
Formalization of BPMN Gateways using the
DD-LOTOS Formal Language

Toufik Messaoud Maarouk, Mohammed El Habib Souidi, Makhlouf Ledmi, and Samra Sabeg

Abstract—Business Process Model and Notation (BPMN), is a
standardized graphical language used for the graphical modeling
of business processes. A BPMN model is composed of several
small graphs called elements; these elements make it possible to
describe the activities, the events, and the interactions between
the components of a business process. Among the essential
elements of BPMN are gateways, which control the flow of data.
However, the big challenge of these gateways is the existence
of several interpretations of the same BPMN model containing
gateways; this is due to the informal and ambiguous definition.
Several works have proposed the formalization of gateways
using formal languages such as process algebras, Petri nets,
etc. The purpose of this article is to propose a formalization
of BPMN gateways using the formal language DD-LOTOS. DD-
LOTOS is defined on a semantics of true parallelism called
maximality semantics and allows to support distribution and
temporal constraints. We then propose the verification of certain
properties using the UPPAAL model checker. Our approach
has been validated through a case study representing the online
purchasing process.

Index Terms—BPMN, business process, Gateways, formal
semantics, true concurrency, DD-LOTOS.

I. INTRODUCTION

The BPMN notation [1] is considered the most adopted
language in modeling business processes in an organization
[2]. Through its basic graphic elements, BPMN offers an
intuitive approach to modeling complex business processes.

BPMN provides several types of diagrams designed to
describe, automate, and enhance business processes at various
levels of implementation. Among them, the collaboration
diagram facilitates interaction among different stakeholders
in the process, while an extended version, known as the
choreography diagram, is utilized to coordinate interactions.

Today, BPMN is used in many different fields, including
healthcare, finance, and industry. In the healthcare sector,
works [3–5] have shown how BPMN can enhance the quality
of clinical care. Likewise, in finance, research [6, 7] showcases
how organizations employ BPMN to deliver high-quality ser-
vices at a reduced cost.

The interpretation of BPMN diagrams is defined by the
meaning of each graphical element used. The BPMN 2.0

Manuscript received October 2, 2023; revised October 30, 2023. Date of
publication November 29, 2023. Date of current version November 29, 2023.
The associate editor prof. Tihana Galinac Grbac has been coordinating the
review of this manuscript and approved it for publication.

Authors are with the Department of Mathematics and Computer Science,
ICOSI Lab, University Abbes Laghrour Khenchela, BP 1252 EL Houria,
Algeria (e-mails: {maarouk.toufik; souidi.mohammed; ledmi.makhlouf;
samra.sabeg}@univ-khenchela.dz).

Digital Object Identifier (DOI): 10.24138/jcomss-2023-0138

specification [1, 8] provides examples illustrating the use
of graphical elements, with detailed explanations. These ex-
amples show how the elements and diagram construction
rules can be applied in practice to model a process. The
BPMN 2.0 specification defines the semantic concepts used
in processes, associating them with graphical elements. It also
aims to resolve inconsistencies and ambiguities identified in
the diagrams of the previous BPMN 1.2 specification [1].

Moreover, the BPMN 2.0 specification defines the con-
formance property by defining the execution semantics of
each element. This serves to ensure consistent use of BPMN
diagrams [1]. The behavioral semantics of the diagrams are
described informally through the use of the token concept,
which traverses the Sequence flows elements and passes
through the process elements.

Despite its widespread use in organizations, BPMN notation
suffers from significant shortcomings. The primary challenge
lies in the lack of rigorous and precise semantics for these
diagrams. Although BPMN is defined using graphical syntax,
there is ambiguity in the interpretation of these diagrams,
especially when they include gateways [9, 10].

Gateways pose many semantic problems, and sometimes
their behavior is ambiguous, so the interpretation of these gate-
ways is often quite complex. Hence, the interest in proposing
a rigorous semantics that can eliminate all the ambiguities
associated with these gateways.

Several works [11–18] have proposed the formalization
and verification of certain formal properties to ensure the
consistency and smooth functioning of BPMN diagrams. Most
of the works [11–15] propose a mapping with Petri nets and
their extensions. Others propose a mapping with the formal
languages Maude [16, 19] and the CSP process algebra [18].
Verified properties [18, 20–24] encompass various aspects
such as deadlocks, coverability, accessibility, safeness, sound-
ness, compatibility, equivalence, preservation, etc. Other works
[9, 10, 25–32] focus solely on transforming BPMN gateways
into formal languages.

In a previous work [33], we proposed a formal semantics
for a subset of BPMN elements using the DD-LOTOS [34]
formal language. The choice of DD-LOTOS is motivated by
the following considerations:

1) DD-LOTOS is a language that explicitly supports the
distributed aspect of applications.

2) DD-LOTOS is defined using a semantic of true paral-
lelism known as maximality semantics [35].

3) As time is a key concept for every business process within

254 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023

1845-6421/12/2023-0138 © 2023 CCIS

Original scientific article



an organization, e.g., processes have to meet certain
deadlines and coordination between process tasks has to
be achieved, DD-LOTOS takes the temporal aspect into
account.

In this work, we focus on the formalization of BPMN
gateways, in particular the inclusive gateway, the exclusive
gateway, and the parallel gateway. We propose a mapping of
collaboration diagrams containing gateways in terms of the
DD-LOTS specification. Once the specification is generated,
we can formally verify certain properties, such as deadlock,
using the UPPAAL model checker. The formal verification
approach is described in our work [36].

The remainder of this document is structured as follows: We
review related work in Section II. We explain BPMN notation
and the DD-LOTOS formal language in Section III. Section IV
focuses on interpreting of BPMN gateways into DD-LOTOS
behavioral expressions. The case study is presented in Section
V. The paper ends with a conclusion and future work.

II. RELATED WORKS

In recent years, research on formalizing business processes
has gained significant momentum. Although BPMN has be-
come a standard in business process modeling, it suffers from a
lack of formal semantics, leading to problems of inconsistency
and ambiguity in models.

In this context, [32] proposed an operational semantics for
BPMN collaboration diagrams in terms of labeled transition
systems (LTS). The authors began by defining syntax in BNF
style, comprising collaborations, processes, and gateways. The
semantics were defined in terms of marked collaborations,
focusing on xor-split, and-split, or-split, xor-join, and and-
join gateways. The authors chose not to consider the or-join
gateway for this work.

In [31], the authors defined a workflow graph to express
collaboration, where the nodes of the graph represent activities,
forks, and-join, splits, merges, or-join, or-split, and the two
start and end events. There is a single start node and a
single end node in a workflow graph. The end, activity,
split, or-split, and fork nodes allow only one incoming edge.
The start, activity, merge, or-join, and and-join nodes allow
only one outgoing edge. The semantics is defined by the
distribution of tokens on the edges. They also proposed new
definitions for three key properties: soundness, completeness,
and liberty, with a focus on supporting the or-join gateway.
Soundness guarantees the absence of deadlock and a lack of
synchronization.

In [30], the authors proposed an abstract state machine
representing a business process as a graph. Nodes represent
BPMN workflow objects (activities, events, and gateways).
Arcs determine the order in which nodes are visited. During
visits to nodes, a set of associated rules are executed. These
rules describe the meaning of constructing the workflow for
each node. Thus, the language defined is represented by the
set of such rules, called rule schemes. The rules define how
a node is activated, i.e., the formula for the number of tokens
on incoming arcs needed for the node to be activated. This
determines the number of tokens consumed on incoming edges

and the number of tokens produced on outgoing edges. The
authors also provided rules that include a mechanism for
selecting the subset of outgoing arcs for or-split semantics. In
the case of the or-join gateway, they discussed two proposals:
one for acyclic graphs and another for graphs with cycles,
albeit with certain restrictions. The work also checks some
properties, including deadlock in acyclic workflow diagrams
and deadlock in workflow diagrams with cycles, subject to
specific constraints.

In [9], the authors proposed a formal semantics for the latest
version of the BPMN notation, namely 2.0, and considered the
properties of soundness and safety. The authors introduced two
semantics: local and global. They also provided proofs of the
equivalence between these two semantics. The local semantics
consider the marking states of incoming edges and outgoing
edges. The BPMN elements considered in this study are the
two events start and end, the gateways and, xor, and or. The
authors only consider safe BPMN models.

In [29], the author exposes two problems with the formal-
ization of the or-join gateway. The first one concerns the self-
reference of the or-join gateway. This self-reference is defined
in the informal semantics of the gateway, which can generate a
system whose exploration of the state space is exponential. The
second problem concerns cyclic graphs or vicious circles. The
author proposes a semantics and defines a new workflow graph
class named separable graphs, which contains well-structured
graphs and is a sound acyclic graph, generating a state-space
based on it.

For the problem of vicious circles, the author proposes a
static analysis based on graph-based approaches. The author
proposes to prove the property of soundness.

In [28], the authors proposed a formal semantics for or-join,
enabling the determination of when an or-join is activated.
Two rules are defined: the enablement rule and the firing rule.
The enablement rule decides if the object is ready to fire; the
firing rule determines the result of the object’s enablement.
To implement the semantics defined, the authors propose an
algorithm to determine the activated or-join. The naive version
of the algorithm suffers from the problem of the combinatorial
explosion of the state species. To overcome this problem,
the authors propose a version based on or-Join’s activation
conditions; the algorithm’s complexity is reduced to linear
complexity.

In [10], the authors proposed formal semantics for a subset
of the BPMN notation. The objects concerned are sequence
flow, start events, end events, exclusive gateways, and inclusive
gateways. This subset is called BPMNinc. The semantics used
is defined by the notion of process graphs and is implemented
in two steps. The first step is to annotate each sequence flow
with paths containing tokens. The second step uses the first
step to determine the inclusive gateways that can be fired.

In [27], the authors proposed an algorithm to determine if
an or-join element can be activated in a given state in the
BPMN diagram. The originality of the proposed approach lies
in the complexity of the algorithm, which is a constant time
complexity.

In [26], the authors defined two constructs, namely the
dynamic skip and the dynamic block. The skip dynamic

T. M. MAAROUK et al.: FORMALIZATION OF BPMN GATEWAYS USING THE DD-LOTOS FORMAL LANGUAGE 255



construct allows one or more tasks to be skipped along a
control flow path. The dynamic block construct blocks a com-
ponent persistently. The authors have proposed a purely local
semantics for inclusive gateways; this semantics is expressed
using parallel gateways combined with the dynamic block
construction. The new semantics does not support vicious
circles.

In [25], the authors proposed a transformation approach and
a framework for mapping BPMN elements into colored Petri
nets. The mapping is defined by partitioning the BPMN model
into BPMN partitions. This partitioning technique reduces the
complexity of the BPMN model for possible application of
formal verification techniques.

Table I provides a comparative analysis of the studies
discussed in this work, using specific evaluation criteria. The
first criterion under consideration is the model employed for
the formalization of BPMN gateways, encompassing Labeled
Transition Systems, Abstract State Machines, Process Graphs,
Colored Petri Nets, and various others. Other approaches focus
on rules governing nodes and the token distribution.

The second criterion for comparison pertains to the types
of gateways addressed in these studies. The third criterion
examines the formal properties validated, including soundness,
safety, deadlock, and completeness.

III. THE BASIC LANGUAGES

A. BPMN language

BPMN notation offers several types of gateways[1]; the
most used are the inclusive gateway, the exclusive gateway,
and the parallel gateway. Table II presents in the graphical
form of BPMN gateways.

The parallel gateway allows to continue the flow on a
set of parallel paths or to synchronize several parallel paths.
The exclusive gateway allows flows to be split into multiple
paths based on an information-based condition or reconstruct
a single path.

It is difficult to give a precise interpretation of the behavior
of the inclusive gateway (or-join). This is due to the complex
and ambiguous definition of or-join. This gateway enables
the creation of both alternative and parallel paths. According
to [1], all conditions are evaluated, and paths with a true
condition are taken into account. A default path may be
identified if no condition is evaluated as true. If this path is
not specified, a runtime exception occurs.

Event-type graphic elements are used to describe something
that happens, such as the start event of a diagram, the end event
of a diagram, sending and receiving messages, the timer event,
the conditional event, etc. Table III provides the essential
BPMN events.

BPMN offers other elements used in business process
modeling such as tasks, connection objects and sub-processes.

B. Distributed D-LOTOS Language

DD-LOTOS [34] is a formal language defined based on true
concurrency semantics known as maximality semantics [35]. It
is designed to support various aspects of real-time distributed
systems. In DD-LOTOS, operators such as restriction, latency,

and delay facilitate the specification of real-time systems. The
concept of locality or site is integral to defining the distributed
nature of this language.

1) Syntax: The DD-LOTOS syntax consists of two parts.
The first part gives the rules of production of the behavioral
expressions DD-LOTOS, and the second part expresses the
composition of the systems. Table IV presents the syntax of
DD-LOTOS.

2) Semantics:
Definition 3.1: The informal semantics of two syntactic

categories is given by :

• The expression a{d} represents the temporal restriction,
the beginning of the action a is limited by the temporal
interval [0, d]. The expression ∆dE represents the delay
operator, which means that the expression E starts after
the flow of d. In g@t[SP ];E, t is a temporal variable and
SP is a logical predicate;

• The operators of the theory of concurrency: the inte-
riorization hideL inE, non-deterministic choice E[]E,
parallel composition E|[L]|E, sequential composition
E ≫ E, and preemption E [> E;

• The expression a!v{d};E expresses the emission of the
message v on the gate a, this emission is limited by the
temporal interval [0, d]. The expression a?xE expresses
the receipt of a message on the gate a;

• A system can be empty, a composition of two systems or
a behavioral expression E defined in a locality l.

Definition 3.2: The actions in global system are:
• Set of communication actions between localities are mes-

sages emission or reception through a communication
channel Actcom ::= a!m | a?x | τ (output actions, input
actions and the silent action);

• G a set of observable actions,
• δ /∈ G is the successful termination action,
• Set Act = G ∪ {i, δ}.
Definition 3.3: The set L ranged over by l, denotes set of

localities. ϑ an infinite set of channels defined by users ranged
over by a,b,... channels are used for communication messages
between localities.

3) Structured Operational Semantics: The operational se-
mantics of behaviors are given by the operational semantics
of D-LOTOS. This semantics is extended to DD-LOTOS
by giving the semantic rules for communicated systems as
follows:

Process a!v{d};E In the configuration M [a!v{d};E], the
sending of the message v starts only if all the actions in
the set M terminate. In the rule 1 below, the condition
Wait(M) = false, which means that there are actions that
have not completed their executions. Rules 2 and 3 express
a passage of time. Rule 4 expresses that the sending action
must respect the temporal restriction operator, otherwise it is
transformed to Stop.

1) ¬Wait(M)

M [a!v{d};E]
Ma!vx−→ {x:a!v:t}[E]

x = get(M)

2) Wait(Md′ )or(¬Wait(Md′ )and ∀ε>0. Wait(Md′−ε)) d′>0

M [a!v{d};E]
d′−→

Md′ [a!v{d};E]

256 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023



TABLE I
COMPARISON OF WORKS ON BPMN FORMALIZATION.

Paper Model used Considered BPMN gateways Verified formal properties

[32] Labeled Transition Systems Xor-split, And-split, Or-split, Xor-
join, and And-join

/

[31] Workflow Graph And-join, And-split, Or-join, Or-
split

Soundness, completeness, liberty

[30] Abstract State Machine Or-join deadlock

[9] Process Graph Xor-split, And-split, Or-split, Xor-
join, And-join, and Or-join

Soundness, safety

[29] Separable Graphs Or-join, cyclic graphs /

[28] Enablement and Firing Rules Or-join /

[10] Process Graphs Xor, Or /

[27] Workflow Graph Or-join /

[26] Multipolar workflow graphs Or /

[25] Colored Petri Nets Xor, And, Or, and Complex gate-
way

/

TABLE II
BPMN GATEWAY

Parallel Exclusive Inclusive

TABLE III
BPMN EVENTS

Start event Intermediate event End event Message event

Message catching Message end Cancel catching Timer

TABLE IV
SYNTAX OF DD-LOTOS

E ::= Behaviors
stop | exit{d} | ∆dE | X[L] |
g@t[SP ];E | i@t{d};E | hideL inE |
E[]E | E | [L] | E | E ≫ E | E[> E |
a!v{d};E |
a?xE

S ::= Systems
ϕ | S | S | l(E)

3) ¬Wait(M)

M [a!v{d′+d};E]
d−→ M [a!v{d′};E]

4) ¬Wait(M) and d′>d

M [a!v{d};E]
d′−→ M [stop]

Process: a?xE As in the previous configuration M [a?xE],
the reception begins once all actions in the set M complete
their execution.

¬Wait(M)

M [a?xE]
Ma?xy−→ {y:a?x:0}[E]

Remote Communication: The sending and receiving of
messages via the same communication gate consume the silent
action, is expressed by the following rule:

−
M [l(a!v{d};E1)]|M′ [k(a?xE2)]

τ−→M [l(E1)]|M′ [k(E2{v/x})]

Time Evolution on System:

E
d−→E′

l(E)
d−→ l(E′)

S1
d−→S′

1 S2
d−→S′

2

S1 | S2
d−→S′

1 | S′
2

IV. INTERPRETATION OF BPMN GATEWAY IN DD-LOTOS

In this section, we provide an interpretation of different
types of BPMN gateways using the DD-LOTOS formal lan-
guage. Specifically, we focus on three types of gateways: the
exclusive gateway (XOR), the parallel gateway (AND), and
the inclusive gateway (OR). These gateways hold a pivotal
role in controlling data flow within business processes and
require precise interpretation to ensure consistency.

Gateways are used when it is necessary to control sequence
flows; they serve as trigger mechanism that allows or prohibits
the passage of the gateway [1].

In our previous work [33], we proposed an approach to
transforming BPMP elements, including the different cate-
gories of activities and tasks, sub-processes, different events,
message flows, and the two gateways: exclusive and parallel.
However, the inclusive gateway has not been addressed in [33].

We defined a formal semantics for a subset of BPMN using
the DD-LOTOS formal language. Additionally, we developed
a transformation tool named BPMN2DDLOTOS [33], which
allows to create BPMN collaboration diagrams and automati-
cally generates the corresponding DD-LOTOS specifications.

In this paper, our main aim is to examine the formalization
of three types of gateway: Exclusive, Inclusive and Parallel.
First, we will discuss the interpretation of these three gateways
using the DD-LOTOS formal language. For each gateway,
we’ll illustrate the interpretation with an example. We will

T. M. MAAROUK et al.: FORMALIZATION OF BPMN GATEWAYS USING THE DD-LOTOS FORMAL LANGUAGE 257



then develop this approach through a case study representing
the online purchasing process.

A. Exclusive Gateway XOR

For merge behavior, incoming branches behave according
to pass-through semantics. In branching behavior, one branch
from the set of outgoing branches is activated [1].

The table V shows the interpretation of the exclusive
gateway in terms of the DD-LOTOS specification. The table
is divided into two lines, the first for the split version spec-
ification, which splits the input flow into several flows. The
second line is for the join version, which merges several input
flows into a single flow.

TABLE V
EXCLUSIVE GATEWAY

Exclusive Gateway DD-LOTOS interpretation

cond1

cond2

default

process XorSplit[]::=
gateway ? x: Token;

([cond1=true] -> gateway!x;task1;

[]

[cond2=true] -> gateway!x;task2;

[]

gateway!x;task3;//Default branch

[]

stop) //exception
endproc.

process XorJoin[]::=
Choice g in [$g_1,g_2,g_3]$ []

g ? x:Token;
gateway ! x;exit;
endproc.

The behavioral expression of XorSplit in Table V expresses
that an outgoing branch is chosen when its condition expres-
sion is evaluates as true. If no conditions are true, the default
outgoing branch is selected, as defined in [1]. In this case, the
BPMN process generates an exception, which is translated into
the DD-LOTOS Stop process to handle exceptions.

The behavioral expression of XorJoin in the table V ex-
presses that only one incoming branch is required, so the
XorJoin gateway is enabled.

Example: Let’s consider a process in which student requests
are received and processed. Requests can be of two types:
”information request” or ”service request”. An XOR gateway
is used to decide on processing according to the type of
request.

Figure IV-A shows the BPMN collaboration diagram for the
student request processing using the XorSplit gateway. The
diagram consists of start and end events, an XorSplit gateway,
two tasks, and an message intermediate catching event.

Start

Prepare
application Wait

End

End

End

St
ud

en
t

re
qu

es
t

Fig. 1. Xor split gateway

The process begins with the start event, followed by the
request preparation task. Next, an exclusive gateway is in-
troduced, allowing the selection of one or more outgoing
branches. If the student requests information, the first branch
is activated, resulting in the execution of the intermediate
message capture event. However, if the student requests a
service, the waiting task is triggered by the second branch.
Finally, the third branch, representing the default branch, leads
to the execution of the end event.
The DD-LOTOS specification generated by the tool is given
as follows:

S p e c i f i c a t i o n Exc lus iveGa teway [ ] : : =
B e h a v i o r L ( S t u d e n t r e q u e s t )

where
p r o c e s s S t u d e n t r e q u e s t [ ga teway ] : : =

[ t r u e ]−>(
P r e p a r e a p p l i c a t i o n ;
ga teway ? M: Token ; / / R e c e p t i o n o f r e q u e s t
[M=” r e q u e s t i n f o r m a t i o n ”]−> gateway ! M; e x i t

[ ]

[M=” r e q u e s t s e r v i c e ”]−> w a i t ; e x i t )

[ ]

e x i t )

EndProc

EndSpec

B. Parallel Gateway AND

In the merge behavior, all incoming branches must terminate
before the parallel gateway can continue the flow on the
outgoing branch.

In split behavior, flow continues on all outgoing branches
simultaneously.

The table VI shows the interpretation of the parallel gateway
in terms of the DD-LOTOS specification. The table is divided
into two lines, the first for the split version specification, which
splits the input flow into several flows. The second line is for
the join version, which merges several input flows into a single
flow.

The AndSplit gateway in the table VI indicates that the
incoming flow is represented by the reception of a message
via the parallel gateway, followed by the simultaneous sending
of the message on all outgoing branches.

258 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023



TABLE VI
PARALLEL GATEWAY

Parallel Gateway DD-LOTOS interpretation

process AndSplit[]::=
gateway ? x: Token;
( g1 ! x ||| g2 ! x )

endproc

process AndJoin[]::=
( g1 ? x: Token;
|||

g2 ? x: Token;
) >> gateway ! x; exit

endproc

On the other hand, for the AndJoin gateway, all incoming
branches must receive the message before the flow can con-
tinue by sending the received message to the outgoing branch.
This is expressed by the >> operator in DD-LOTOS. In DD-
LOTOS, the semantics of the process E >> P stipulate that P
can only begin execution once E has completed its execution.

Example: In this example, we offer a student enrollment
service for a specific course using a parallel gateway.

The course is offered to students both in class and online.
Both categories are mandatory for course validation.

Figure IV-B shows the BPMN collaboration diagram for the
student enrollment service using the two gateways AndSplit
and AndJoin. The diagram consists of start and end events, an
AndSplit gateway, an AndJoin gateway, the enrollment task,
and two tasks: Inclass and OnLine.

The process begins with the start event, followed by the
student enrollment task. Next, a parallel gateway is introduced
to split the flow (AndSplit). This gateway activates all outgoing
branches, resulting in two branches in this case: one for online
course sessions and one for in-class course sessions. Both
branches must be validated by the student for the second
AndJoin gateway to be activated. However, if the student fails
to validate one or both branches, the AndJoin gateway will
never be activated.
The DD-LOTOS specification generated by the tool is given
as follows:

S p e c i f i c a t i o n P a r a l l e G a t e w a y [ ] : : =
B e h a v i o r L ( S t u d e n t e n r o l l m e n t )

where
p r o c e s s S t u d e n t e n r o l l m e n t [ ga teway ] : : =

[ t r u e ]−>(
E n r o l l m e n t ;

(
ga teway ? M: Token ; / /
R e c e p t i o n o f e n r o l l m e n t
( I n c l a s s ; e x i t | | | O n c l a s s ; e x i t )
)
>>gateway !M; e x i t
)

EndProc

EndSpec

C. Inclusive Gateway OR

The inclusive gateway behavior (OrSplit), which splits the
flow, can be used to create alternative paths as well as parallel
paths within a process flow. All condition expressions are
evaluated, and all outgoing branches with an evaluation of the
condition expression as true will be taken. Therefore, when
designing the gateway, it is essential to take into account that
at least one outgoing branch will be selected.

An inclusive merge gateway (OrJoin) is used to merge
multiple incoming, alternative, and parallel paths [1].

The semantics of the OrJoin gateway is quite complex. In
addition to token based activation of incoming branches, it
may also depend on the distribution and evolution of tokens
on branches other than the incoming branches [9].

In the context of this work, we will restrict ourselves to
cases where the activation of the ”OR Join” gateway depends
solely on the tokens in the incoming branches. This means
focusing on local semantics, where the merging of parallel
paths is determined by the tokens coming directly from the
incoming branches without taking into account the distribution
of tokens on other branches.

So the semantics of the ”OR Join” gateway in the context of
the above-mentioned restriction depend solely on the fact that
at least one token is present in one of the incoming branches.
As soon as at least one of the branches contains a token, the
gateway is activated, and the flow can continue.

In other words, the OR Join gateway is activated as soon as
at least one token is present in one of the incoming branches,
or if several branches have tokens, all of them will be taken
into account to activate the gateway.

The table VII shows the interpretation of the inclusive
gateway in terms of the DD-LOTOS specification. The table
is divided into two lines, the first for the split version spec-
ification, which splits the input flow into several flows. The
second line is for the join version, which merges several input
flows into a single flow.

The DD-LOTOS specification of OrSplit in table VII ex-
presses that all outgoing branches whose conditions are eval-
uated by the true value are executed.

The DD-LOTOS specification for the OrJoin gateway in
the table VII expresses that the OrJoin gateway is activated
when tokens occur on all branches or on a single or subset of
branches.

Example: Let’s look at the process for managing and eval-
uating projects submitted by students. Projects are distributed
among several evaluators, each of whom is responsible for
evaluating one project. This is a parallel process, i.e., several
evaluators can work at the same time.

The evaluators begin assessing the projects assigned to
them. This stage is also carried out in parallel.

As soon as at least one evaluator has finished evaluating
a project, the process can continue to the next stage, even if
other evaluators are still evaluating other projects. This step is
ensured by an OR Join gateway.

T. M. MAAROUK et al.: FORMALIZATION OF BPMN GATEWAYS USING THE DD-LOTOS FORMAL LANGUAGE 259



Start

Enrollment

InClass

OnLine

End
St

ud
en

t
en

ro
llm

en
t

Fig. 2. And split and And join gateway

Start

Submit project Distribute
to Evaluators

Project 2 Submit grades

Project 1

Project 3

End

St
ud

en
t

Pr
oj

ec
ts

Fig. 3. Or join gateway

TABLE VII
INCLUSIVE GATEWAY

Inclusive Gateway DD-LOTOS interpretation

cond1

cond2

default

process OrSplit[]::=
gateway ? x: Token;
(([cond1=true] -> gateway!x;task1;

$|||$

[cond2=true] -> gateway!x;task2;)
[]

gateway!x;task3;)//Default branch
EndProc.

process OrJoin[]::=

gateway?x:Token;
(
[x=g1 and x=g2 and x=g3]->
//Gateway activation
//by all branches

( g1 ? x;
|||

g2 ? x;
|||

g3 ? x;
)>>gateway!x;exit;

[]

[x=g1 or x=g2 or x=g3]->
//gateway activation by a single
//branch or subset of branches

( g1 ? x;
[]
g2 ? x;
[]
g3 ? x;

)>>gateway!x;exit;
)
endproc

Figure IV-C shows the BPMN collaboration diagram used
to evaluate projects submitted by students, using the two
gateways AndSplit and OrJoin.

The process begins with the start event, followed by the task
of students handing in projects. The ”Distribution to Evalua-
tors” task and the AndSplit parallel gateway then distribute
the projects to the evaluators. The AndSplit gateway enables
all outgoing branches to be activated, thus ensuring parallel
evaluation. After this, each assessor evaluates the project
assigned to him, and an inclusive gateway is introduced,
enabling one or more outgoing branches to be selected. The
final step is for the evaluators to submit their scores.
The DD-LOTOS specification generated by the tool is given
as follows:

S p e c i f i c a t i o n I n c l u s i v e G a t e w a y [ ] : : =
B e h a v i o r L ( S t u d e n t r e q u e s t )

where
p r o c e s s S t u d e n t r e q u e s t [ ga teway ] : : =

[ t r u e ]−>(
S u b m i t p r o j e c t ;
D i s t r i b u t e e v a l u a t o r s ;
ga teway ? M: Token ;
( P r o j e c t 1 ; ga teway ! M; e x i t ;

| | |
P r o j e c t 2 ; ga teway ! M; e x i t ;
| | |

P r o j e c t 3 ; ga teway ! M; e x i t ;
)>>S u b m i t g r a d e s ; e x i t ;

EndProc
EndSpec

V. CASE STUDY

In this section, we illustrate our approach through a case
study widely treated in the literature, namely the online
purchasing process.

260 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023



The approach comprises two stages: the first focuses on the
design of the collaboration diagram, highlighting the different
actors and the communications between them. The second
step focuses on generating the corresponding DD-LOTOS
specification. This specification can then be verified using
model-checking tools such as UPPAAL.

A. Description

The online purchasing process can be described as follows:
A customer begins by browsing the website of an online store,
where he or she explores the various product catalogues. Once
they find the product or products they want, they add them to
their shopping cart.

Next, the customer selects the delivery address where they
wish to receive their order. The customer then enters the
payment details and confirms the order.

The company begins processing the order, prepares the
products and organizes delivery. Customers can track the status
of their order using the tracking number provided. Once the
order has been delivered, the customer receives it at the
specified delivery address.

Figure V-A shows the BPMN collaboration diagram used
for the online purchasing process.

The process begins with the START event, followed by
an exclusive gateway. This gateway can be activated in two
ways: either after the START event, or if the customer decides
to cancel the purchase of a product. Once activated, the
customer can select products and add them to the shopping
cart. A message is then sent to the store process to either
cancel the operation and repeat the purchase, or confirm and
prepare the order. The parallel gateway enables both tasks to
be carried out simultaneously: verification of card information
and verification of the card itself. The customer then selects the
delivery method, either express or standard, and the process
is completed.

B. DD-LOTOS Specification

The DD-LOTOS specification generated by the tool is given
as follows:

S p e c i f i c a t i o n O n l i n e p u r c h a s i n g [ c a n a l ] : : =

B e h a v i o r L ( Customer ) | [ c a n a l ] | L ( S t o r e )

where

p r o c e s s Customer [ c a n a l ] : : =

[ t r u e ]−>(
c h o i c e g i n [ g1 , g2 ] [ ] ;
g ? x : Token ;
ga teway ! x ;
S e l e c t p r o d u c t ;
Add product ;
c a n a l ! m;
e x i t e ;

EndProc

p r o c e s s S t o r e [ c a n a l ] : : =

c a n a l ? x : Token ;
(

[ x=” c a n c e l ”]−> gateway ! x ; S e l e c t p r o d u c t ;

Add product ; c a n a l ! m; e x i t

[ ]

[ x=” ok”]−> (
C o n f i r m o r d r e ; P r e p a r e o r d e r ;
(
C a r d i n f ; e x i t

| | |
Card check ; e x i t
)
>>(ga teway ! x ;

(
[ x=” e x p r e s s ”]−> E x p r e s s d e l i v e r y ; e x i t

[ ]
[ x=” s t a n d a r d ”]−> S t a n d a r d d e l i v e r y ; e x i t

)
)
)

[ ]

e x i t )
EndProc

EndSpec

C. Model Checking

In this section, we propose the formal verification of certain
smooth functioning properties in our case study. This approach
involves two main steps. First, we generate a semantic model
that corresponds to the DD-LOTOS specification, which is
named C-DATA [34, 37]. The second step involves utilizing
the UPPAAL model checker, which takes both the C-DATA
model and the property to be checked as input. Subsequently,
UPPAAL provides either a result of a satisfied or unsatisfied
property.

Within this context, we present the properties that have been
verified.

A. Deadlock property : It is a safety property expressed
through the following CTL formula.

A[]not deadlock

This property is satisfied in our case study, ensuring the
absence of deadlock in our model.

B. If the customer successfully confirms and pays for the
order, the online purchasing system guarantees delivery.
It’s a liveness property that ensures that all confirmed
orders will be delivered.

A[](E<>(customer.pays ->
A<>(online.delivery)))

This property is satisfied in our case study.

VI. CONCLUSION AND FUTURE WORK

BPMN notation is widely used in business process model-
ing. However, BPMN diagrams lack formal semantics, which
makes them difficult to analyze and complicates the detection
of certain errors or inconsistencies in specifications. Therefore,
it is essential to formalize BPMN diagrams and integrate

T. M. MAAROUK et al.: FORMALIZATION OF BPMN GATEWAYS USING THE DD-LOTOS FORMAL LANGUAGE 261



Confirm order Prepare order

Provide card
information

Verify card

Express
delivery

Standard
delivery

End

Start

O
nl

in
e

st
or

e
C

us
to

m
er

Select product Add to basket

Fig. 4. Online purchasing business process

formal methods with BPMN notation to ensure the reliability
of designed business processes.

The authors of [11–18] have proposed approaches to remedy
the lack of formal semantics in BPMN diagrams. In general,
their approach involves of mapping BPMN diagrams to formal
languages, such as Maude, CSP and Petri nets.

Gateways are fundamental elements of BPMN notation and
play a crucial role in the design of BPMN diagrams. For this
reason, the works [9, 10, 25–32] have focused on exploring
different types of gateways, including exclusive, inclusive, and
parallel gateways.

In this paper, we have proposed a formalization of exclusive,
parallel, and inclusive gateways using the DD-LOTOS formal
language. The choice of the DD-LOTOS language is moti-
vated by the formal semantics of the DD-LOTOS language,
defined on a model of true concurrency semantics. Business
process examples were studied to illustrate the use of each
gateway, and a case study was presented to highlight all the
formalization stages.

In our future work, we plan to focus on formalizing collab-
oration diagrams containing nested gateways with cycle.

ACKNOWLEDGMENT

The authors would like to thank the ICOSI laboratory for
its financial support and encouragement.

REFERENCES

[1] “Business Process Modeling Notation (BPMN),” Object Management
Group. [Online]. Available: www.omg.org/spec/BPMN/2.0/

[2] F. Alexandra, “Business process modeling notation - an overview,”
Annals. Computer Science Series, vol. 4, no. 1, pp. 41–49, 2006.

[3] I. Ajmi, H. Zgaya, L. Gammoudi, S. Hammadi, A. Martinot, R. Beuscart,
and J.-M. Renard, “Mapping patient path in the pediatric emergency
department: A workflow model driven approach,” Journal of Biomedical
Informatics, vol. 54, pp. 315–328, 2015.

[4] N. Iglesias, J. M. Juarez, and M. Campos, “Business process model
and notation and openehr task planning for clinical pathway standards
in infections: Critical analysis,” J Med Internet Res, vol. 24, no. 9, p.
e29927, Sep 2022. [Online]. Available: https://doi.org/10.2196/29927

[5] E. R. Aguilar, F. Garcı́a, F. Ruiz, M. G. Piattini, L. Calahorra, M. Garcı́a,
and R. Martin, “Process modeling of the health sector using bpmn: A
case study,” in International Conference on Health Informatics, 2008.
[Online]. Available: https://api.semanticscholar.org/CorpusID:6610857

[6] B. Kissa, E. Gounopoulos, M. Kamariotou, and F. Kitsios,
“Business process management analysis with cost information
in public organizations: A case study at an academic library,”
Modelling, vol. 4, no. 2, pp. 251–263, 2023. [Online]. Available:
https://www.mdpi.com/2673-3951/4/2/14

[7] A. Van Looy, “A quantitative and qualitative study of the link between
business process management and digital innovation,” Information and
Management, vol. 58, no. 2, p. 103413, 2021.

[8] Object Management Group, BPMN 2.0 by example, Object Management
Group, Inc., 140 Kendrick Street, Needham, MA 02494, U.S.A, 2010.
[Online]. Available: http://www.omg.org/spec/BPMN/2.0/examples/PDF

[9] F. Corradini, C. Muzi, B. Re, L. Rossi, and F. Tiezzi, “BPMN 2.0 OR-
Join Semantics: Global and local characterisation,” Journal Information
Systems, vol. 105, p. 101934, 2022.

[10] D. Christiansen, M. Carbone, and T. Hildebrandt, “Formal Semantics
and Implementation of BPMN 2.0 Inclusive Gateways,” vol. 6551, p. 10,
2011.

[11] R. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis of
business process models in BPMN,” Information Software Technology,
vol. 50, no. 12, pp. 1281–1294, 2008.

[12] A. Lyazidi and S. Mouline, “A model-driven engineering approach to
formally verify BPMN models using petri nets,” Int. J. Business Process
Integration and Management, vol. 8, no. 4, pp. 273–284, 2017.

[13] T. Takemura, “Formal semantics and verification of BPMN transaction
and compensation,” in Proceedings of the 3rd IEEE Asia-Pacific Services
Computing Conference, APSCC 2008, Yilan, Taiwan, 2008, pp. 284–
290.

[14] I. Raedts, M. Petkovic, Y. S. Usenko, J. M. Van der Werf, J. F. Groote,
and L. J. Somers, “Transformation of BPMN models for behaviour

262 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023



analysis,” in Proceedings of the 5th International Workshop on Mod-
elling, Simulation, Verification and Validation of Enterprise Information
Systems (MSVVEIS 2007), Funchal, Madeira, Portugal, 2007, pp. 126–
137.

[15] A. Kheldoun, K. Barkaoui, and M. Ioualalen, “Formal verification of
complex business processes based on high-level petri nets,” Information
Sciences, vol. 385-386, pp. 39–54, 2017.

[16] N. El-Saber and A. Bornat, “BPMN formalization and verification using
maude,” in Proceedings of the 2014 Workshop on Behaviour Modelling-
Foundations and Applications. ACM, 2014, pp. 1–12.

[17] M. Güdemann, P. Poizat, G. Salaün, and A. Dumont, “Verchor: A
framework for verifying choreographies,” in Springer Berlin Heidelberg,
2013, pp. 226–230.

[18] P. Y. H. Wong and J. Gibbons, “A relative timed semantics for BPMN,”
Electronic Notes in Theoretical Computer Science, vol. 229, no. 2, pp.
59–75, 2009.

[19] F. Corradini, F. Fornari, A. Polini, B. Re, and F. Tiezzi, “A formal ap-
proach to modeling and verification of business process collaborations,”
Science of Computer Programming, vol. 166, pp. 35–70, 2018.

[20] P. Poizat and G. Salaün, “Checking the realizability of BPMN 2.0
choreographies,” in Proceedings of the 27th Annual ACM Symposium
on Applied Computing, SAC’12. ACM, 2012, pp. 1927–1934.

[21] P. Poizat, G. Salaün, and A. Krishna, “Checking business process
evolution,” in Springer International Publishing, 2017, pp. 36–53.

[22] P. Y. H. Wong and J. Gibbons, “Verifying business process compatibil-
ity,” in The Eighth International Conference on Quality Software, 2008,
pp. 126–131.

[23] F. Corradini, A. Morichetta, C. Muzi, B. Re, L. Rossi, and F. Tiezzi,
“Well-structuredness, safeness and soundness: A formal classification
of BPMN collaborations,” Journal of Logical and Algebraic Methods in
Programming, vol. 119, p. 100630, 2021.

[24] F. Corradini, A. Morichetta, A. Polini, B. Re, and F. Tiezzi, “Correctness
checking for BPMN collaborations with sub-processes,” Journal of
Systems and Software, vol. 166, p. 110594, 2020.

[25] C. Dechsupa, W. Vatanawood, and A. Thongtak, “Transformation of the
BPMN Design Model into a Colored Petri Net Using the Partitioning
Approach,” IEEE Access, vol. 6, pp. 38 421–38 436, 2018.

[26] D. Fahland and H. Völzer, “Dynamic Skipping and Blocking and
Dead Path Elimination for Cyclic Workflows,” in Business Process
Management. BPM 2016, ser. Lecture Notes in Computer Science,
M. La Rosa, P. Loos, and O. Pastor, Eds., vol. 9850. Springer, Cham,
2016.

[27] B. Gfeller, H. Völzer, and G. Wilmsmann, “Faster Or-Join Enactment
for BPMN 2.0,” in Business Process Model and Notation. BPMN 2011,
ser. Lecture Notes in Business Information Processing, R. Dijkman,
J. Hofstetter, and J. Koehler, Eds., vol. 95. Springer, Berlin, Heidelberg,
2011, p. 3.

[28] M. Dumas, A. Grosskopf, T. Hettel, and M. Wynn, “Semantics of
Standard Process Models with OR-Joins,” in On the Move to Meaningful
Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, ser.
Lecture Notes in Computer Science, R. Meersman and Z. Tari, Eds.,
vol. 4803. Springer, Berlin, Heidelberg, 2007, p. 5.

[29] H. Völzer, “A New Semantics for the Inclusive Converging Gateway in
Safe Processes,” vol. 6336, p. 21, 2010.

[30] E. Börger, O. Sörensen, and B. Thalheim, “On Defining the Behavior of
OR-joins in Business Process Models,” Journal of Universal Computer
Science, vol. 15, pp. 3–32, 2009.

[31] T. M. Prinz and W. Amme, “A Complete and the Most Liberal
Semantics for Converging OR Gateways in Sound Processes,” Complex
Systems Informatics and Modeling Quarterly, pp. 32–49, 2015.
[Online]. Available: http://dx.doi.org/10.7250/csimq.2015-4.03

[32] F. Corradini, A. Polini, B. Re, and F. Tiezzi, “An Operational Semantics
of BPMN Collaboration,” in Formal Aspects of Component Software, ser.
Lecture Notes in Computer Science, C. Braga and P. C. Ölveczky, Eds.,
vol. 9539. Springer, Cham, 2016, pp. 161–180.

[33] E. Maarouk, T. M. Merah, S. Ghaoui, and N. Rahabi, “Formal Semantics
and Transformation of BPMN Models,” International Journal of Busi-
ness Process Integration and Management, vol. 9, no. 3, pp. 158–169,
2019.

[34] T. Maarouk, D. Saidouni, and M. Khergag, “DD-LOTOS : A distributed
real time language,” in Proceedings 2nd Annual International Confer-
ence on Advances in Distributed and Parallel Computing (ADPC 2011)
Special Track: Real Time and Embedded Systems (RTES 2011), 2011,
pp. 45–50.

[35] D. Saidouni, “Sémantique de Maximalité: Application au Raffinement
d’Actions en LOTOS,” Ph.D. dissertation, LAAS-CNRS, 7 av. du
Colonel Roche, 31077 Toulouse Cedex France, 1996.

[36] T. M. Maarouk, M. E. H. Souidi, and N. Hoggas,
“Formalization and model checking of bpmn collaboration
diagrams with dd-lotos,” COMPUTING AND INFORMATICS,
vol. 40, no. 5, p. 1080–1107, Dec. 2021. [Online]. Available:
https://www.cai.sk/ojs/index.php/cai/article/view/202151080

[37] M. T. Messaoud, S. D. Eddine, M. Rafik, and H. Hichem, “Interpretation
of dd-lotos specification by c-data*,” in New Trends in Databases and
Information Systems, T. Morzy, P. Valduriez, and L. Bellatreche, Eds.
Cham: Springer International Publishing, 2015, pp. 414–423.

Toufik Messaoud Maarouk received his engineer-
ing degree in Computer Science from Annaba Uni-
versity, Algeria, in 1998, and obtained his Ph.D.
in Computer Science from Constantine University,
Algeria, in 2012. Currently, he holds the position
of associate professor in the Department of Math-
ematics and Computer Science at the Faculty of
Sciences and Technology, Abbes Laghrour Univer-
sity of Khenchela, Algeria. He also holds the posi-
tion of Director at the Knowledge Engineering and
Computer Security Lab, University of Khenchela.

His main research areas include formal methods, concurrency theory, formal
semantics, and distributed computing.

Mohammed El Habib Souidi received his BS
degree in computer science from University of
Khenchela (Algeria) in 2011. He also received his
Master degree in Computer Science from the same
university in 2013, and his Ph.D in Computer Sci-
ence from Harbin Institute of Technology (China)
2017. He is working as a Lecturer in Department of
Mathematics and Computer Science in University of
khenchela (Algeria). Moreover, he is affiliated as a
researcher in ICOSI Lab (University of Khenchela).
His research interests include: Multi-agent task co-

ordination, Reinforcement learning, Game theory, and Path planning.

Makhlouf Ledmi received his BS degree from the
University of Annaba, in 1997, MS degree from the
University of Khenchela, in 2010 and PhD from
the University of Batna 2, Algeria, in 2020, all
in Computer Science. He served as the Head of
Mathematics and Computer Science Department at
the University of Khenchela, between 2015 and
2017. He is currently an Associate Professor at
the Mathematics and Computer Science Department
at Abbes Laghrour University of Khenchela and
member of Knowledge Management Group ICOSI

Lab. His research interests include data mining, soft computing, machine
learning and bioinformatics.

Sabeg Samra obtained her degree in Computer
Science from the Batna University, Algeria in 2006.
She received her MSc in Computer Science from
the Khenchela University, Algeria in 2019. She is a
Ph.D. student at the Khenchela University, Algeria.

T. M. MAAROUK et al.: FORMALIZATION OF BPMN GATEWAYS USING THE DD-LOTOS FORMAL LANGUAGE 263




