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Ultra large container ships are rather fl exible and exposed to signifi cant wave deformations. 
Therefore, the hydroelastic strength analysis is required for these types of ships. The coupling of 
a beam structural model and a 3D hydrodynamic model is preferable for reasons of simplicity. In 
this paper, the contribution of large number of transverse bulkheads to general hull stiffness is 
analysed. The prismatic pontoon with the cross-section of a large container vessel is considered 
for this purpose. The 3D FEM torsional analysis is performed with transverse bulkheads included 
and excluded. The correlation analysis of the obtained deformations indicated the infl uence of 
transverse bulkheads on the ship hull stiffness. The analysis is done by employing the torsional 
theory of thin-walled girders.
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Doprinos poprečnih pregrada krutosti trupa velikih kontejnerskih bro-
dova

Prethodno priopćenje

Vrlo veliki kontejnerski brodovi prilično su elastični i stoga podložni velikim valnim defor-
macijama. Zato se danas njihova čvrstoća istražuje metodama hidroelastičnosti. Pritom se radi 
jednostavnosti sprežu gredni strukturni model i 3D hidrodinamički model. U ovom članku istražen 
je doprinos velikoga broja poprečnih pregrada kontejnerskih brodova općoj krutosti trupa. Za 
te potrebe razmatran je prizmatični ponton s poprečnim presjekom velikoga kontejnerskog 
broda. Konstruiran je 3D model konačnih elemenata i provedena je analiza uvijanja s uključenim 
i isključenim poprečnim pregradama. Korelacijskom analizom deformacija za ova dva slučaja 
ustanovljen je utjecaj poprečnih pregrada na krutost brodskoga trupa. Pritom se koristila teorija 
uvijanja tankostjenih nosača.

Ključne riječi: kontejnerski brod, metoda konačnih ele menata, krutost, tankostjeni nosač, 
uvijanje
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1 Introduction

Nowadays sea transport is rapidly increasing and ultra large 
container ships are built [1]. Since they are rather fl exible, their 
hydroelastic response becomes an imperative subject of inves-
tigation. In the early design stage, the coupling of a FEM beam 
structural model with a 3D hydrodynamic model based on the 
radiation-diffraction theory is reasonable [2], [3].

The 1D FEM structural model is quite sophisticated since it 
takes into account the bending and shear stiffness, as well as the 
torsional and warping stiffness [4], [5]. The general hull stiffness 
is increased due to the large number of transverse bulkheads in 
holds. There are two types of bulkheads, i.e. ordinary watertight 
bulkheads and grillage ones. The distance between them is de-
termined by the container length.

Transverse bulkheads stretch within one web frame spacing 
and are quite stiff. They can be directly included in the 1D FEM 
model as a short beam element with a closed cross-section [6], [7]. 

However, due to the large number of transverse bulkheads and 
to the model discontinuity, it is more practical and reasonable 
to take into account their continuous contribution to the general 
hull stiffness.

Different attempts to take the infl uence of transverse bulk-
heads into account have been made. One of the fi rst approaches 
was to increase the deck thickness based on the equivalence of 
the deformation energy of transverse bulkhead girders and the 
increased deck energy [8]. Today, the usual way is to model 
transverse bulkheads by axial elastic springs at their joints to the 
ship hull. The spring effect is condensed in lumped bimoments 
[9]. Furthermore, in the case of a large number of transverse 
bulkheads, the lumped bimoments might be distributed along 
the hull girder [10]. The distributed bimoments are manifested 
as additional torque load, which depends on the variation of 
the twist angle as pure torsional torque. Therefore, only the 
torsional stiffness of the ship hull is increased due to the bulk-
head infl uence.
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The effect of transverse structure on the deformation of 
thin-walled girders is a challenging subject of contemporary 
investigations [11], [12], [13]. Recent literature shows that the 
problem is rather complex and the complicated solutions offered 
there reduce the applicative advantages of the combined beam 
theory and the thin-walled girder theory (1D + 2D) with respect 
to the direct 3D FEM analysis. In any case, the reliability of the 
1D + 2D theory has to be checked by the correlation analysis 
with 3D FEM solutions.

In the light of the above circumstances, especially of the needs 
of the ship hydroelasticity analyses, where results of dry natural 
vibrations of the ship hull are required (modes, frequencies, mo-
dal stiffness, modal mass), a simpler solution is preferable and 
more convenient. That was the motivation for the investigation 
of this challenging problem. Thus, the 3D FEM analysis of the 
prismatic hold structure with and without transverse bulkheads 
is performed. The equivalence of the maximum twist angle in 
the 1D and 3D models is used as a condition for determining the 
change of torsional beam stiffness. The reliability of approach 
is checked by the correlation for 1D and 3D warping functions 
and stress distribution.

2 Outline of the thin-walled girder theory

The thin-walled girder torsional theory is developed under 
assumptions that a considered structure is of membrane type (only 
in-plane deformation occurs) and that there is no distortion of 
the cross-section (twist angle is constant along the cross-section 
contour).

Figure 1 Beam torsion
Slika 1 Uvijanje grede

A prismatic girder exposed to torsion is shown in Figure 1. 
The equilibrium of sectional torque, T, and the distributed external 
torsional load, μ

x
, yields

(1)

According to the theory of thin-walled girders, the sectional 
torque consists of a pure torsional part and a warping contribu-
tion [14]

(2)

where

E, G  – Young’s modulus and shear modulus
I

t
, I

w
   – torsional and warping modulus

ψ       – twist angle

Substitution of (2) into (1) leads to the ordinary differential 
equation of the fourth order

(3)

Its solution reads

(4)

where

  
(5)

and A
i
 are integration constants, while ψ

p
 represents a particular 

solution which depends on μ
x
.

Let us consider the twisting of the girder shown in Figure 1, 
which is loaded by torque M

t
 at the ends, while μ

x
 = 0. The warp-

ing of the girder ends is suspended. In this case the twist angle 
ψ is an anti-symmetric function and therefore A

0
 = A

2
 = 0. The 

remaining constants A
1
 and A

3
 are determined by satisfying the 

boundary conditions

(6)

where u is the warping function (axial displacement) and u– is 
the relative sectional warping due to the unit beam deformation, 
dψ/

dx
, defi ned according to the theory of thin-walled girders [15], 

[16]. The fi nal expressions for the twist angle reads

  
(7)

Now, it is possible to determine sectional forces, i.e. pure 
torsional and warping torques (2)

  
(8)

and warping (sectorial) bimoment

 
(9)

Furthermore, the warping function (6) takes the form of

 
(10)
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 and τ
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(11)

where

(12)

Thus, by substituting (12) into (11) one fi nds the expression 
for warping modulus in (9)

 (13)

3 Modelling of transverse bulkheads

The length of transverse bulkheads in large container ships 
is equal to one web frame spacing. They are of grillage type and 
therefore quite stiff. As a result, the bulkhead infl uence on the 
hull warping reduction is signifi cant. 

In the torsional thin-walled girder theory, bulkheads can be 
modelled by axial elastic foundation at their joint to the hull struc-
ture [9], [10]. In the case of a large number of bulkheads, the line 
foundation can be spread to the area foundation of the hull shell. 
The corresponding axial (tangential) surface load yields

(14)

where κ is the spread bulkhead stiffness and u is the warping 
function (6).

Axial load q causes an additional bimoment per unit length 
on the relative sectional warping u–   

 
(15)

By substituting (14) into (15) one writes

(16)

where
  

(17)

is the sectional bulkhead stiffness.
According to the theory presented in [9] and [10], the bulk-

head bimoment causes a distributed torque

(18)

where relation (16) is used for b. The torque μ
b
 is the transformed 

bulkhead load and has to be equilibrated by sectional torques T
t
 

and T
w
 (2). Thus, by substituting (18) into (3), the differential 

equation for girder torsion with bulkhead infl uence is obtained:

(19)

Generally, the value of k has to be calculated for a given 
bulkhead structure. It is a result of fl exural bulkhead stiffness.

4 Effect of transverse bulkheads

In order to take the infl uence of bulkheads into account, an-
other approach can also be applied. A ship hull consists of a large 
number of open cross-section segments (holds) and of closed ones 
(bulkheads). For the open section, the torsional modulus I

t
 is quite 

small, and therefore the warping modulus I
w
 plays the main role. 

In a short bulkhead area, the torsional modulus of closed section 
It

0  is one order of magnitude higher than I
t
, while Iw

0  is of the 
same order as I

w
. For the reason of simplicity we can consider a 

uniform girder with the equivalent torsional modulus It
* , where 

I I It t t< <* 0 , and the equivalent warping modulus Iw
*  equal to 

I
w
. In this case, the differential equation (3) takes the form of

(20)

where
  

(21)

GI
b
 is the additional hull torsional stiffness due to bulkheads 

as closed cross-section segments. Parameters k and GI
b
, in (19) 

and (21) respectively, are equivalent quantities.
Instead of bulkhead modelling by equivalent axial elastic 

foundation, as it is usually done in literature, it is possible to 
determine the contribution of bulkheads by the 3D FEM analysis, 
as it is elaborated in Section 7. Let us assume, for the time being, 
that the end twist angles of a prismatic girder without and with 
transverse bulkheads are known, ψ(l) and ψ*(l) respectively. 
Referring to (7), one writes

  
(22)

 

 (23)

where
  

(24)

 
 (25)

Ratios of Eqs (23) and (22) lead to the transcendental equation 
for determining the unknown parameter y*

(26)

Now, the new value of torsional modulus can be determined 
by employing (24) and (25), i.e.

(27)

According to (21), the contribution of bulkheads to torsional 
stiffness is

(28)
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The twist angle (7) and the warping function (10) in non-
dimensional form read respectively:

(29)

(30)

Referring to (8), the twisting and warping torques take the 
following form:

(31)

Furthermore, the twisting torque can be split into the hull part 
and the bulkhead contribution

(32)

where, proportionally to their torsional moduli (21), 

(33)

Ratios I It t
*

 and I Ib t
*

 are defi ned by (27) and (28).
Finally, the warping bimoment (9) takes the following non-

dimensional form:

(34)

The presented approach is based on the known ratio of end 
values of the twist angle for a girder without and with transverse 
bulkheads. Its reliability can be checked by the known ratio of 
warping functions in the middle of the girder. According to (10), 
it follows that

(35)

An additional way to check the obtained results is to compare 
the normal stress ratio at girder ends represented by the warping 
bimoments (9)

(36)

Actually, ratios (35) and (36) are related to the fi rst and second 
derivative of the twist angle, (6) and (9) respectively.

5 Ship particulars

A 7800 TEU container vessel of the following main particulars 
is considered, Figure 2. 
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Figure 2 A 7800 TEU container vessel
Slika 2 Kontejnerski brod nosivosti 7800 TEU

Figure 3 Midship cross-section
Slika 3 Glavno rebro
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Length overall L
oa

 = 334 m
Length between perpendiculars L

pp
 = 319 m

Breadth B = 42.8 m
Depth H = 24.6 m
Draught T = 14.5 m
Displacement ∆ = 135530 t

Figure 4 Transverse bulkhead
Slika 4 Poprečna pregrada

The midship cross-section is shown in Figure 3, while 
Figure 4 shows the transverse bulkhead. Properties of the open 
cross-section are determined by the STIFF program [17].

Cross-section area A = 6.394 m2

Horizontal shear area A
sh

 = 1.015 m2

Vertical shear area A
sv
 = 1.314 m2

Vertical position of neutral line z
NL

 = 11.66 m
Vertical position of shear - 
- torsional centre z

D
 = –13.50 m

Horizontal moment of inertia I
bh

 = 1899 m4

Vertical moment of inertia I
bv

 = 676 m4

Torsional modulus I
t
 = 14.45 m4

Warping modulus I
w
 = 171400 m6

Position of deformation centre, z
D
, is rather low due to the 

open cross-section. The relative warping of cross-section, u, is 
illustrated in Figure 5. Young’s modulus, shear modulus and 
Poisson’s ratio are: E = 2.06 · 108 kN/m2, G = 0.7923 · 108 kN/m2, 
ν= 0.3, respectively.

6 FEM models of a hull segment

Figure 6 Prismatic FEM model of a hull part
Slika 6 Prizmatični model konačnih elemenata dijela trupa

The front holds of the ship as a prismatic thin-walled girder 
with the length of L = 2l = 174 m are considered. The FEM 
model is generated by the software [18]. It is constructed of 
four different types of superelements, and includes the total of 
13 superelements, Figures 6 and 7. The shell fi nite elements are 
used. The model is clamped at the fore end and the only warp-
ing is suspended at the aft end. The vertical distributed load 
is imposed at the aft cross-section, generating the total torque 
M

t
 = 40570 kNm, Figure 8, [19].
There are two types of transverse bulkheads within the ship 

hold space, i.e. the ordinary watertight bulkheads and bulkheads 
of grillage construction. Both types stretch within one web frame 
spacing. The bulkhead top ends with the stool. Such a bulkhead 
design makes them quite strong and therefore the general hull 
stiffness is increased.

Figure 5 Warping of cross-section, u
–
  

Slika 5 Vitoperenje poprečnog presjeka, u
–
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Figure 7 Superelement No. 3

Slika 7 Superelement br. 3

Figure 8 Load at the aft end
Slika 8 Opterećenje kraja modela

Figure 9 Prismatic FEM model of a hull part with transverse 
bulkheads

Slika 9 Prizmatični model konačnih elemenata dijela trupa s 
poprečnim pregradama

Figure 10 Superelement No. 3 with a transverse bulkhead
Slika 10 Superelement br. 3 s poprečnom pregradom

The FEM model of the ship segment with transverse bulk-
heads and a typical superelement with the watertight bulkhead are 
shown in Figures 9 and 10 respectively. The boundary conditions 
and imposed load are the same as in the case of prismatic model 
without transverse bulkheads.

Figure 11 Deformation and stresses of the model without trans-
verse bulkheads, σ

x
 [N/mm2]

Slika 11 Deformacije i naprezanja modela bez poprečnih pre-
grada, σ

x
 [N/mm2]

Figure 12 Deformation and stresses of the model with transverse 
bulkheads, σ

x
 [N/mm2]

Slika 12 Deformacije i naprezanja modela s poprečnim pre-
gradama, σ

x
 [N/mm2]
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Deformed models, without and with transverse bulkheads, 
are shown in Figures 11 and 12 respectively. Distortion of the 
cross-section is negligible as a result of a double skin cross-sec-
tion with very strong web frames. Due to the same reason, the 
bending stresses are negligible in comparison to the membrane 
stresses; therefore, the structure behaves as a membrane one. Dif-
ferent colours in Figures 11 and 12 denote the levels of von Mises 
membrane stress. High stress concentration in the hatch coaming 
and the upper deck at the model ends confi rms the well-known fact 
caused by the suspended warping of the cross-section, [20].

7 Infl uence of transverse bulkheads

Since the 3D FEM model behaves as a membrane structure 
without distortion of the cross-section, the obtained results are 
comparable to those of the 1D analysis.

Figure 13 Rotation of the cross-section
Slika 13 Zakret poprečnog presjeka

Rotation of the model free cross-section, determined analyti-
cally by the beam theory (1D) and numerically by FEM (3D) for 
the pontoon with and without transverse bulkheads, is shown in 
Figure 13. The twist angle of the 3D analysis is somewhat higher 
than that of the 1D analysis.

 (a)

Vertical position of the deformation centre in the 3D model 
is above that of the 1D model, points D

3D
 and D

1D
 in Figure 13, 

respectively. The infl uence of transverse bulkheads on the position 
of the deformation centre is quite weak, point D

3D
. The warping 

of cross-section determined by the 3D analysis is rather close to 
that of the 1D analysis, Figure 5. Therefore, the warping correla-
tion could be done only for one representative point of extreme 
displacement value. Let us chose the joint of the bilge and the 
inner bottom, Figure 5, where

 
(b)

Thus, the correlation of 3D and 1D analyses results is quite 
good concerning warping, while the 3D FEM model is more 
elastic than the 1D model from the twisting point of view. This 
could be caused by the shear infl uence on torsion which is not 
taken into account in the beam analysis, [10]. That fact might be 
the subject of further investigations. However, it does not have 
a signifi cant infl uence on the relative bulkhead contribution to 
the hull stiffness.

The twist angle ratio of the model with and without transverse 
bulkheads reads

(c)

The warping ratio in the bilge point is

(d)

The axial normal stress ratio in the hatch coaming, Figures 
11 and 12, yields

(e)

In the considered numerical example, according to (24), 
y = 0.49541, while the solution of Eq. (26) gives y* = 0.7464. 
The variation of torsional stiffness, Eq. (27), is I It t

* .= 2 27 . It 
means that the bulkhead contribution is I Ib t = 1 27. .

Figure 14 Twist angle
Slika 14 Kut uvijanja
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Figure 15 Deck warping
Slika 15 Vitoperenje palube 

Figure 16 Twisting and warping torques
Slika 16 Torzijski momenti uvijanja i vitoperenja

Figure 17 Warping bimoment
Slika 17 Bimoment vitoperenja

The girder displacements and sectional forces are determined 
for both cases, i.e. without and with transverse bulkheads, and 
are shown in Figures 14, 15, 16 and 17 in non-dimensional 
form. The corresponding formulae from Sections 2 and 4 are 
used. The twist angle ψ is reduced according to given values of 
the 3D FEM analysis, Figure 14. The warping of the cross-sec-
tion u is also reduced, Figure 15. Its variation defi ned by the 1D 
analysis, Eq. (35) is
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Discrepancy between the 1D analysis and the 3D FEM analy-
sis, value (d), is only 1.9%.

The warping bimoment shown in Figure 17 is also reduced 
due to bulkheads. The 1D ratio, Eq. (36), yields

(g)

By comparing it to the 3D FEM stress ratio (e), a discrepancy 
of -1.9% is obtained. This fact confi rms quite good simulation of 
the bulkhead effect in the thin-walled girder theory.

The torques distributions are shown in Figure 16. The hull 
twisting torque in the case with bulkheads, T

h
, is very close to 

the pure twisting torque without bulkheads, T
t
. The warping 

torque T
w
 is now reduced in comparison to T

w
 due to the bulkhead 

contribution, T
b
.

The infl uence of the increased value of torsional stiffness on 
vibrations can, for instance, be analysed in the case of uncoupled 
natural vibration of a free thin-walled girder with suspended 
boundary cross-section warping. The corresponding formula for 
natural frequencies derived in Appendix reads, (A16)

  
(37)

The following relation between natural frequencies of a hull 
segment with and without transverse bulkheads exists:

(38)

For the fi rst natural frequencies of elastic modes one fi nds 
ω ω1 1

* = 1.05594. Thus, a 127% torsional stiffness increase due 
to bulkheads results in a 5.6% increase in the fi rst frequency [M3] 
in the considered case. It is evident from (38) that the variation 
of higher mode natural frequencies is decreased.

8 Bending stiffness analysis

8.1 Horizontal bending

Horizontal bending is analysed by the FEM model adapted 
for this purpose. The model aft end is entirely free and loaded 
by distributed loads, as shown in Figure 18. The vertical load 
generates a torque of M

t
 = 40570 kNm, while the total horizontal 

force F
y
, acting about the deformation centre, equilibrates it. In 

this way, the girder is only exposed to horizontal bending.
In the cases of the model without and with transverse 

bulkheads, the horizontal force of pure bending takes values 
of F

y
 = 1500 kN and F

y
* = 1565 kN, respectively. The cor-

responding maximum defl ections yield δ
y
 = 19.8654 mm and 

δ
y
* = 20.4069 mm, Figures 19 and 20. Thus, the moment of inertia 

of the cross-section of the reinforced model can be expressed by 
that of the model without bulkheads:
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Figure 18 Load at the model free aft end in the case of horizontal 
bending

Slika 18 Opterećenje horizontalnog savijanja na slobodnom 
stražnjem kraju modela

Figure 19 Horizontal bending of the model without transverse 
bulkheads, σ

vM
 [N/mm2]

Slika 19 Horizontalno savijanje modela bez poprečnih pregrada, 
σ

vM
 [N/mm2]

Figure 20 Horizontal bending of the model with transverse bulk-
heads, σ

vM
 [N/mm2]

Slika 20 Horizontalno savijanje modela s poprečnim pregrad-
ama, σ

vM
 [N/mm2]

(h)

The correction is rather small, approximately 1.56% and its 
infl uence on vibration is almost negligible. Stress concentration 
in the bilge area at the fi xed model end due to bending is evident, 
Figures 19 and 20.

Since pure torque M
t
 and horizontal forces F

y
 and F

y
* for the 

model without and with transverse bulkheads are known, it is 
possible to determine the vertical position of the deformation 
centre:

(i)

where h is the double bottom height. The obtained results are 
compared with those of pure torsion determined in Section 7, 
in Table 1. The 3D FEM analyses show that the torsional centre 
and the shear centre are not the same points. In the thin-walled 
girder theory these two centres are not distinguished, and the 
unique deformation centre is determined. Probably, the suspended 
warping in the 3D FEM torsional analysis has some infl uence on 
the vertical position of the torsional centre. We can see that the 
transverse bulkheads also infl uence the position of the torsional 
and shear centres.

Table 1 Vertical position of the deformation centre, z
D
 [m]

Tablica 1 Vertikalni položaj središta deformacije, z
D
 [m]

Without bulkheads With bulkheads

Torsional centre, 
3D FEM twisting -10.60 -10.25

Shear centre, 
3D FEM bending -12.52 -11.96

Deformation centre, 
2D strip theory -13.50

8.2 Vertical bending

A similar FEM analysis is performed for the investigation of 
vertical bending stiffness. The total vertical force, imposed at the 
free model end, is F

v
 = 2000 kN. The corresponding defl ection at 

the same place, in the case of the model without and with trans-
verse bulkheads, yields δ

z
 = -28.3706 mm and δ

z
* = -28.1697 mm, 

respectively. Thus, for the corrected vertical moment of inertia 
of the cross-section one fi nds:

(j)

It is obvious that the infl uence of transverse bulkheads on the 
vertical stiffness is even lower than on the horizontal stiffness.

9 Conclusion

Hydroelastic analysis of large container vessels becomes an 
actual problem. For the reason of simplicity, a beam model of 
hull girder is coupled with a 3D hydrodynamic model. Instead 
of calculating the transverse bulkhead stiffness, the contribution 
of bulkheads to the global stiffness of the ship hull is determined 
by the 3D FEM analysis of a prismatic ship-like pontoon. This 
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is a simple and reliable engineering approach. It was found that 
the increase in torsional stiffness is considerable in the illustrated 
numerical example. The infl uence of this fact on the resonant ship 
hull response to wave excitation is signifi cant and therefore has 
to be taken into account. On the other hand, the infl uence of the 
transverse bulkheads on vertical and horizontal bending stiffness 
is rather small and may be neglected.

However, some discrepancies between the thin-walled girder 
theory and the 3D FEM still exist. In the analysed numerical 
example of a ship hull segment, the twist angle determined by 
the beam analysis is signifi cantly smaller than that obtained by 
the 3D FEM analysis. Even the twist angle of the beam without 
bulkheads is still lower than that of the 3D FEM model reinforced 
by bulkheads. Also, there are some discrepancies of the shear 
centre position between the 1D and 3D models without bulk-
heads. On the other hand, agreement between the cross-section 
warping is excellent. This problem will be the subject of further 
investigation.

Most of present papers dealing with problems of thin-walled 
structures are concentrated on the investigation within the thin-
walled girder theory. The validation of results should be based 
on the correlation analysis with 3D FEM models which simu-
late the structure behaviour in a more realistic way. Also, some 
model tests and full scale measurements are very valuable for 
this purpose.
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Appendix 

Torsional beam vibrations

The differential equation of uncoupled torsional beam vibra-
tions can be written as an extension of the static equation (3), 
[4], [21]

(A1)

where the twist angle ψ and the distributed torque μ
x
 are time 

dependent quantities. The symbol Jt
0  denotes the polar mass 

moment of inertia. Natural vibrations are harmonic and Eq. (A1) 
is reduced to the homogeneous form

(A2)

where ψ and ω are the natural mode and the natural frequency, 
respectively.

Solution of (A2) is assumed in exponential form

(A3)

By substituting (A3) into (A2) one fi nds the following bi-
quadratic characteristic equation:

(A4)

Its four roots yield

(A5)
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(A7)

Thus, the solution of (A2) takes the following form:

(A8)

Let us consider vibrations of a free beam with suspended 
warping at its ends. The corresponding boundary conditions 
read

(A9)

that leads to

(A10)

In the case of symmetric modes, A
1
 = A

3
 = 0, while for anti-

symmetric modes A
2
 = A

4
 = 0. The corresponding eigenvalue 

problems yield

(A11)

(A12)

For a nontrivial solution, determinants of (A11) and (A12) 
have to be zero. That leads to the frequency equations

(A13)

(A14)

with the same eigenvalue formula for the symmetric (n = 0, 2…) 
and anti-symmetric (n = 1, 3…) modes

(A15)

Taking (A15) into account, one fi nds the following expression 
for natural frequencies of torsional vibrations from (A7)

(A16)

Integration constants A
2
 and A

4
, and A

1
 and A

3
 are determined 

from (A11) and (A12), respectively. Symmetric and anti-sym-
metric natural modes according to (A8) yield

(A17)

(A18)

In case n = 0, the natural frequency ω
0
 =0, Eq. (A16), and 

the natural mode ψ
0
 = 1, Eq. (A17), that is related to the rigid 

body rotation.
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