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1 Introduction

UDC: 629.544:629.5.023.463

Contribution of Transverse
Bulkheads to Hull Stiffness
of Large Container Ships

Preliminary communication

Ultra large container ships are rather flexible and exposed to significant wave deformations.
Therefore, the hydroelastic strength analysis is required for these types of ships. The coupling of
a beam structural model and a 3D hydrodynamic model is preferable for reasons of simplicity. In
this paper, the contribution of large number of transverse bulkheads to general hull stiffness is
analysed. The prismatic pontoon with the cross-section of a large container vessel is considered
for this purpose. The 3D FEM torsional analysis is performed with transverse bulkheads included
and excluded. The correlation analysis of the obtained deformations indicated the influence of
transverse bulkheads on the ship hull stiffness. The analysis is done by employing the torsional
theory of thin-walled girders.

Keywords: container ship, finite element method, stiffness, thin-walled girder, torsion

Doprinos poprec¢nih pregrada krutosti trupa velikih kontejnerskih bro-
dova

Prethodno priopéenje

Vrlo veliki kontejnerski brodovi prilicno su elasti¢ni i stoga podlozni velikim valnim defor-
macijama. Zato se danas njihova ¢vrstoca istrazuje metodama hidroelasti¢nosti. Pritom se radi
jednostavnosti sprezu gredni strukturni model i 3D hidrodinamic¢ki model. U ovom €lanku istrazen
je doprinos velikoga broja poprecnih pregrada kontejnerskih brodova opéoj krutosti trupa. Za
te potrebe razmatran je prizmati¢ni ponton s popre¢nim presjekom velikoga kontejnerskog
broda. Konstruiran je 3D model konaénih elemenata i provedena je analiza uvijanja s uklju¢enim
i isklju¢enim popre¢nim pregradama. Korelacijskom analizom deformacija za ova dva slu¢aja
ustanovljen je utjecaj popre¢nih pregrada na krutost brodskoga trupa. Pritom se koristila teorija
uvijanja tankostjenih nosaca.

Kljuéne rijeci: kontejnerski brod, metoda konacnih elemenata, krutost, tankostjeni nosac,
uvijanje

However, due to the large number of transverse bulkheads and
to the model discontinuity, it is more practical and reasonable

Nowadays sea transport is rapidly increasing and ultra large
container ships are built [1]. Since they are rather flexible, their
hydroelastic response becomes an imperative subject of inves-
tigation. In the early design stage, the coupling of a FEM beam
structural model with a 3D hydrodynamic model based on the
radiation-diffraction theory is reasonable [2], [3].

The 1D FEM structural model is quite sophisticated since it
takes into account the bending and shear stiffness, as well as the
torsional and warping stiffness [4], [5]. The general hull stiffness
is increased due to the large number of transverse bulkheads in
holds. There are two types of bulkheads, i.e. ordinary watertight
bulkheads and grillage ones. The distance between them is de-
termined by the container length.

Transverse bulkheads stretch within one web frame spacing
and are quite stiff. They can be directly included in the 1D FEM
model as a short beam element with a closed cross-section [6], [7].

to take into account their continuous contribution to the general
hull stiffness.

Different attempts to take the influence of transverse bulk-
heads into account have been made. One of the first approaches
was to increase the deck thickness based on the equivalence of
the deformation energy of transverse bulkhead girders and the
increased deck energy [8]. Today, the usual way is to model
transverse bulkheads by axial elastic springs at their joints to the
ship hull. The spring effect is condensed in lumped bimoments
[9]. Furthermore, in the case of a large number of transverse
bulkheads, the lumped bimoments might be distributed along
the hull girder [10]. The distributed bimoments are manifested
as additional torque load, which depends on the variation of
the twist angle as pure torsional torque. Therefore, only the
torsional stiffness of the ship hull is increased due to the bulk-
head influence.
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The effect of transverse structure on the deformation of
thin-walled girders is a challenging subject of contemporary
investigations [11], [12], [13]. Recent literature shows that the
problem is rather complex and the complicated solutions offered
there reduce the applicative advantages of the combined beam
theory and the thin-walled girder theory (1D + 2D) with respect
to the direct 3D FEM analysis. In any case, the reliability of the
1D + 2D theory has to be checked by the correlation analysis
with 3D FEM solutions.

In the light of the above circumstances, especially of the needs
of the ship hydroelasticity analyses, where results of dry natural
vibrations of the ship hull are required (modes, frequencies, mo-
dal stiffness, modal mass), a simpler solution is preferable and
more convenient. That was the motivation for the investigation
of this challenging problem. Thus, the 3D FEM analysis of the
prismatic hold structure with and without transverse bulkheads
is performed. The equivalence of the maximum twist angle in
the 1D and 3D models is used as a condition for determining the
change of torsional beam stiffness. The reliability of approach
is checked by the correlation for 1D and 3D warping functions
and stress distribution.

2 Outline of the thin-walled girder theory

The thin-walled girder torsional theory is developed under
assumptions that a considered structure is of membrane type (only
in-plane deformation occurs) and that there is no distortion of
the cross-section (twist angle is constant along the cross-section
contour).

- =L

Figure 1 Beam torsion
Slika1 Uvijanje grede

A prismatic girder exposed to torsion is shown in Figure 1.
The equilibrium of sectional torque, 7, and the distributed external
torsional load, y , yields

T=-pdx. (1)

According to the theory of thin-walled girders, the sectional
torque consists of a pure torsional part and a warping contribu-
tion [14]

3
r=r7+7, =61 %Y g LV @
dx dx

where

E, G — Young’s modulus and shear modulus
1,1, — torsional and warping modulus

v — twist angle

Substitution of (2) into (1) leads to the ordinary differential
equation of the fourth order

d'y d’ Iy
EI -Gl, =U.. 3
w d 4 d x Aux ( )

Its solution reads
v=A+Ax+A chBx+A shBx+y,, 4)

where

B= EI (&)

and A, are integration constants, while y/ represents a particular
solution which depends on .

Let us consider the twisting of the girder shown in Figure 1,
which is loaded by torque M, at the ends, while p = 0. The warp-
ing of the girder ends is suspended In this case the twist angle
Y is an anti-symmetric function and therefore A, = A, = 0. The
remaining constants A, and A, are determined by satisfying the
boundary conditions

u=Yz_o, ©)
d x

where u is the warping function (axial displacement) and u is

the relative sectional warping due to the unit beam deformation,

4/ .» defined according to the theory of thin-walled girders [15],

[16]. The final expressions for the twist angle reads

_Mlfx__shBx %)
CGL|1 Pl-chBl|

Now, it is possible to determine sectional forces, i.e. pure
torsional and warping torques (2)

x=l: T=M,

T =M 1_ch,Bx T = tch,Bx ®)
chpl chpl
and warping (sectorial) bimoment
2
h
B, =£1, Y oy P ©)
dx Bch Bl
Furthermore, the warping function (6) takes the form of
M h
M. () chpriy (10)
GI, ch Bl

Torques 7, and T, are the result of shear stresses 7 and 7, due
to pure torsion and suspended warping, respectively. The warping
bimoment B, represents the work of axial normal stress o on the
displacement u at a cross-section, i.e.
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B, =[orids, (11
where v
o=V (12)
dx*

Thus, by substituting (12) into (11) one finds the expression
for warping modulus in (9)

1,=[ards.

s

13)

3 Modelling of transverse bulkheads

The length of transverse bulkheads in large container ships
is equal to one web frame spacing. They are of grillage type and
therefore quite stiff. As a result, the bulkhead influence on the
hull warping reduction is significant.

In the torsional thin-walled girder theory, bulkheads can be
modelled by axial elastic foundation at their joint to the hull struc-
ture [9], [10]. In the case of a large number of bulkheads, the line
foundation can be spread to the area foundation of the hull shell.
The corresponding axial (tangential) surface load yields

quu:Kﬁd—W, (14)
dx
where K is the spread bulkhead stiffness and u is the warping
function (6).

Axial load g causes an additional bimoment per unit length
on the relative sectional warping u

b= Iqﬁd S. (15)
By substituting (14) into (15) one writes
dy
b=k—— (16)
dx’
where
k=x|a"ds (17)

is the sectional bulkhead stiffness.
According to the theory presented in [9] and [10], the bulk-
head bimoment causes a distributed torque

db d’y
=—=k—7p, 18
o dx dx’ (19
where relation (16) is used for b. The torque , is the transformed
bulkhead load and has to be equilibrated by sectional torques 7,
and 7, (2). Thus, by substituting (18) into (3), the differential
equation for girder torsion with bulkhead influence is obtained:

4
Eld"”

2
. (GI, +k)d;// 0. (19)

Generally, the value of k has to be calculated for a given
bulkhead structure. It is a result of flexural bulkhead stiffness.

4 Effect of transverse bulkheads

In order to take the influence of bulkheads into account, an-
other approach can also be applied. A ship hull consists of a large
number of open cross-section segments (holds) and of closed ones
(bulkheads). For the open section, the torsional modulus /,is quite
small, and therefore the warping modulus I plays the main role.
In a short bulkhead area, the torsional modulus of closed section

I is one order of magnitude higher than I, while I, % is of the
same order as / . For the reason of 51mpllclty we can cons1der a
uniform girder with the equivalent torsional modulus I , where
I < I,* <l 9 and the equivalent warping modulus I equal to
I . In this case, the differential equation (3) takes the form of

d* LAy
EI -GI, =0, (20)
" dxt dx’
where
GI, =GlI, +Gl,. 1)

Gl, is the additional hull torsional stiffness due to bulkheads
as closed cross-section segments. Parameters k and G/, in (19)
and (21) respectively, are equivalent quantities.

Instead of bulkhead modelling by equivalent axial elastic
foundation, as it is usually done in literature, it is possible to
determine the contribution of bulkheads by the 3D FEM analysis,
as it is elaborated in Section 7. Let us assume, for the time being,
that the end twist angles of a prismatic girder without and with
transverse bulkheads are known, w(l) and () respectively.
Referring to (7), one writes

M, thy

H=—L|1-— 22

v() GI’( y) (22)
thy’

= 23

v ()= GI( > J (23)

where

fGI,

=pl=1 E_IW 24)
GI

=p =1l EI (25)

Ratios of Eqs (23) and (22) lead to the transcendental equation
for determining the unknown parameter y*

%{13115 ):%(1—“1—0&. 26)
y y y y )y

Now, the new value of torsional modulus can be determined
by employing (24) and (25), i.e.

* *\2
L (y_J
I, y
According to (21), the contribution of bulkheads to torsional

stiffness is Lo
I_bz(y_J 4
I, \y

€2

(28)
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The twist angle (7) and the warping function (10) in non-
dimensional form read respectively:

GI; . x shf'x

— VY = (29)
M, I ychy

Gl _y chBx (30)
M, u chy

Referring to (8), the twisting and warping torques take the
following form:

T, 3 chf'x T

2t w

T, chfx
M chy"” M, chy ’

s

(€2Y)

t

Furthermore, the twisting torque can be split into the hull part
and the bulkhead contribution

# # #

T LT .
Mt Mt Ml‘
where, proportionally to their torsional moduli (21),
T, I T T, 1T
[l B e 2 b _ b Tt (33)

Mt_If*Mt’ Mf_It*Mf‘
Ratios 1, /I” and I,/ are defined by (27) and (28).
Finally, the warping bimoment (9) takes the following non-

dimensional form:

B,  shf'x
M, y chy"’
The presented approach is based on the known ratio of end
values of the twist angle for a girder without and with transverse
bulkheads. Its reliability can be checked by the known ratio of

warping functions in the middle of the girder. According to (10),

it follows that 1

u*(0>:[1)2 chy
wo) \y) 1

chy

(34)

(35)

Figure 2 A 7800TEU container vessel
Slika2 Kontejnerski brod nosivosti 7800 TEU

-

An additional way to check the obtained results is to compare
the normal stress ratio at girder ends represented by the warping
bimoments (9)

B,() ythy
B,(I) ythy’

Actually, ratios (35) and (36) are related to the first and second
derivative of the twist angle, (6) and (9) respectively.

(36)

5 Ship particulars

A 7800 TEU container vessel of the following main particulars
is considered, Figure 2.

2

A

- T 'w _!.‘._d
ke
4
4&11 ] é
D |t
L
> P
— o]
v |

Figure 3 Midship cross-section
Slika3 Glavno rebro
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Length overall L, =334m
Length between perpendiculars L =319 m
Breadth B=428m
Depth =24.6m
Draught T=145m
Displacement A=135530t
£ e T -
N U 3 I B UL
T Tafi ¢ T [1& & S
2T BT entiie
= 3 b & % EIE: ~
P 1 | B LI, "-er 44 | gl I

¢
Figure 4 Transverse bulkhead
Slika4 Poprec¢na pregrada

Figure 5 Warping of cross-section, u 3
Slika5 Vitoperenje popre¢nog presjeka, u

.%;;ﬁj[fff,”m.
YRR ERER

(

‘ﬁwf

The midship cross-section is shown in Figure 3, while
Figure 4 shows the transverse bulkhead. Properties of the open
cross-section are determined by the STIFF program [17].

Cross-section area A=6.394m?

Horizontal shear area A,=1015 m?
Vertical shear area A =1314m?
Vertical position of neutral line =11.66 m

Vertical position of shear -

- torsional centre 7,=-13.50 m
Horizontal moment of inertia 1, = 1899 m*
Vertical moment of inertia I, =676 m*
Torsional modulus I =14.45m*

Warping modulus I = 171400 m°

Position of deformation centre, z,, is rather low due to the
open cross-section. The relative warping of cross-section, u, is
illustrated in Figure 5. Young’s modulus, shear modulus and
Poisson’s ratio are: E = 2.06 - 108 kN/m?, G = 0.7923 - 10® kN/m?,
v= 0.3, respectively.

6 FEM models of a hull segment

SELINDS
SELZIND3

SELINDZ

SBELZMNDZ?
SEL3NDA
SELZIND1

SEL1INDT

3 G

Figure 6 Prismatic FEM model of a hull part
Slika 6 Prizmati¢ni model konac¢nih elemenata dijela trupa

The front holds of the ship as a prismatic thin-walled girder
with the length of L =2/=174 m are considered. The FEM
model is generated by the software [18]. It is constructed of
four different types of superelements, and includes the total of
13 superelements, Figures 6 and 7. The shell finite elements are
used. The model is clamped at the fore end and the only warp-
ing is suspended at the aft end. The vertical distributed load
is imposed at the aft cross-section, generating the total torque
M, = 40570 kNm, Figure 8, [19].

There are two types of transverse bulkheads within the ship
hold space, i.e. the ordinary watertight bulkheads and bulkheads
of grillage construction. Both types stretch within one web frame
spacing. The bulkhead top ends with the stool. Such a bulkhead
design makes them quite strong and therefore the general hull
stiffness is increased.
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Supesr ot Super et

SEL3IND2
SELINDY

4 o |

Figure 10 Superelement No. 3 with a transverse bulkhead
Slika 10 Superelement br. 3 s popreénom pregradom

G,

Figure 7 Superelement No. 3

Slika7 Superelement br. 3 The FEM model of the ship segment with transverse bulk-

heads and a typical superelement with the watertight bulkhead are

1 T T T 11 1 shown in Figures 9 and 10 respectively. The boundary conditions

- SEEEER . . IHE EHE Y . . . .
AR N ENE RN | and imposed load are the same as in the case of prismatic model
ﬂ : . : i without transverse bulkheads.
S e
X . T o
T orrr
o P B S S AN SRS TN S NN SN - I
Figure 8 Load at the aft end .
Slika8 Opterecenje kraja modela i
KL':

Figure 9 Prismatic FEM model of a hull part with transverse  Figure 11 Deformation and stresses of the model without trans-

bulkheads verse bulkheads, ¢, [N/mm?]
Slika9 Prizmatiéni model konaénih elemenata dijela trupa s Slika 11  Deformacije i naprezanja modela bez popreénih pre-
popre¢nim pregradama grada, o, [N/mm?]
M:mm‘ Figure 12 Deformation and stresses of the model with transverse
bulkheads, o, [N/mm?]
SELZNOS Slika 12 Deformacije i naprezanja modela s popre¢nim pre-
. gradama, o, [N/mm?]
SELIINDS
SEL2IND4 rﬁ
SEL2IMDY
SELANDS
SEL2IND3
SELIINDZ
SELZIND2
SELANDA
SELZINDT
SEL1NDT
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Deformed models, without and with transverse bulkheads,
are shown in Figures 11 and 12 respectively. Distortion of the
cross-section is negligible as a result of a double skin cross-sec-
tion with very strong web frames. Due to the same reason, the
bending stresses are negligible in comparison to the membrane
stresses; therefore, the structure behaves as a membrane one. Dif-
ferent colours in Figures 11 and 12 denote the levels of von Mises
membrane stress. High stress concentration in the hatch coaming
and the upper deck at the model ends confirms the well-known fact
caused by the suspended warping of the cross-section, [20].

7 Influence of transverse bulkheads

Since the 3D FEM model behaves as a membrane structure
without distortion of the cross-section, the obtained results are
comparable to those of the 1D analysis.

’z
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N

oD
[=]
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Figure 13 Rotation of the cross-section
Slika 13 Zakret popre¢nog presjeka

Rotation of the model free cross-section, determined analyti-
cally by the beam theory (1D) and numerically by FEM (3D) for
the pontoon with and without transverse bulkheads, is shown in
Figure 13. The twist angle of the 3D analysis is somewhat higher
than that of the 1D analysis.

0.27690-10°°
0.22969-107°

Vo _
l/IID

Vertical position of the deformation centre in the 3D model
is above that of the 1D model, points D, and D, in Figure 13,
respectively. The influence of transverse bulkheads on the position
of the deformation centre is quite weak, point D, . The warping
of cross-section determined by the 3D analysis is rather close to
that of the 1D analysis, Figure 5. Therefore, the warping correla-
tion could be done only for one representative point of extreme
displacement value. Let us chose the joint of the bilge and the
inner bottom, Figure 5, where

Usp _ 1.02594 mm
u,, 1.05192mm

Thus, the correlation of 3D and 1D analyses results is quite
good concerning warping, while the 3D FEM model is more
elastic than the 1D model from the twisting point of view. This
could be caused by the shear influence on torsion which is not
taken into account in the beam analysis, [10]. That fact might be
the subject of further investigations. However, it does not have
a significant influence on the relative bulkhead contribution to
the hull stiffness.

The twist angle ratio of the model with and without transverse
bulkheads reads

=1.2055. o)

= 0.9753. (b)

% -3
Vip _ 024876 107 _ 5 ggg37. ©
v,, 0.27690-10
The warping ratio in the bilge point is
Uyp _ 0.90013mm _ ) o d
iy,  1.02594mm

The axial normal stress ratio in the hatch coaming, Figures
11 and 12, yields

GSD —
O-SD

5.93623N / mm®
 6.35805N / mm’

In the considered numerical example, according to (24),
y=0.49541, while the solution of Eq. (26) gives y" =0.7464.
The variation of torsional stiffness, Eq. (27),is I, /I, =2.27 .1t
means that the bulkhead contribution is I, /I, =1.27.

=0.93365. (e)

Figure 14 Twist angle
Slika 14 Kut uvijanja

0.1
— without bulkheads

. with bulkheads
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0.15
— without bulkheads
.. with bulkheads
01,
Gl u a
o
" Gl u*
. M U \
0.05
0
-1 05 0 05 1
x/
Figure 15 Deck warping
Slika 15 Vitoperenje palube
—_ = "= et
. I I == e
.................. HIEL e
05 {a | .
Vs ==
— without bulkheads
------- with bulkheads
0
-1 05 0 05 1

x/l

Figure 16 Twisting and warping torques
Slika 16  Torzijski momenti uvijanja i vitoperenja

1

Biq‘,T — without bulkheads
------- with bulkheads
0.5
T 0 1
-1 -0.5 0 " 0.5 1
0.5 - - B,

-1

x/l

Figure 17 Warping bimoment
Slika 177 Bimoment vitoperenja

The girder displacements and sectional forces are determined
for both cases, i.e. without and with transverse bulkheads, and
are shown in Figures 14, 15, 16 and 17 in non-dimensional
form. The corresponding formulae from Sections 2 and 4 are
used. The twist angle y is reduced according to given values of
the 3D FEM analysis, Figure 14. The warping of the cross-sec-
tion u is also reduced, Figure 15. Its variation defined by the 1D
analysis, Eq. (35) is

u*(0)

=0.89388.
y M

Discrepancy between the 1D analysis and the 3D FEM analy-
sis, value (d), is only 1.9%.

The warping bimoment shown in Figure 17 is also reduced
due to bulkheads. The 1D ratio, Eq. (36), yields

B, ()
B, ()

=0.91633. ()

By comparing it to the 3D FEM stress ratio (e), a discrepancy
of -1.9% is obtained. This fact confirms quite good simulation of
the bulkhead effect in the thin-walled girder theory.

The torques distributions are shown in Figure 16. The hull
twisting torque in the case with bulkheads, 7, is very close to
the pure twisting torque without bulkheads, 7. The warping
torque 7' is now reduced in comparison to 7, due to the bulkhead
contribution, 7.

The influence of the increased value of torsional stiffness on
vibrations can, for instance, be analysed in the case of uncoupled
natural vibration of a free thin-walled girder with suspended
boundary cross-section warping. The corresponding formula for
natural frequencies derived in Appendix reads, (A16)

nr [GI, (nﬂ' )2 El,
wn =0 o 1 H— ’
L\J L) GI,

t

(37)

n=0,12..

The following relation between natural frequencies of a hull
segment with and without transverse bulkheads exists:

2
) 1+( y}
w, nw

s 38)
nw

For the first natural frequencies of elastic modes one finds
o, / @, = 1.05594. Thus, a 127% torsional stiffness increase due
to bulkheads results in a 5.6% increase in the first frequency [M3]
in the considered case. It is evident from (38) that the variation
of higher mode natural frequencies is decreased.

8 Bending stiffness analysis
8.1 Horizontal bending

Horizontal bending is analysed by the FEM model adapted
for this purpose. The model aft end is entirely free and loaded
by distributed loads, as shown in Figure 18. The vertical load
generates a torque of M, = 40570 kNm, while the total horizontal
force F, acting about the deformation centre, equilibrates it. In
this way, the girder is only exposed to horizontal bending.

In the cases of the model without and with transverse
bulkheads, the horizontal force of pure bending takes values
of ¥ =1500 kN and F)* = 1565 kN, respectively. The cor-
respondmg maximum deflections yield 6 = 19.8654 mm and
5} = 20.4069 mm, Figures 19 and 20. Thus, the moment of inertia
of the cross-section of the reinforced model can be expressed by
that of the model without bulkheads:
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Figure 18 Load at the model free aft end in the case of horizontal
bending

Opterecenje horizontalnog savijanja na slobodnom
straznjem kraju modela

Slika 18

153282
0786413

9432688 006

f,

Figure 19 Horizontal bending of the model without transverse
bulkheads, c,,, [N/mm?]

Horizontalno savijanje modela bez popre¢nih pregrada,
o, [IN/mm?]

Slika 19

Figure 20 Horizontal bending of the model with transverse bulk-
heads, o,,, [N/mm?]
Horizontalno savijanje modela s popre¢nim pregrad-

ama, o, [N/mm?]

Slika 20

m‘é?ﬂﬁ
Ta3412
714071
B.2473
555389
476048
390707
ERFE
238025
156684
079343

1904100005

I = S/Fyl =1.01565 .. h
TS IF (h)

The correction is rather small, approximately 1.56% and its
influence on vibration is almost negligible. Stress concentration
in the bilge area at the fixed model end due to bending is evident,
Figures 19 and 20.

Since pure torque M, and horizontal forces /' and F " for the
model without and with transverse bulkheads are known, it is
possible to determine the vertical position of the deformation
centre:

h M "
p=———" =

2 F

h M .
2 F ®
where / is the double bottom height. The obtained results are
compared with those of pure torsion determined in Section 7,
in Table 1. The 3D FEM analyses show that the torsional centre
and the shear centre are not the same points. In the thin-walled
girder theory these two centres are not distinguished, and the
unique deformation centre is determined. Probably, the suspended
warping in the 3D FEM torsional analysis has some influence on
the vertical position of the torsional centre. We can see that the
transverse bulkheads also influence the position of the torsional
and shear centres.

Table 1 Vertical position of the deformation centre, z, [m]
Tablica 1 Vertikalni poloZaj sredista deformacije, z, [m]

Without bulkheads | With bulkheads
e | e
o g |12
Delmaionsnte | 1330

8.2 Vertical bending

A similar FEM analysis is performed for the investigation of
vertical bending stiffness. The total vertical force, imposed at the
free model end, is F, = 2000 kN. The corresponding deflection at
the same place, in the case of the model without and with trans-
verse bulkheads, yields § =-28.3706 mmand 6" = -28.1697 mm,
respectively. Thus, for the corrected vertical moment of inertia
of the cross-section one finds:

5

61 .
I =551, =1007131,. i)

Z

It is obvious that the influence of transverse bulkheads on the
vertical stiffness is even lower than on the horizontal stiffness.

9 Conclusion

Hydroelastic analysis of large container vessels becomes an
actual problem. For the reason of simplicity, a beam model of
hull girder is coupled with a 3D hydrodynamic model. Instead
of calculating the transverse bulkhead stiffness, the contribution
of bulkheads to the global stiffness of the ship hull is determined
by the 3D FEM analysis of a prismatic ship-like pontoon. This
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is a simple and reliable engineering approach. It was found that
the increase in torsional stiffness is considerable in the illustrated
numerical example. The influence of this fact on the resonant ship
hull response to wave excitation is significant and therefore has
to be taken into account. On the other hand, the influence of the
transverse bulkheads on vertical and horizontal bending stiffness
is rather small and may be neglected.

However, some discrepancies between the thin-walled girder
theory and the 3D FEM still exist. In the analysed numerical
example of a ship hull segment, the twist angle determined by
the beam analysis is significantly smaller than that obtained by
the 3D FEM analysis. Even the twist angle of the beam without
bulkheads is still lower than that of the 3D FEM model reinforced
by bulkheads. Also, there are some discrepancies of the shear
centre position between the 1D and 3D models without bulk-
heads. On the other hand, agreement between the cross-section
warping is excellent. This problem will be the subject of further
investigation.

Most of present papers dealing with problems of thin-walled
structures are concentrated on the investigation within the thin-
walled girder theory. The validation of results should be based
on the correlation analysis with 3D FEM models which simu-
late the structure behaviour in a more realistic way. Also, some
model tests and full scale measurements are very valuable for
this purpose.
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Appendix
Torsional beam vibrations

The differential equation of uncoupled torsional beam vibra-
tions can be written as an extension of the static equation (3),
(4], [21]

2

oty vy Iy
El -Gl +J
w ax4 1 ax2 t a 2

where the twist angle y and the dlstrlbuted torque p are time
dependent quantities. The symbol J denotes the polar mass
moment of inertia. Natural vibrations are harmonic and Eq. (A1)
is reduced to the homogeneous form

=0, (A

d* d’
e, <Y g <Y
dx dx
where y and @ are the natural mode and the natural frequency,
respectively.
Solution of (A2) is assumed in exponential form

(A2)

-0’Jy =0,

v =e* (A3)

By substituting (A3) into (A2) one finds the following bi-
quadratic characteristic equation:

. GIL , J°
o ——+o — ==0. A4
EI, EI, (A9

Its four roots yield
o, =xy, xin, (AS)
where

0

y= G| i+ 40 JfElg +1 (A6)
2FEI, (Gl,)
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0
n= Gl, 1+4w2£]‘;’—1. (A7)
2EI, (GI,)

Thus, the solution of (A2) takes the following form:
y=Ashyx+A,chyx+A;sinnx+A, cosnx.(A8)
Let us consider vibrations of a free beam with suspended

warping at its ends. The corresponding boundary conditions
read

x==xl: T=0, u=0 (A9)
that leads to
dy dy
x==xl: —=0, =0.
dx dx? (A10)

In the case of symmetric modes, A = A, = 0, while for anti-
symmetric modes A, =A, =0. The correspondmg eigenvalue

problems yield
yshyl -—msinnl
0
|:}/3shj/l n smnl:H } {} (ALD
ychyl mncosnl
0
|:}/3ch)/l -’ cosnl:H } o). @

For a nontrivial solution, determinants of (A11) and (A12)
have to be zero. That leads to the frequency equations

yn(y’ +n°)shyl sinnl=0 (A13)

yn(y* +n*)chyl cosnl=0 (Al14)
with the same eigenvalue formula for the symmetric (n =0, 2...)
and anti-symmetric (n = 1, 3...) modes
V1
nl:%, n=0,1,2... (A15)
Taking (A15) into account, one finds the following expression
for natural frequencies of torsional vibrations from (A7)

nr [GI, (mr )2 El,
wn =57 o 1 nal ey ’
21\ J, 21 ) Gl,

Integration constants A, and A,, and A, and A, are determined
from (A1l) and (A12), respectively. Symmetric and anti-sym-
metric natural modes according to (A8) yield

n=0,1,2... (A16)

y,=mnsinn,l-chy x+y,shy, [-cosnx, n=0,2... (Al7)

y,=mn,cosn, [-shy, x—y,chy, [-sinnx, n=L13. (Al8)

In case n =0, the natural frequency @, =0, Eq. (A16), and
the natural mode y, =1, Eq. (A17), that is related to the rigid
body rotation.

BRODGI5RADNJA

59(2008)3, 228-238

238



