussen 
2005). In mechanical control, trees are cut manually 
with a chainsaw or with various forestry machines. 
The primary challenge of using mechanical control is 
the high cost, ranging from $36/acre to $1001/acre 
(Coffey 2011, Baker et al. 2017). While mechanical con-
trol costs depend on numerous factors, labor can be 
the most expensive component (Ortmann et al. 1998). 
Operator safety is another concern due to dangerous 
maneuvering equipment, especially on steep slopes 
(Mitchell and Klepac 2014, Simonsen et al. 2015).

Current manual labor costs are too high to utilize 
mechanical control methods in combating invasive 
ERCs on American rangelands. Therefore, it is imper-

ative to seek ways to use technology to address the 
grand challenge of rangeland conservation. Autono-
mous robotics are well-positioned to reduce costs as 
they decrease labor and risk. A fleet of autonomous 
robots could be employed to address several of the 
challenges associated with the mechanical control of 
ERC. A semi-autonomous robotic platform was to cut 
the ERC, and the need for the autonomous operation 
was identified (Badgujar et al. 2022). However, detect-
ing the target tree or trunk in a rangeland environment 
is critical in automating an ERC cutting operation. The 
success of the machine vision component, which aims 
to locate the individual tree trunk, becomes imperative 
to autonomous robots for ERC cutting operations.

Identifying the specific target (crop, flower, fruits, 
weed, vegetation) in a dynamic and variable environ-
ment with a vision-based robotic system is always a 
challenging and daunting task. However, in recent 
years, deep learning (DL) methods have gained sig-
nificant momentum (LeCun et al. 2015) and achieved 
impressive results on machine vision problems, in-
cluding image classification, segmentation, and object 
detection, compared to conventional algorithms, 
which include image processing. Particularly in agri-
culture, DL has been used in weed-plant classification 
(Dyrmann et al. 2016, Utstumo et al. 2018), plant iden-
tification (Lee et al. 2015, Grinblat et al. 2016), plant 
disease classification (Hall et al. 2015, Sladojevic et al. 
2016, Amara et al. 2017), fruit detection (Sa et al. 2016, 
Bargoti and Underwood 2017, Liu et al. 2019, Zhang 
et al. 2021), fruit counting (Chen et al. 2017), obstacle 
detection (Christiansen et al. 2016), and apple trunk-
branch segmentation (Majeed et al. 2020, Zhang et al. 
2021). The DL model accuracy, precision, speed ro-
bustness, and ability to deploy on a tiny microcon-
troller make them perfect for mobile robots and auto-
mation.

Recently, DL-based object detection frameworks 
have evolved remarkably due to their ability to accu-
rately detect the objects with their coordinates in im-
ages and place the bounding boxes on coordinates. 
This combines two tasks, image classification and ob-
ject detection, into one framework or task. Several re-
searchers have extensively studied fruit detection (an 
essential component in autonomous harvester), in-
cluding apple and tree branches detection with 
R-CNN (Zhang et al. 2018), MangoNet convolutional 
neural network (CNN) based architect for mango de-
tection (Kestur et al. 2019), detecting the apples in mul-
tiple growing seasons with YOLO-v3 (Tian et al. 2019), 
SSD network for real-time on-tree Mango detection 
(Liang et al. 2018), apple branches and trunk segmen-
tation and detection with SegNet (Majeed et al. 2020) 
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and multiple CNN architectures (Zhang et al. 2021), 
Faster R-CNN to detect apples, branches and leaf (Gao 
et al. 2020). Fruit detection studies reported more than 
84% higher fruit detection rates (Gao et al. 2020). How-
ever, there is a limited information available on tree 
trunk detection with deep learning techniques.

The real-time detection and localization of ERC 
trees or trunk in a rangeland environment is the es-
sential step toward developing an autonomous ro-
botic tree cutting system. Therefore, the primary goal 
of this study is to investigate a deep learning-based 
object detection technique for detecting the ERC tree 
trunk in natural environments. The first goal of this 
study is to collect the ERC tree trunk image in a natu-
ral field environment. The second goal is to train a 
deep learning-based ERC tree trunk detection model. 
The outlined study would contribute toward generat-
ing the fundamental knowledge for the development 
of an automated robotic harvester system for ERC 
trees. Moreover, the combination of real-time object 
detection with a Global Positioning System (GPS) 
would also assist robots in navigation in a dense forest 
environment.

2. Materials and Methods
A supervised deep learning approach was imple-

mented in this study, where a labeled dataset (images) 
was used to train a model that predicts the target out-
comes. DL-based model development involved vari-
ous steps, and the model development workflow is 
presented in Fig. 1.

2.1 Image Acquisition
The images of the ERC tree trunk were acquired 

using a compact action camera (GoPro HERO4 Black, 
GoPro, San Mateo, CA, USA). The camera was mount-
ed on the chassis of the semi-automatic KSU-Navigator 
robot, controlled by a radio transmitter-receiver. The 
images and videos were captured in a real field envi-

ronment, i.e. on a bright afternoon (between 12:00–
13:00) in August at Garzio Conservation Easement, 
Fairview, Kansas, USA. More than 1600 sRGB images 
with a resolution of 2560×1920 were acquired under 
natural illumination conditions. The image resolution 
influenced the performance of the DL model. Hence, 
the images were captured with the highest resolution 
possible with the camera hardware. These high-reso-
lution images can be easily resized according to model 
requirements during the data-processing step.

2.2 Data Annotation
Image annotation makes the objects recognizable 

to visual perception-based DL models. An open-
source graphical annotation tool known as »LabelImg« 
was employed to annotate the input images. A single 
object – the tree trunk, was manually identified, a 
bounding box was drawn, and a label was assigned 
for each object in the image. Tree trunk with insuffi-
cient or unclear pixel area and occluded objects either 
by vegetation or another trunk were left unlabelled. 
The annotations were saved as text files in YOLO for-
mat. A total of 840 images were manually labeled with 
4066 annotations/label, averaging at 4.8 annotations 
per image across a single class.

2.3 Data Preprocessing
The annotated images were processed with the on-

line platform »roboflow«; extensively used for raw 
image preprocessing to computer vision models. All 
images were preprocessed and further divided into 
the train (70%), validation (20%), and test set (10%) 
subset. The images were auto-oriented to discard EXIF 
rotations and standardize the pixel ordering. Resizing 
the images was a common data preprocessing step in 
DL model training because the larger input images 
take longer to train the model and vice-versa. There-
fore, the source image (2560×1920 dimension) was re-
sized to square (512×512 dimensions) with white pad-
ded edges, keeping the original data for faster training. 

Fig. 1 Workflow of supervised deep learning model development



C. Badgujar et al.	 Tree Trunk Detection of Eastern Red Cedar in Rangeland Environment with Deep Learning ... (357–368)

360	 Croat. j. for. eng. 44(2023)2

Moreover, an adaptive histogram equalization algo-
rithm was applied to enhance an image with low con-
trast.

2.4 Model Selection
Numerous DL architectures or models were avail-

able for object detection tasks in both open-source and 
research domains. There were two types of object de-
tectors:

⇒ �One-stage detector that considered object detec-
tion as a regression, which computed and pre-
dicted class probabilities and object coordinates 
to draw the label box. Examples of one-stage 
detectors were You Only Look Once (YOLO) 
and Single Shot Detection (SSD)

⇒ �Two-stage detector that divided the object detec-
tion task into two-stage. In the first stage, Region 
Proposal Networks (RPN) were used to extract 
target regions in the image. The second stage 
solved the regression to locate label coordinates 

and performed the object classification with an 
associated probability.

The examples were Faster R-CNN and Mask 
R-CNN. The two-stage detectors were highly accurate 
because they prioritize accuracy; however, the higher 
computation process made them relatively slower. 
Contrasting, one-stage detectors were faster because 
they prioritized the inference speed but gave a lower 
accuracy.

Inference speed, accuracy, and robustness were 
important metrics for implementing an object detec-
tion model. Each model type included a trade-off in 
speed, accuracy, and robustness. In this study, the 
model was supposed to be fast and accurate to per-
form in real-time, robust enough to adapt to the real-
world environment, and compact to run on a single-
board microcontroller. Keeping all this in view, the 
pretrained YOLO architectures were selected.

The YOLO was one of the most acceptable object 
detection frameworks with state-of-the-art performance. 

Fig. 2 YOLOv5 Model architecture
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It combined target localization and classification into 
a regression problem that predicted the label coordi-
nates and labeled class with probabilities. YOLO was 
first introduced in 2016 with a subsequent version re-
leased (Redmon et al. 2016a, Redmon et al. 2016b, Red-
mon and Farhadi 2018, Bochkovskiy et al. 2020), and 
most recent, Ultralytic’s PyTorch-based version YO-
LOv5 (Glenn 2020), claimed to outperform all the pre-
vious versions. Therefore, YOLOv5 was implemented 
in this study to detect the ERC tree trunk.

The YOLOv5 architecture comprised three sections 
that were described as follows:

⇒ �Backbone was a Convolutional Neural Network 
(CNN), which consisted of multiple convolution 
layers, pooling, and Cross Stage Partial (CSP) 
bottleneck networks, as shown in Fig. 2. Model 
backbone extracted the rich information fea-
tures from an image. CSP network had signifi-
cantly improved processing time reduction with 
a deeper network, which addressed duplicate 
gradient problems. It resulted in reduced mod-
el parameters and floating-point operation per 
second (FLOPS) (Wang et al. 2020). The spatial 
pyramid pooling (SPP) layers further improved 
the CNN by removing the constraint on input 
image size. It converted the feature map of arbi-
trary size into a standard feature vector. The 
backbone network generated four layers of fea-
ture maps

⇒ �Neck module consisted of feature aggregation 
layers to generate the feature pyramid networks 
(FPN). The feature pyramids were essential for 
detecting objects at different scales. Hence, it 
helped the model to perform well on unseen 
data. A different model implements other fea-
ture pyramid techniques. However, YOLOv5 
implements the Path Aggregation Network 
(PANet) to get feature pyramids, and details can 
be found here (Liu et al. 2018). PANet boosted 
information flow and helped detect the same 
object at varying scales and sizes in the image

⇒ �Head module performed the final object detec-
tion on images. It applied the anchor box on 
three different size feature maps and generated 
the final output vectors of each map, including 
class probabilities and bounding boxes.

2.5 Model Training
A transfer learning approach was implemented in 

this study. In transfer learning, an existing model 
trained on large amounts of data for a particular task 
and often referred to as a pretrained model was uti-

lized as the initial jumping point for a model perform-
ing a similar job. Therefore, transfer learning was rela-
tively fast and easy compared to the training model 
from scratch. Pretrained models built by deep learning 
experts and researchers were at the center of trans-
fer  learning. YOLOv5 family contained different 
models, such as YOLOv5s, YOLOv5m, YOLOv5l, and 
YOLOv5XL, which vary in the width and depth of the 
bottleneck CSP module. These models were trained on 
the Common Objects in Context (COCO) dataset, con-
taining more than 200,000 labeled images from 80 
classes. A pretrained YOLOv5L model was selected to 
start model training, and pretrained weights were 
auto-downloaded from the latest YOLOv5 release. A 
model was trained on 588 training images, and the 
validation set included 168 images. The validation set 
was helpful in model building. The following hyper 
parameters were specified: input image size (640), 
batch size (16), epochs (200), and pretrained weights 
(yolov5L.pt). The early stopping criteria were imple-
mented to avoid model overfitting. Model losses 
(training and validation set) and performance metrics 
such as precision, average precision, recall, and F1 
score of the validation dataset were saved to log files 
during the training. An independent test set (84 images) 
was used to evaluate the final model unbiased evalu-
ation. For model training, a web-based online platform 
called Google Colab was used.

2.6 Model Evaluation Metrics
Evaluation metrics assessed the model perfor-

mance on the object detection task. Intersection over 
Union (IoU), precision (P), average precision (AP), re-
call (R), and F1 score (F1) were the most commonly 
cited metrics for object detector evaluation in com-
puter vision (Kamilaris and Prenafeta-Boldu 2018). 
Intersection over Union (IoU) was also known as the 
»Jaccard-index«” which checks the similarity between 
two sets. It was a ratio of intersection area to union 
area of two sets. In object detection, these two sets 
were predicted and ground truth boxes. The IoU score 
computed the overlap between these two boxes; the 
IoU score of zero represented no overlap (0%), where-
as the IoU score of one represented 100% overlap. Pre-
cision measured the probability of model predicted 
bounding boxes matching with the ground truth box-
es, while recall calculated the likelihood of the model 
detected ground truth boxes were correct. F1 score 
measured the balance between precision and recall by 
computing the harmonic mean between P and R. The 
precision, recall, and F1 score range from 0 to 1. The 
higher the precision score, the higher the chances of 
detected boxes matching the ground truth box. A high 
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recall represented that most ground truth boxes are 
correctly detected. The equations for computing preci-
sion (P), recall (R), and F1 score (F1) were as follows:

	 =
True detected boxes
All detected boxes

P 	 (1)

	 =
True detected boxes

All ground truth boxes
R 	 (2)

	
( )

( )
⋅ ⋅

=
+1

2 P R
F

P R
		  (3)

Object detection accuracy was assessed by average 
precision, which totaled the area under the precision-
recall curve. It was the average of precision across re-
call ranging from 0 to 1. AP was computed at different 
IoU thresholds since each may give a different predic-
tion from the other. The model was evaluated against 
two different IoU thresholds;

⇒ �AP@[0.5], denoted AP over the IoU threshold of 
0.5

⇒ �AP@[0.5:0.95], denoted AP over IoU thresholds 
ranging from 0.5 to 0.95, with a step size of 0.05.

3. Results and Discussion
The YOLO loss function comprised three parts:
⇒ �box loss, which computed the bounding box co-

ordinate, located the center of the predicted object, 
and further compared with the ground truth box

⇒ �objectness score computed the confidence score 
of each predicted bounding box and checked if 
there was an object present in the predicted 
bounding box

⇒ �class score checks if a given model can predict 
the accurate object class and compare it with the 
ground truth label.

The classification loss was absent since the model 
was trained on a single class, i.e., a tree trunk. The 
model losses were recorded with epochs during train-
ing as presented in Fig. 3. The box loss on the train and 
validation sets showed a rapid decline in the initial 40 
epochs. The validation set loss plateaued around 50 
epochs, and the training loss decreased with the epoch 
number. This widening gap between train and valida-
tion loss showed model overfitting. Similarly, object-
ness loss for both train and validation sets showed a 
rapid decline. However, the validation set increased 
after 50 epochs, indicating possible model overfitting. 
Early stopping criteria were implemented to avoid 
model overfitting. The model training was stopped 
around 190 epochs since no improvement was ob-
served, and the best model weights were saved.

The model was evaluated on the validation set, and 
the F1 score, precision, and recall were observed. Mod-
el efficiency and effectiveness were measured by pre-
cision and recall, respectively, while the F1 score re-
flected precision and recall, making it a good 
aggregated indicator. Fig. 4 depicts the different eval-
uation metrics used in the study. Precision, recall, and 
F1 score converged after 50 epochs. The high score 

Fig. 3 YOLOv5 Model loss functions: a) Box loss, b) Objectness loss
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(around 0.85) for precision, recall, and F1 indicated that 
most ground truth objects were detected correctly, and 
no sign of model overfitting on the training data was 
observed. Moreover, average precision ranged around 
0.85 for IoU 0.5 and 0.42 for IoU 0.5:0.95 threshold, 
which indicated the ideal detector.

The detector estimated the bounding box coordi-
nates and class labels with corresponding confidence 
scores, which estimated if an object exists in the pre-

dicted box. Fig. 5 shows that opting for the higher val-
ues of confidence score improved the model precision 
score but decreased the recall and vice-versa. The ob-
ject detector might not be able to give the peak preci-
sion and peak recall since there is an inverse relation-
ship between precision and recall. Thus, optimizing 
the detector for precision and recall becomes essential, 
and the confidence score was one of the control param-
eters that optimized both precision and recall.

Fig. 4 YOLOv5 model results on: a) precision, b) recall, c) F1 score, d) AP@0.5, and e) AP@0.5:0.95

Fig. 5 YOLOv5 evaluation metrics against confidence score: a) precision, b) recall, c) F1 score
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F1 scores represented the balance between recall 
and precision and were also helpful in determining the 
optimum confidence score for a given model. Gener-
ally, the model with a higher confidence score was 
preferred in object detection. The maximum value of 
the F1 score was 0.86 and was observed for a wide 
range of confidence scores from 0.10 to 0.6 before rap-
idly declining to 0, as shown in Fig. 5(c). For the devel-
oped tree trunk detector, selecting the confidence 
score of 0.6 seems to be a reasonable choice, where the 
F1 score was 0.82, which was relatively high and closer 
to the maximum of 0.86. At the same time, precision 
and recall corresponding to a confidence score of 0.6 
were around 0.87 and 0.78, respectively. Selecting the 
confidence score above 0.6 showed that recall started 
to decrease significantly, and the precision score re-
mained at maximum values, as shown in Fig. 5. Select-
ing lower values of confidence score (<0.6) would re-
duce the model precision.

After completing the training, the best model 
weights were saved. The final model was tested on a 
separate test set, which provided an unbiased final 
model performance metric such as precision, recall, 
and average precision. The precision, recall, AP@0.5 
and AP@0.5:0.95 were 0.878, 0.843, 0.889 and 0.441, re-
spectively. Fig. 6 shows the tree trunk detected on 
various images with confidence scores. Moreover, the 
final model was also used to detect tree trunk on cap-
tured video, and the result was available on the fol-
lowing link (https://youtu.be/wtL3XEKLm8c). The 
model accurately predicts the varying size of a tree 
trunk and differentiates between trunk and branches. 
However, natural light conditions and shadows some-
times resulted in no trunk detection. In low light or 
shadowed regions, the images did not contain enough 

feature (tree trunk) information for the models to 
learn, which often created problems. Therefore, cap-
turing the images in various lighting conditions and 
shadow regions was often recommended, and training 
the models on diverse datasets. The model trained on 
such diverse datasets usually offers better perfor-
mance.

4. Conclusions
This study was targeted toward the development 

of deep learning-based machine vision techniques to 
detect the ERC tree trunk in a real-world rangeland 
environment. A pretrained model, YOLOv5 was se-
lected and trained with a transfer learning approach 
on the ERC tree trunk dataset. The RGB images were 
used as input to the pretrained YOLOv5 model to im-
prove the precision and recall of ERC tree trunk detec-
tion. The model achieved the precision and recalls of 
0.878 and 0.843, respectively, on a test set without 
overfitting. The developed algorithm accurately pre-
dicted the varying tree trunk sizes both in images and 
video. This study explored the potential of deep learn-
ing methods and provided fundamental knowledge 
that would be an essential first step toward developing 
an automated fleet of AGVs for ERC cutting opera-
tions.
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