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Harvested Logs
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Abstract

To further develop forest production, higher automation of forest operations is required. Such 
endeavour promotes research on unmanned forest machines. Designing unmanned forest 
machines that exercise forwarding requires an understanding of positioning and angle estima-
tions of logs after cutting and delimbing have been conducted, as support for subsequent crane 
loading work. This study aims to improve the automation of the forwarding operation and 
presents a system to realize real-time automatic detection, positioning, and angle estimation 
of harvested logs implemented on an existing unmanned forest machine experimental platform 
from the AORO (Arctic Off-Road Robotics) Lab. This system uses ROS as the underlying 
software architecture and a Zed2 camera and NVIDIA JETSON AGX XAVIER as the imag-
ing sensor and computing platform, respectively, utilizing the YOLOv3 algorithm for real-
time object detection. Moreover, the study combines the processing of depth data and depth to 
spatial transform to realize the calculation of the relative location of the target log related to 
the camera. On this basis, the angle estimation of the target log is further realized by image 
processing and color analysis. Finally, the absolute position and log angles are determined by 
the spatial coordinate transformation of the relative position data. This system was tested and 
validated using a pre-trained log detector for birch with a mean average precision (mAP) of 
80.51%. Log positioning mean error did not exceed 0.27 m and the angle estimation mean 
error was less than 3 degrees during the tests. This log pose estimation method could encom-
pass one important part of automated forwarding operations.
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1. Introduction
The demand for wood, an important natural mate-

rial in our society, has for centuries brought people out 
to the forest to use tools to fell trees and transport out 
logs for use, which in broad terms is called »logging«: 
the process of acquiring wood from the forest. It cov-
ers all operations from cutting, processing, converting 
trees into logs, collecting, loading, and eventually 
moving them out from the forest.

Cut-to-length (CTL) logging system is a highly 
mechanized system, which consists of a harvester with 
a forwarder that work together to complete all the 
tasks of logging. The harvester is used to fell, delimb 
and cut the trees into logs, and the forwarder is used 
to accumulate and transport the logs. The working 

form of the CTL logging system was gradually formed 
since the invention of the harvester in Sweden and 
Finland in 1972–1973 (Drushka and Konttinen 1997), 
having become mainstream in Swedish forests in the 
1980s and 1990s (Fyrk et al. 1991). Since then, this 
dual-machine system has remained the same. With the 
high mechanization of forestry operations in the 
Nordic region, almost 100% of the current harvesting 
in Sweden and Finland is carried out by CTL systems 
(Gellerstedt and Dahlin 1999).

Harvester productivity in final felling is about 
24 m3/PMH (productive machine hours), while the 
mean productivity of forwarders is 21.4 m3/PMH 
(Eriksson and Lindroos 2014). Moreover, large for-
warders currently on the market carry around 20 tonnes 
of load (Komatsu 2022, PONSSE 2022), indicating that 



S. Li and H. Lideskog	 Realization of Autonomous Detection, Positioning and Angle Estimation of Harvested Logs (369–383)

370	 Croat. j. for. eng. 44(2023)2

the productivity of current forest machines is actually 
quite high, and as such the insufficient production ca-
pacity of the machinery no longer hinders further im-
provements in production efficiency. However, the 
problem nowadays is that the machine operators are 
not able to fully realize the potential of the machinery 
(Hellström et al. 2009). The machines can work at a fast 
pace, but all the actions of the machine require the 
operator to constantly make decisions and operations. 
At the same time, the working environment of forest 
operators is challenging, and the workload is heavy. 
Working under such conditions for the long term can 
have a serious adverse impact on the health and safe-
ty of the personnel (Ahola et al. 2013). Moreover, being 
a highly productive forest machine operator requires 
high professionalism; to become skilled in the work 
requires long-term training. Nevertheless, the opera-
tors themselves become the bottlenecks to production 
efficiency, but such problems can be avoided and pro-
duction efficiency enhanced by improving the auto-
mation level of forest machines.

With ongoing research and continuous develop-
ment of computer assistance, communication, and 
sensing, some entry-level automation products have 
recently appeared on the market. For instance, John 
Deere became the first forestry machine manufacturer 
to produce a mature commercial boom-tip control sys-
tem for forwarders in 2013 (John Deere 2013). This 
system is called »intelligent boom control« (IBC), 
which allows the operator to focus on controlling the 
grapple, or end-effector, rather than the boom joint 
movements (John Deere 2022a). In 2017, this system 
was also introduced for harvesters (John Deere 2022b). 
Meanwhile, PONSSE has launched their active sus-
pension system called »ActiveFrame«, which is a 
cabin suspension system for eight-wheel machines 
that can level out the roughness of the terrain and keep 
the cabin horizontal (PONSSE 2017). Around the same 
time, Cranab released their intelligent forward crane, 
called »Cranab Intelligent System« (CIS), comprising 
built-in sensors in the crane (CRANAB 2015). More-
over, research on further automation of forest ma-
chines is already underway and has yielded some re-
sults, such as the »Besten med virkeskurir« system, 
which is a prototype system consisting of a driverless 
harvester controlled remotely from a manned for-
warder. This system was tested in 2006 in experiments 
conducted by Skogforsk (Skogforsk 2006).

At present, a forwarder needs the operator to con-
trol the movement of crane and grapple to manipulate 
logs and complete the loading process. However, with 
continuous improvement of the forwarder automation 
level, possibilities have emerged to assist in the crane 

work. For example, researchers have evaluated the use 
of structured light to realize the reconstruction of log 
morphology to derive log poses (Yeonchool Park et al. 
2011). There is also related research on automatic de-
tection of log grab points (Gietler et al. 2022) and log 
pose estimation based on image segmentation (Fortin 
et al. 2022), which rely on powerful deep learning al-
gorithms; a research field that currently undergoes 
rapid development.

AORO: Arctic Off-Road Robotics Lab, which is a 
cooperation between Luleå University of Technology, 
Swedish University of Agricultural Sciences and the 
Cluster of Forest Technology, launched their un-
manned forest machine experimental platform in 
October 2021, and at that time demonstrated their 
autonomous forest machine capable of autonomous 
forwarding (AORO 2021) in a simplified scenario, that 
is, retrieving and transporting roundwood without 
human intervention. For such unmanned forwarding 
systems, a necessary capability is to automatically 
identify, locate, detect the state of the target logs, and 
grasp and load them. In the landing, logs then need to 
be unloaded close to the road for further transport. 
This comprises the needed operations that autono-
mous forest machines need to consider. An indispens-
able part of these operations is the realization of auto-
matic forwarding. Based on this consideration, we 
have realized, deployed, and tested a log position and 
angle estimation system.

This paper focuses on the implementation method 
of a log position and pose estimate function which was 
used on the AORO machine platform. The design, 
implementation, testing, and final realization of the 
entire system is described below. The hardware for the 
system includes the AORO machine platform and 
some mature products on the market, with a generic 
underlying software architecture for deep-learning 
object detection. With this system, an effective, real-
time log pose estimation and positioning function is 
realized and it can be deployed on unmanned ma-
chines for the purpose of lifting harvested logs during 
e.g. forwarding operations. To that end, the feasibility 
and shortcomings of its practical application have 
been explored, and the direction of further improve-
ment of this function has been determined.

2. Materials and Methods
The target objects considered in the study are logs 

with a certain length after delimbing and cutting, 
while the system function is to realize the detection of 
the logs, positioning under relatively static conditions 
as well as estimating their pose relative to an absolute 
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coordinate system. The study includes several com-
posite solutions developed in order to have the entire 
real-time system functioning:

⇒ �an unmanned machine platform with dual 
GNSS antennas

⇒ �a vision system based on a Zed2 stereo camera 
(Zed2, Stereolabs Inc, Montrouge, France) with 
NVIDIA JETSON AGX XAVIER (Jetson AGX 
Xavier, NVIDIA, Santa Clara, California, USA)

⇒ �a series of script files that realize detection, lo-
calization, and pose estimation for the target 
logs.

2.1 Hardware Preparation

2.1.1 Unmanned Forest Machine Experiment 
Platform

The unmanned forest machine experiment plat-
form used (Fig. 1) is a stage result of a long-term re-
search by AORO aimed at realizing unmanned, au-
tonomous forest operations. For now, the potential of 
this unmanned forest machine experimental platform 
in realizing unmanned forwarding has been fully 
verified.

This machine platform was originally designed and 
constructed at Luleå University of Technology in col-
laboration with the Swedish University of Agricultural 
Sciences. The main purpose of the build is to use it as 
a platform for in situ forest machine technology re-
search and development, mainly focused on automa-
tion. This 10 tonne platform mainly consists of two 
chassis parts: the front part is the location of the con-
troller, engine and hydraulic pump, and the rear part 
where auxiliary equipment is attached. Connecting 
these two parts are an articulated joint manipulated 
through hydraulic cylinders. The machine is equipped 
with a 4.5 liter 129 kW diesel engine, which propels 

hydraulic pumps that in turn drive four hydraulic hub 
motors, pendulum arms, articulate joint, and a crane. 
At the same time, the engine is also connected to the 
generator, which is responsible for the electric power 
supply.

The crane mounted at the back of the machine is 
supplied by Cranab AB, mounted with a rotator sup-
plied by Indexator and Cranab CR250 grapple. The 
four first joints slewing, inner boom, outer boom, and 
telescope are all measured through high precision ro-
tational (slewing, inner and outer boom) and posi-
tional (telescope) sensors, allowing for high precision 
positioning of the crane tip. The size of the grapple 
being used (Fig. 2.), i.e. the end-effector, will set the 
constraints on the precision of the crane tip positioning 
and grapple rotation if the goal of autonomously lift-
ing a harvested log is to be conducted by the crane.

The control units on the machine comprise two 
main computers that have different jobs to conduct. 
One is an Ueidaq i/o computer run as a Simulink i/o 
target on the machine to achieve low-level motion con-
trol such as controllers for crane and pendulum arm 
manipulation. The other is the Nvidia JETSON XAVIER, 
which handles visual computing and robot localiza-
tion, onto which a stereo camera and a Leica iCON 
GPS80 with dual antenna units are connected.

2.1.2 Vision System
The vision system is responsible for image percep-

tion and image-based analysis and computational pro-
cessing of the environment. It is composed of two 
parts: data processing unit and the camera. The Zed2 
stereo camera from STEREOLABS was used as the 
camera to obtain the colour and depth information of 
the field of view. It is mounted at the top-front of the 
machine with a slight downward tilt (Fig. 3).

During our tests, there was a downward angle of 
about 39 degrees in the orientation of the camera, but 
the orientation of the camera is adjustable. The data 
from the camera is processed by the NVIDIA JETSON 
XAVIER, an embedded computing board from 

Fig. 1 Unmanned forest machine experiment platform used in 
AORO

Fig. 2 Grapple size parameters
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NVIDIA as the image processing unit on the un-
manned forest machine experiment platform. The 
JETSON is mounted in the computer area on the front 
part of the machine and connected to the camera by a 
USB 3.0 cable. Considering the subsequent image pro-
cessing and computing power, as well as the require-
ments for image clarity and real-time, the output 
specification of the camera image was set to 720p, 
15FPS. Related parameters for JETSON and the cam-
era are shown in Table 1.

2.2 Software Implementation
The JETSON XAVIER minicomputer is running on 

Ubuntu 18.04 LTS, and the Robot Operating System 
(ROS) (Quigley et al. 2009) was selected and installed 

as a software framework for the system. ROS is a set 
of open-source software libraries and tools that help 
users build robot applications. We use ROS as our soft-
ware architecture because we focus on its highly cus-
tomizable message definition and transceiver mecha-
nism, with flexible calling and running of user-custom 
functional scripts. This allows us to complete the re-
ception of the camera signal in ROS and publish out-
put results in a custom data format to be processed in 
any other part of the ROS infrastructure.

2.3 System-Wide Workflow
The vision system uses a stereo camera as imaging 

sensor and a JETSON as computing unit, which is the 
core to realize automatic detection, positioning, and 
angle analysis of target objects. It is part of the entire 
automated forest machine platform. In Fig. 4 and Fig. 
5, the structure of the vision system part and the whole 
automatic forest machine platform are depicted.

The unmanned forest machine experiment plat-
form is the carrying platform and executing mecha-
nism for verifying the constructed log detection, posi-
tioning and angle estimation system. The platform 
receives the output signal and carries out correspond-
ing actions on the basis of the output signal from the 
vision system, and realizes the final actions of the end-
effector.

2.4 Log Detection, Localization and Angle 
Estimation

The realization of the visual function module is 
mainly divided into three parts: detection module, 
positioning module, and angle estimation module. 
The detection module is used to find the area of the 

Fig. 3 Camera mounted on machine front 

Table 1 Technical specifications and running parameters of Zed2 
and JETSON

RUNNING PARAMETERS OF Zed2 CAMERA

Video Mode 720p

FPS 15

Depth Resolution Native video resolution

Depth Range 0.2 – 20 m 1

Depth FOV 110° (H) x 70° (V) x 120° (D) max. 1

TECHNICAL SPECIFICATIONS OF NVIDIA JETSON AGX XAVIER

Developer Kit

GPU 512-core NVIDIA Volta™ GPU with 64 Tensor cores

CPU 8-core ARM® v8.2 64-bit CPU, 8MB L2 + 4MB L3
1 According to the official product parameters
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Fig. 4 Structure of the vision system for detecting, locating and estimating the angle and position of target logs, as well as conducting robot 
localization

Fig. 5 Architecture of unmanned forest machine experiment platform
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target from the RGB (colour) signal sent from the cam-
era and outputs the position of bounding boxes of 
target logs. Bounding boxes are an imaginary rectan-
gle that surrounds a detected object in an RGB image 
and are defined by its corner coordinates. The posi-
tioning module calculates the spatial position of the 
target based on bounding box data from the detection 
module and the synchronized depth map from the 
camera. The angle estimation module also calculates 
the pose of the target log based on the bounding box 
and the depth map. This process is illustrated in Fig 6.

2.4.1 Detection of Logs
After the camera transmits the video signal to 

JETSON, the system identifies and determines the lo-
cation of the target log in the video, and marks the 
detected target log with a bounding box. The detection 
algorithm used to obtain the bounding box is not spe-
cifically limited to our choice, and can be changed to 
other relevant algorithms. The YOLO-ROS (Bjelonic 
2018) package was introduced into the system to de-

tect target logs in the RGB data stream under the ROS 
framework. The YOLO-ROS is a transplant of YOLOv3 
(Redmon and Farhadi 2018) detection architecture in 
the ROS environment, which can realize the target de-
tection function of YOLOv3 in ROS. YOLO-ROS, the 
ROS package of YOLOv3 transplant, is very mature 
and easy to use. It directly outputs bounding boxes of 
the detection results in the form of ros topics and, at 
the same time, meets our test performance needs. 
Meanwhile, considering the limited computing power 
of JETSON, computing resources are allocated to deal 
with spatial location analysis and related calculations. 
In order to reduce the computational burden of the 
target detection stage and meet the real-time require-
ments of detection, we choose to call YOLOv3-Tiny 
(Adarsh et al. 2020) encapsulated in YOLO-ROS to 
achieve the target detection function. Further details 
of the neural network structure can be found in their 
paper.

The training data set is composed of real photos. In 
the autumn of 2021, in Västerbotten County, Sweden, 

Fig. 6 Realization flow of each function of the vision system

Table 2 Partition of data sets and augmentation

Partition of data sets, number

Total Validation set Initial training set Initial labeling Augmented training set Augmented labeling

1739 171 1568 3504 6272 14,016

Training set Augmentation

Outputs per picture Rotation Saturation Exposure Blur Noise

4 –3° to +3° –5% to +5% –5% to +5% Up to 0.5 px Up to 2% of pixels
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randomly placed birch logs were placed in simplified 
terrain and were depicted by the Zed2 camera. In total, 
1739 photos were obtained, of which 1568 photos were 
used to make the training set, and 171 photos (about 
10%) were retained as the verification set. For the 1568 
photos used to make the training set, the logs were 
manually labeled, processed, resized, and augmented 
to comprise the full training set. The final training set 
contains 6272 images with over 14,000 labeled regions. 
Table 2 shows the data set information.

Fig. 7 shows an example of the augmented data set 
and an example of a visual detection result.

Considering the number of pictures in the data set 
prepared, the yolo-tiny network was trained with 
learning rate 0.001, burn in 1000, Max batch 12,000 and 
setps 9600, 10,800 as the input parameters. Finally, a 
detector that achieved a mean average precision (mAP) 
of 80.51% was used for log detection. YOLO-ROS real-
izes the function of log detection based on YOLOv3-
Tiny by using the weight file obtained by training, and 
the detection result is released to the ROS framework 
in real time in the form of ROS messages, outputting 
coordinates of the corresponding bounding boxes.

Before outputting (in ROS called »publishing«) 
bounding box data, to improve the validity of the data, 
the bounding boxes are filtered. Combined with our 
actual needs in the test, the detection results that are 
too close, too far away, and too close to the edge of the 
field of view are removed. Consequently, boxes with-
in the image are required to be more than 30 pixels 
wide or high, comprise more than 2500 pixels, and be 
more than 2 pixels from the image border to be con-
sidered.

2.4.2 Localization of Logs
After the target log is found, its actual position in 

space is determined and output. The color and depth 
signals in the field of view are synchronously obtained 
from the Zed2 camera, and thus the depth values of 
desirable pixels in the color image (the bounding box 
pixel positions) are determined.

Then, to calculate the three-dimensional coordi-
nates corresponding to the two-dimensional pixel 
points, it is necessary to model the camera according 
to the pinhole camera model to obtain the correspond-
ing relationship between cartesian and pixel coordi-
nates.

It can be deduced that the relationship between the 
coordinates of a three-dimensional space point [X, Y, 
Z] and the pixel coordinates of its two-dimensional 
image projection [u, v] is given by:
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Where:
R and t	� are the rotation and translation, which relate 

the world coordinate system to the camera 
coordinate system

fx and fy	� denote the focal length of the camera in X-
axis and Y-axis

cx and cy	� denote the center of the camera aperture. It 
can further be deduced from the above for-
mula that:

Fig. 7 A sample of resized and labeled image of augmented dataset (left) and a detection result of log in a picture (right) with detection 
confidence printed above bounding box
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In (2), except that the X and Y of the target point in 
the spatial coordinates are unknown, other parameters 
including Z, the depth of the pixel, the pixel coordi-
nates u and v, and the camera intrinsic parameters fx, 
fy, cx and cy are all known (The camera parameters fx, 
fy, cx and cy are usually provided by the camera manu-
facturer). The calculated coordinates are related to the 
camera position, meaning that forward kinematics can 
be used to relate the coordinates to any coordinate 
system on the machine.

Using the pixel coordinate data provided by the 
bounding box from log detection, the area represented 
by the bounding box in the depth map is determined. 
The depth information of this bounded region reflects 
the spatial characteristics of the target object. Then, 
according to the above calculation method, combined 
with the bounds generated by the log detection func-
tion, the position corresponding to the central point of 
the bounding box can be calculated. The location of 
the center point of the bounding box is used to repre-
sent the actual location of the target log. Considering 
that there is a lot of depth information loss in the orig-
inal depth image, the original depth map is prepro-
cessed. Linear interpolation is used to fill the missing 
data in the depth map to ensure the availability of the 
depth information in the subsequent calculation. At 
the same time, the average value of the effective depth 
data within a small range (11×11 pixels) around the 
center of the box was also used to calculate the position 
to reduce the influence of f﻿luctuation of the depth data 
caused by errors in the position calculation process. 
The visual representation of possible fluctuation errors 

and missing information in an unprocessed depth 
map are shown in Fig 8.

The log position obtained is the position within the 
coordinate system with the position of the camera as 
the coordinate origin, based on which this coordinate 
can be converted into any coordinate information 
needed by using the coordinate system transforma-
tion.

2.4.3 Log Angle Estimation
When the middle position of the target log is rep-

resented by a three-dimensional point in the cartesian 
space, the judgment of the log pose is added to obtain 
its angle relative to the camera.

The log angle estimation combines two aspects, the 
shape of bounding box and the color difference. First, 
the filtered bounding boxes are divided into three dif-
ferent classes according to the different height-width 
ratio of the bounding box: vertical type, horizontal 
type, and the type with no obvious difference between 
height and width (Fig. 9a, b and c, respectively). In 
practice, this ratio is set to 5 to 1, that is, if the height 
is 5 times more or larger than the width, it is classified 
as vertical type; and contrarily with respect to the 
horizontal type. Those in between fall into the third. 
The three different classes of bounding boxes, shown 
in Fig. 9 (a–c), are marked as type a, type b, or type c.

For the two types a and b of bounding boxes, the 
center point of the bounding box is taken as the starting 
point, and points along the v direction are defined at 
±30% of the length for type a, and similarly along the 
u direction for type b, as the center point for construct-
ing a depth calculation area with dimensions of 11x11 
pixels. Then, the cartesian position for the two points 
is calculated in the same way as for the log localization 
method for both a and b type bounding boxes.

Fig. 8 Fluctuation (a) and missing depth information (b) in unprocessed depth map
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For type c bounding boxes, for the determination 
of the center point of the candidate depth calculation 
areas, we start from the center point of the bounding 
box and create areas A1, A2, B1, and B2 (Fig 9. (d)) of 
size 7x7 pixels, respectively, whose centers are posi-
tioned at ±30% of the total height or width from the 
center point. Then color data are extracted from areas 
A1, A2, B1, and B2, taking each diagonal area as a pair, 
where the difference between the color information in 
the two pairs of diagonal areas and the color informa-
tion in the central area are evaluated.

In RGB color space, two 7x7 pixel regions of the 
same group are fused into a new 7x7 pixel image with 
a weight of 0.5 for each. After that, the two groups of 
fused images are compared with the central 7x7 pixels 
image area in CIELAB (also known as the L*a*b*) col-
orspace (CIE 1976 L*A*B* COLOUR SPACE, ISO/CIE 
11664-4:2019(E) ). Now, the difference between the 
two colors can be judged in the form by comparing the 
Euclidean distance between the two colors. This dif-
ference can be given as:

DE L L a a b b* ( ) ( ) ( )* * * * * *
ab = − + − + −2 1

2
2 1

2
2 1

2 	 (3)

Where:
(L*

1, a*
1, b*

1) and (L*
2, a*

2, b*
2) are two colors in L*a*b* color 

space.
After the comparison of color difference is com-

pleted, the group whose color is closer to the central 
area is selected, whereby the cartesian positions cor-
responding to the selected areas are calculated in the 
same way as for the log localization method, and 
maintaining the method of 11x11 pixels averaging.

After having calculated the cartesian value of the 
two points, the height between the two points (ΔY) is 
disregarded, whereby the angle value for the log is 
calculated related to the camera X–Z plane. The angle 

obtained is in the range of 0 to 180 degrees, and this 
angle is used as the estimated angle of the target log.

2.4.4 Validity of Log Localization and Angle 
Estimation

To ensure that the location and angle data can be 
used for the log grasping operation, it is necessary to 
judge the effectiveness of the data based on the actual 
operation after obtaining the log location and angle. 
In our case, the log to be grasped was approximately 
regarded as a cylinder about 2 m in length and 25 cm 
in diameter, and, according to experience, successful 
grasping requires that the opened grapple is within 
one meter from the center of gravity, and that the edge 
of the log should not exceed the grapple gap. During 
the grasping operation, the position and rotation of the 
grapple related to the log center and angle are influ-
enced mutually by each other. For example, the closer 
the grapple center is to the log center, the greater the 
tolerable rotation error.

When performing log localization and angle esti-
mation, the target log is artificially placed, whereby 
the midpoint position is measured by CORS network 
GNSS. The angle is manually measured with respect 
to the machine. This data is used as the reference data 
and regarded as the real state of the log, while the 
positioning and angle estimation results through the 
system are regarded as test data. The difference be-
tween the test data and the reference data is regarded 
as an error, which is used as a basis for judging the 
validity of the test data.

2.4.5 Testing
The testing took place in October in Luleå, Norrbotten 

county, Sweden. At that time, the weather was over-
cast with light snow, and the selected ground was flat, 
and the surface was partially covered by ice and 
snow. The machine and the target logs were placed in 
a pre-marked fixed position. The logs were cut to 

Fig. 9 Three different types of bounding boxes with chosen points: (a) vertical type where logs are situated entirely vertical in the image, (b) 
horizontal type where logs are situated entirely horizontal in the image, (c) the type with no obvious difference between height and width, 
(d) grouping of selected areas in the bounding box: A1, A2 as one group, B1, B2 as another group, C as the center area
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about 2 meters with the stem diameter of about 25 
centimeters. The tree species was birch.

During the testing, a fixed position is manually se-
lected as the origin of the system coordinates, with the 
due east direction defined as the coordinate X axis, 
and the due north direction defined as the coordinate 
Y axis. The position and orientation of the machine are 
always fixed, while the target log is placed at fixed 
positions in the area in front of the machine. The posi-
tion of the machine, the coordinate origin, and the log 
position are all measured by the vehicle-mounted 
GNSS system at once to ensure that the relative posi-
tion between the three points will not produce errors 
through multiple measurements. To evaluate the gen-
eral performance of the developed system, a total of 
four rounds of tests were conducted, with the center 
position of the log kept fixed. The position of the log 
relative to the camera is:

⇒ horizontal
⇒ diagonally near left and far right
⇒ vertical
⇒ diagonally near right and far left.
The angle between the log and the machine was 

approximately 0 (180) degrees, 45 degrees, 90 degrees, 
and 135 degrees. The localization and angle estimation 
results of the log under the corresponding tests were 
recorded separately.

3. Results
The results of the test are published in ROS in the 

form of data stream, and the publishing frequency 
reaches around 1 Hz. In order to effectively analyze 
the results, the data generated in the test process were 
intercepted and saved to be analyzed in the form of 
images.

3.1 Localization of Target Log
In four rounds of testing, the machine is allowed to 

run automatically and record data for a fixed period 
of time in each round, resulting in four sets of data, 
each containing 21 measurement positions. All the 
measured results obtained in each round of measure-
ment and the average value of all the results of each 
round of measurement are compared with the actual 
position measured by GNSS.

According to the implementation principle of the 
positioning function, the error of the position obtained 
by the final measurement is not only caused by the 
selection of pixels determined by the algorithm but 
also by the GNSS system and the depth data of the 
stereo camera. According to the camera datasheet, the 
error of depth measured by the camera will increase 
with the increase of detection distance. It can be con-
sidered that before the error caused by GNSS begins 
to be greater than the depth error caused by the mea-
surement of the stereo camera, within the working 
range of the camera, the closer the detection object is, 

Fig. 10 Schematic figure and visualization of actual working state to show the position of the origin set during test, actual position of the 
target log, position of the machine (projection position from the front camera to the ground) and orientation of the machine
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the more accurate the result is. However, the actual 
working state of the system determines that the dis-
tance between the target log and the machine should 
not be too close to each other, so it is necessary to leave 
enough distance for operation. Finally, combined with 
the actual needs of the demonstration, the distance 
between the log and the vehicle was set to about 5 
meters during the test.

Given the reach of a forwarder crane and the oper-
ating principle of a forwarder, the approximate dis-
tance between the camera and the log was set to 5 
meters.

The position of the origin set during the test, the 
actual position of the target log, the position of the 
machine (the projection position from the camera to 
the ground), and the orientation of the machine are 
shown in Fig. 10.

An image example after the test process is visual-
ized as shown in Fig 11. The system will however not 
generate and output similar images in the actual work-
ing process due to unnecessary overhead.

Table 3 shows the measured and actual positions 
of the log, and the mean and standard deviation (SD) 
of the errors along the X, Y, and Z axes, for four round 
tests with 21 samples for each round with the angle at 
approximately 0 (180), 45, 90, and 135 degrees between 
the target logs and the machine.

The distribution of all the measured points ob-
tained in each round of testing, the mean value of the 
measured positions, and the comparison with the ac-
tual positions are shown in Fig. 12.

Table 4 shows the average value and standard de-
viation of the difference between the 21 measured po-
sitions and the actual position recorded in each of the 
four rounds of measurement.

The test results show that regardless of the relative 
angle between target log and machine, the distance 
between the position of the target log measured by the 
system and the actual position is maintained within 
0.26 m. Except for the standard deviation of the first 

Fig. 11 An example visualizing the positioning result of the target log. The sphere depicts detected log position

Table 3 Comparison of all measured positions of the log in each 
round with the actual position along X, Y, Z axes in pre-set ground 
coordinate system, and mean and standard error deviation 

Axis x y z

Actual log position 4.208 3.528 0.125

Round 
1

Mean measured log position, m 4.130 3.617 0.091

Meanserror, m –0.078 0.089 –0.034

SDerror, m 0.037 0.019 0.015

Round 
2

Mean measured log position, m 4.254 3.645 0.147

Meanserror, m 0.046 0.117 0.022

SDerror, m 0.141 0.013 0.058

Round 
3

Mean measured log position, m 4.402 3.360 0.114

Meanserror, m 0.194 –0.168 80.011

SDerror, m 0.056 0.035 0.027

Round 
4

Mean measured log position, m 4.011 3.443 0.018

Meanserror, m –0.197 –0.085 –0.107

SDerror, m 0.024 0.008 0.009
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round at 0.078, the standard deviation of the second, 
third, and fourth rounds of test results all fell within 
0.03, with little difference.

3.2 Angle Estimation of Target Log
For the angle estimation between machine and tar-

get log in four rounds of tests, 26 estimated angles 
were recorded for each round. By comparing with the 
relative angle between the target log and the machine 
obtained by manual measurement, the performance 
of the angle estimation function of the system can be 
visually presented. Table 5, together with Fig. 13, 
shows the actual angle of the target log compared to 
the estimated angles and the mean over 4 rounds of 
testing.

Table 6 shows the average value and standard de-
viation of the difference between the 26 estimated 

angles and the actual angle recorded in each of the 
four rounds of measurement, to show the difference 
between the estimated angles and the actual angle and 
the dispersion of this difference.

Table 4 Euclidean distances from the actual position of the target 
log to all measured positions are presented as means and standard 
deviations (SD) for each round

ROUND Meanserror, m SDerror, m

1 0.180 0.078

2 0.128 0.026

3 0.265 0.029

4 0.241 0.025

Fig. 12 Distribution of all measurement points obtained in four rounds of tests, mean value of measurement positions, and comparison with 
actual positions

Table 6 Difference between the estimated angle and actual angle 
presented as means and standard deviations (SD) for all angle es-
timations in each round

ROUND Meanserror, ° SDerror,°

1 2.478 1.46

2 2.83 2.69

3 0.19 0.17

4 1.66 1.03

Table 5 The mean of estimated angle and actual angle between 
target log and machine for four rounds (The actual angle is only 
accurate to an integer because of the manual measurement of 
ground truth)

ROUND Mean estimated angle, ° Actual angle, °

1 168.8 171

2 47.2 45

3 91.9 92

4 128.6 130
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The test results show that the mean value differ-
ence between the angle estimation and the actual angle 
is no more than 3 degrees, while the maximum error 
of a single angle estimation result falls below 5 de-
grees. Thus, the angle estimation is stable and the data 
dispersion is low.

4. Discussion and Conclusions
The proposed automatic log detection, localization, 

and angle estimation system has demonstrated the 
feasibility of working in conjunction with an autono-

mous forest machine in our case. The test results show 
that the difference between the measured position of 
the log and the actual position of the log center can be 
kept within the range of log diameter, and is far less 
than the grasping range. At the same time, the distri-
bution of measurement positions is relatively concen-
trated, and there is no extreme deviation. The average 
value of the angle estimation result is used as the out-
put, which can effectively guide the rotation of the 
grapple in the process of grasping the target log. Com-
bined with the positioning of the target log, it can be 
considered that the system can effectively guide the 

Fig. 13 Angle estimation and actual angle between target log and machine for four rounds
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grapple of the crane to successfully grasp the target 
log.

The successful construction of this system provides 
a new idea for the realization of unmanned forest ma-
chine vision system, and shows that it could be pos-
sible to use the vision system to guide an unmanned 
forest machine to carry out automatic forwarding op-
erations. However, the system is only a preliminary 
implementation, and there are still some limitations 
and shortcomings. Although it can work well under 
preset conditions, the working conditions and the real-
ity still have a gap. For example, the neural network 
was trained on birch logs of a certain size, so the detec-
tor itself is probably limited to those conditions. At the 
same time, because of the hardware system perfor-
mance, the results are often difficult to achieve ideally. 
For example, the depth signal obtained by the stereo 
camera suffers from missing data and the accuracy is 
rather low, while being easily affected by changing 
environmental conditions, which causes fluctuations 
in depth data. In addition, the computing power of 
JETSON used for processing and calculation is not 
ideal, which makes the actual frame rate lower than 
what may be needed for real-time operation. Never-
theless, the required speed of log pose estimation is 
contingent to the crane working speed where 1Hz 
evaluations may not be a bottleneck.

In practice, logs may be covered with snow and ice, 
which makes detection more difficult and may lead to 
errors or missed detections, given the color depen-
dence. In addition, different types of trees have differ-
ent surface colors and textures. In our test, only birch 
logs are used. It is therefore likely that e.g. pine or fir 
would result in a more unreliable angle estimation, 
thus the color comparison method we use for angle 
estimation need to be tested with a variety of tree spe-
cies. The current system can only detect, locate and 
analyze the angle of a single log with a certain preci-
sion, but logs lying in piles have not been evaluated 
with our system. Limited by the implementation 
method, the shape of the target log needs to be rela-
tively straight and the overall color probably needs to 
be relatively uniform. It can be assumed that the sys-
tem will not work effectively for logs with large bends 
and logs with large changes in surface color; however, 
this should be further investigated.

To improve our system, detection accuracy speed 
and robustness could be improved by using a more 
accurate depth camera, a more powerful computing 
unit, by preparing adequate data sets, and updating 
to new detection algorithms. In the future, it will be 
important to realize the automatic detection and pose 
analysis of logs in piles, which may also be accompa-

nied by the modification or replacement of the algo-
rithm, but will also make the system closer to the ac-
tual state of today’s cut-to-length method.

Although there are still many shortcomings, this 
realization of automatic log detection, positioning, and 
angle estimation and the successful practice on the 
unmanned forest machine experiment platform have 
undoubtedly reached an important milestone in the 
strive towards unmanned forestry operations.
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