
Abstract—Software Defined Networking (SDN) and Network

Function Virtualization (NFV) are two transformative

technologies that offer distinct benefits. SDN virtualizes the

control plane by separating it from the data plane, while NFV

virtualizes the data plane by moving network functions from

hardware and implementing them in software. Therefore,

combining SDN and NFV can fully exploit the benefits of both

technologies. As Programming Protocol-independent Packet

Processors (P4) become popular due to its flexibility, traditional

SDN switches are being replaced by P4 switches. In the P4+NFV

architecture, network functions can be provided in both P4

switches (PNF) and NFV servers (VNF). However, to minimize

packet delay, the offloading problem between P4 switches and

NFV needs to be addressed. The novelty of our paper lies in

investigating the offloading problem and evaluating the impact of

employing multiple VNFs with varying computing capacities

within the P4+NFV architecture. We also use M/M/1 queuing

theory to derive the average packet delay and propose an

optimization solution based on gradient descent to find out the

optimal offloading probabilities of various VNF servers. Results

show that optimal offloading from P4 switch to multiple VNFs can

reduce the average packet delay from 4.76% to 40.02%.

Index Terms—software defined networking, network function

virtualization, virtual network functions, optimal probability.

I. INTRODUCTION

Traditional network architectures often encounter challenges

when updating hardware devices like routers and switches due

to their inflexible nature. Nevertheless, SDN provides a

promising solution to this issue. SDN fundamentally separates

the control plane from the data plane, entrusting a controller

with decision-making regarding the optimal data path from

source to destination within the control plane. In contrast, the

switches in the data plane simply forward packets based on the

controller’s decisions [1]. SDN virtualizes the network's control

plane, presenting a more flexible and dynamic approach to

network management.

On the contrary, network functions (NFs) such as deep packet

inspection and load balancing are traditionally provided

Manuscript received October 12, 2023; revised November 20, 2023. Date of

publication December 1, 2023. Date of current version December 1, 2023.

F. F. Neha and Md. S. Hossain are with the Bangladesh University of

Engineering and Technology, Bangladesh (e-mails: farhinfaiza@gmail.com,

mshohrabhossain@cse.buet.ac.bd).

Y. - C. Lai is with the National Taiwan University of Science and

Technology, Taiwan (laiyc@cs.ntust.edu.tw).

Y. - D. Lin is with the National Yang Ming Chiao Tung University, Hsinchu,

Taiwan (e-mail: ydlin@cs.nctu.edu.tw).
Digital Object Identifier (DOI): 10.24138/jcomss-2023-0125

through specialized hardware integrated with software.

However, this hardware can often prove costly and

cumbersome to update. In response to these challenges, a new

technology known as Network Function Virtualization (NFV)

has emerged [2]. NFV accomplishes this by virtualizing these

functions moving them from dedicated hardware to software

installed on readily available server [3]. This approach enables

NFs to be implemented with increased flexibility and cost-

effectiveness, fostering the creation of service function chaining

[4]. NFV virtualizes the data plane and creates modular

components that can be interconnected to support various NFs.

In contrast, SDN virtualizes the control plane. Therefore,

integrating SDN with NFV can provide an excellent

architecture that combines the advantages of both technologies.

 In recent years, there have been significant advancements in

programmable switch chips, enabling the processing of packets

at high speeds similar to fixed-function switches. This progress

has given rise to Programming Protocol-Independent Packet

Processors (P4), a technology that utilizes a domain-specific

programming language in conjunction with an SDN controller

to achieve protocol-independence, target-independence, and

field configuration [5]. P4 empowers programmers to specify

recognized input packet headers, define map-action tables and

processing algorithms. Furthermore, P4's programmability

equips it to handle certain network functions.

Due to the advantages offered by P4 switches over traditional

switches, they are experiencing growing demand. P4 switches

may soon become the preferred choice in networking.

Consequently, the architecture that combines SDN with NFV

may shift from traditional switches to P4 switches, resulting in

the integration of P4 switches and NFV (referred to as

P4+NFV). In the P4+NFV architecture, NFs can be provided in

both P4 switches and NFV. Therefore, an important

consideration involves determining the appropriate allocation

of packets, deciding which ones should be forwarded to NFV

for Virtualized Network Functions (VNFs), and which should

remain within P4 switches for Physical Network Functions

(PNFs). Addressing this offloading problem is crucial for

creating more flexible, scalable, resilient, and cost-efficient

network architectures while reducing average packet delay.

In prior research study, He et al. [6] proposed a hybrid

architecture that combines P4 switches with NFV to achieve

greater flexibility and speed, meeting the demands of modern

network bandwidth requirements. Makara et al. [7] analyzed the

impact of offloading probability (from P4 switches to NFV) on

Offloading in P4 Switch Integrated with

Multiple Virtual Network Function Servers
 Farhin Faiza Neha, Yuan-Cheng Lai, Md. Shohrab Hossain, and Ying-Dar Lin

278 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023

1845-6421/12/2023-0125 © 2023 CCIS

Original scientific article

mailto:farhinfaiza@gmail.com

various performance metrics, using Brent's method [8]. While

some recent studies [6-7] have explored the combination of P4

switches with NFV, none has delved into investigating the

performance gains of this hybrid architecture when employing

multiple VNFs with varying computing capacities for different

VNF queues. This novel aspect forms the foundation of our

work. We employ multiple VNFs to compare their optimal

offloading probabilities, enhancing data processing efficiency

and resulting in a significant reduction in average packet delay.

Furthermore, we evaluate the performance metric of packets

requiring multiple VNFs using an M/M/1 queuing model in the

P4+NFV architecture. It is important to note that the

conventional approach typically employs the P4 switch as the

default data plane, offering the option to offload traffic to VNF

when congestion occurs. However, an alternative perspective

suggests considering the VNF as the default data plane, with

traffic offloaded to the P4 switch as needed. This alternative

viewpoint argues that packets requiring network functions

should be directed to VNF by default, while the P4 switch

should only handle traffic when the VNF is inactive.

This paper makes several contributions, including: (i)

developing an analytical model using an M/M/1 queuing model

to analyze the P4+NFV architecture with multiple VNF servers,

(ii) proposing an algorithm to determine the optimal offloading

probabilities from P4 switch to multiple VNFs, (iii)

investigating different VNF computing capacities for different

VNF servers to determine their optimal offloading probabilities,

and (iv) evaluating the offloading from P4 to multiple VNFs in

terms of various performance metrics under different parameter

settings.

The rest of the paper is organized as follows. Section II

provides an overview of previous related works. Section III

presents the system model of the P4+NFV architecture utilizing

multiple VNFs. Section IV derives the average packet delay

analytically and describes the algorithm for finding the optimal

offloading probabilities. Section V presents analytical and

simulation results to demonstrate the performance of using

multiple VNFs with varying VNF computing capacities.

Finally, Section VI concludes the paper.

II. RELATED WORKS

There have been a few studies on integrating P4-based

programmable switches with NFV. Although some previous

studies have analyzed the performance of SDN/NFV, there is

limited investigation into the performance benefits of the

P4+NFV architecture using an M/M/1 queuing model with

multiple VNFs employing different service rates for distinct

VNF queues. Table I summarizes the key findings from

previous studies across four categories: SDN (traditional

switch), multiple VNFs, SDN (traditional switch)+NFV, and

SDN (P4 switch)+NFV.

1) SDN (traditional switch): Raychev et al. [9] developed an

M/M/1 queuing model for both SDN switches and controllers

to manage data traffic. Sarkar et al. [10] proposed an

OpenFlow-based SDN switch using M/M/1 queuing theory and

exponential models. Nweke et al. [11] employed an M/M/1

queuing model to analyze the consequences of adversarial flow

in an SDN infrastructure. Goto et al. [12] introduced a queuing

model for OpenFlow-based SDN switches, focusing on error

minimization and validation in a test environment. Singh et al.

conducted studies on the trade-offs between software and

hardware switches [13] and the encapsulation versus internal

buffer usage [14] in UDP using continuous-time Markov

chains. However, none of these previous studies [9-14] have

specifically addressed the performance of the P4+NFV hybrid

architecture concerning multiple VNFs with varying service

rates for different VNF queues. Furthermore, this paper argues

that software and hardware are not competitors but can be

effectively integrated.

2) Multiple VNFs based techniques: Nikolai et al. [15]

analyzed the performance improvement of x86 hosts with

multiple VNFs, highlighting significant throughput differences

between single and multiple VNF systems. Quang et al. [16]

formulated an optimization problem using integer linear

programming (ILP) and introduced a heuristic algorithm for the

allocation of multiple virtual network function-forwarding

graphs. Yamada et al. [17] introduced Service Function Chain

(SFC) to address challenges associated with the utilization of

multiple VNFs. Rossem et al. [18] developed an efficient

method for VNF chain deployment to interconnect multiple

VNFs, reducing iterations and streamlining the time-consuming

VNF chain validation process. However, none of these studies

[15-18] have examined the use of multiple VNFs with different

computing capacities in a P4+NFV-based hybrid architecture or

compared their optimal offloading probabilities.

3) Combination of SDN (traditional switch) and NFV based

techniques: Ramya et al. [19] developed a traffic management

model to predict the optimal number of controllers to deploy

within SDN+NFV architectures. Fahmin et al. [20] introduced

a hybrid architecture that combines SDN and NFV,

investigating the optimal placement of NFV in relation to the

controller. They employed M/M/1 queuing theory to calculate

average packet delay. Billingsley et al. [21] proposed a model

for analyzing the performance of Mobile Cloud Computing

within SDN+NFV architectures using M/M/1 queuing theory.

Surantha et al. [22] improved the performance and functionality

of NFV devices by integrating them with SDN, replacing the

standard virtual switch with a data plane development kit, and

implementing single-root I/O virtualization technology.

4) Combination of SDN (P4 switch) and NFV based

techniques: He et al. [6] were the first to propose a P4 switch

and NFV-based hybrid architecture that offers increased

flexibility and faster speed. Therefore, this hybrid architecture

is better suited to current network bandwidth requirements.

Paolucci et al. [23] introduced a method for integrating P4

Data Plane Programmability (DPP) into SDN/NFV. This

method enhances flexibility in a range of applications,

including 5G networks, IoT, cyber security, and traffic

engineering. Ji et al. [24] investigated a high-performance event

system combining NFV with a P4 switch capable of supporting

multiple function chains at line rate and reducing packet delay.

Osiński et al. [25] utilized the BMv2 software switch and

exposure framework (DPPx) to propose a P4-based Data Plane

Programmability model improving the flexibility of NFV

F. F. NEHA et al.: OFFLOADING IN P4 SWITCH INTEGRATED WITH MULTIPLE VIRTUAL NETWORK 279

TABLE I
SUMMARY OF RELATED WORKS

services. Additionally, the P4+NFV-based hybrid architecture

has shown potential in enhancing the performance of network

interface cards (NICs). Mohammad et al. [26] introduced a

Mixed Integer Linear Programming (MILP) based optimization

method using P4+NFV architecture for SmartNICs, effectively

reducing packet delay and increasing flexibility. Zhang et al.

[27] conducted a study on the performance gain of NFV in

offloading traffic between physical NICs and VNFs.

However, no P4+NFV architecture has yet been developed to

determine the optimal offloading probability to reduce packet

delay when using multiple VNFs with different computing

capacities for different VNF queues. Makara et al. [7] studied

the impact of offloading probability on various performance

metrics using Brent's method [8]. They used a controller to

decide the route and required operation of a specific packet. In

contrast, our proposed approach analyzes the impact of

offloading probabilities in the context of using multiple VNFs,

entirely eliminating the need for a controller. Dependency on a

central controller might introduce a single point of failure.

Removing the controller could enhance system robustness by

distributing decision-making processes. Without a controller,

the architecture may be simpler and more streamlined.

Our work is most relevant to the category of SDN (P4

switch)+NFV. Previous studies have not investigated

performance benefits of this architecture when using multiple

VNFs with different computing capacities. Existing studies

have focused on SDN (traditional switch), multiple VNFs,

SDN+NFV, and SDN (P4 switch)+NFV separately. Some

studies have analyzed aspects such as load balancing, VNF

placement, and performance improvements. However, none of

these studies have specifically investigated the performance of

the P4+NFV architecture when using multiple VNFs with

different computing capacities for distinct VNF queues. This

research aims to fill this gap and contribute to a better

understanding of the optimal offloading probabilities and

performance gains in the P4+NFV architecture with multiple

VNFs.

III. SYSTEM MODEL

 In our system model, when traffic reaches a switch and

requires a NF, it has two possible paths. It can either be

processed within the P4 switch, referred to as a PNF (Physical

Network Function), or it can be routed to the NFV located in

the data center. If the packets are sent to the VNF, they will

return to the switch before being directed to their final

destination.

A. System Model

Fig. 1 shows a network model of a programmable P4-based

switch with multiple VNFs. To calculate the average packet

delay, we have used the M/M/1 queuing model. The network

model consists of several queues, including a switch processing

(SP) queue, a PNF queue, a switch communication (SC) queue,

and multiple VNFs queues:

• A switch processing (SP) queue: The SP queue is

responsible for processing all packets, including new

ones (shown in black) and those that have visited the

VNF and re-entered the switch (shown in blue).

• A PNF queue: The PNF queue processes packets that

require a network function inside the switch (shown in

red).

• A switch communication (SC) queues: The SC queue

forwards packets to their next hop, including newly

arriving packets (shown in black) and those that require

processing by VNFs (shown in blue).

Category

References

NF queues used?

Characteristics # of
VNFs

PNF

SDN
(traditional

switch)

[9] 0 No Developed a model for both SDN switch and controller using M/M/1 theory

[10] 0 No Developed an OpenFlow-based model for both SDN switch using M/M/1 theory

[11] 0 No Adversarial flow using M/M/1 theory

[12] 0 No Priority based solution with Markov Chain 2D MC (HPQ,LPQ)

[13] 0 No Prioritization in 2D MC (HPQ, LPQ) and software vs. hardware switches

[14] 0 No Prioritization in 4D MC (internal buffer, HPQ, LPQ, hardware) and encapsulation vs. internal buffer

Multiple

VNFs

[15] N No Performance gain of an x86 host running multiple VNFs

[16] N No A heuristic algorithm for allocating multiple VNFs

[17] N No Introduced SFC which is comprised of multiple VNFs

[18] N No VNF chain deployment for connecting multiple VNFs

SDN

(traditional
switch)+NFV

[19] 1 No Traffic management model to predict the optimal number of controllers

[20] 1 No Combination of SDN and NFV using M/M/1

[21] 1 No Mobile Cloud Computing using M/M/1 theory

[22] 1 No Replaced the standard virtual switch with a data plane development kit

SDN (P4

switch)+NFV

[6] 1 Yes Fundamental modeling of P4+NFV architecture

[23] 1 No 5G SDN/NFV Edge with P4 switch

[24] 1 No NFV framework with event system based on P4 switches

[25] 1 Yes P4-based Data Plane Programmability and Exposure framework (DPPx)

[26] 1 Yes MILP based method for boosting capacity in SmartNICs

[27] 1 Yes Seven state-of-the-art software switches for offloading NFV traffic between NICs and VNFs

[7] 1 Yes Impact of offloading from P4 switches to NFV using Brent’s method

Our
proposed

model

N Yes Combination of P4 and NFV using multiple VNFs and M/M/1 queuing theory

280 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023

Fig. 1. Queuing model of a programmable switch using multiple VNF

servers.

• Multiple VNFs queues: Lastly, packets that require VNF

functions (shown in blue) are queued in the multiple

VNFs queues, which are then processed and sent back to

the switch.

 Based on the network model shown in Fig. 1, when new

packets arrive at the switch (indicated by the incoming arrow

on the left), they are first processed by the P4 switch. The switch

processing module then checks whether the packet requires a

NF or not. If it does, the module decides whether to process the

packet in the P4 switch itself (PNF) or offload it to one of the

multiple VNFs based on their respective offloading

probabilities. Following this decision, the packets receive the

necessary VNF services. After that, they re-enter the switch and

are directed to their destination by the switch communication

module.

 The model makes some assumptions, including (1) Packet

arrivals at the switch follow a Poisson process, (2) The size of

each queue is infinite, (3) NF is required only once, (4) There

are multiple VNF queues, and there is no separation of new

packets and those that have already undergone NF in the input

queue.

B. Notations Used in the Analysis

 Table II provides a list of notations used in the analysis. In the

system model, the SP queue processes incoming packets, while

the SC queue forwards packets to their next hop. Therefore, the

processing capacities of SP queue and SC queue are denoted as

cSP and cSC, respectively. Similarly, processing capacities or

service rates of the PNF queue and at the 𝑖𝑡ℎ VNF queues are

denoted as cPNF and 𝑐𝑖
𝑉𝑁𝐹, respectively. The packets arrive at

the P4 switch at a rate λ. The number of VNF queues used in

the analysis is represented by k. In a typical OpenFlow network,

the probability of requiring network function is assumed to be

50% and is denoted as 𝑝𝑁 . Additionally, the probability of

going to the 𝑖𝑡ℎ VNF queue is represented by 𝑝𝑖
𝑉𝑁𝐹. Our goal is

to determine the optimal offloading probabilities to the VNF

queues, denoted as 𝑝𝑖
∗𝑉𝑁𝐹 . For mathematical analysis, three

types of packets are considered: packets that require a network

function at the PNF queue, packets that require a network

function at the VNF queue, and packets that do not require any

network function (discussed in section IV). The corresponding

packet delays for these types are represented as 𝑑𝑃𝑁𝐹 , 𝑑𝑉𝑁𝐹 ,

and 𝑑𝑂𝑁𝐹 , respectively. To derive the packet delay for each

type, we need to calculate packet delay at the SP queue, SC

queue, PNF queue, and 𝑖𝑡ℎ VNF queue. Thus, we use the

notations 𝑡𝑆𝑃 , 𝑡𝑆𝐶 , 𝑡𝑃𝑁𝐹 , and 𝑡𝑖
𝑉𝑁𝐹 to represent the average

packet delay at these respective stages. The total average packet

delay for the entire architecture is denoted as D. Finally, 𝐷𝑖
𝑆𝑉

represents the fixed propagation delay at the 𝑖𝑡ℎ VNF queue.

TABLE II

NOTATIONS USED IN THE ANALYSIS

Category Symbol Parameter Name

Capacity

𝑐𝑆𝑃 Switch processing rate

𝑐𝑆𝐶 Switch communication rate

𝑐𝑃𝑁𝐹 Service rate for the PNF queue

𝑐𝑖
𝑉𝑁𝐹

Service rate or computing capacity at the

𝑖𝑡ℎ VNF queue

Arrival rate λ Packet arrival rate

Number of VNFs k Number of VNF queues

Probability
𝑝𝑁 Probability of requiring network function

𝑝𝑖
𝑉𝑁𝐹 Probability of going to the 𝑖𝑡ℎ VNF queue

Packet delay for
three types of

packets

𝑑𝑃𝑁𝐹
Packet delay for packets that require

network function at PNF

𝑑𝑉𝑁𝐹
Packet delay for packets that require

network function at VNF

𝑑𝑂𝑁𝐹
Packet delay for packets that do not

require any network function

Average packet
delay at queues

𝑡𝑆𝑃 Average packet delay at SP queue

𝑡𝑆𝐶 Average packet delay at SC queue

𝑡𝑃𝑁𝐹 Average packet delay at PNF queue

 𝑡𝑖
𝑉𝑁𝐹 Average packet delay at 𝑖𝑡ℎ VNF queue

Delay
D Total average packet delay

𝐷𝑖
𝑆𝑉 Fixed propagation delay at 𝑖𝑡ℎ VNF queue

C. Problem Statement

In this section, we provide a precise problem statement to

guide our analysis and proposed solutions.

Given:

● Switch processing rate: cSP;

● Switch Communication rate: cSC;

• Switch computing capacity: cPNF;

• VNF computing capacity at the 𝑖𝑡ℎ queue: 𝑐𝑖
𝑉𝑁𝐹;

• Packet arrival rate: λ;

• Probability of requiring network functions: pN;

• Fixed propagation delay at the 𝑖𝑡ℎ VNF queue: 𝐷𝑖
𝑆𝑉;

• The number of VNFs: k

Output:

• Optimal probability of going to 𝑖𝑡ℎ VNF queue: 𝑝𝑖
∗𝑉𝑁𝐹

Objective:

• Minimize the average packet delay D.

That is, the problem is to find the optimal 𝑝𝑖
𝑉𝑁𝐹 , denoted as

𝑝𝑖
∗𝑉𝑁𝐹 using multiple VNFs.

Constraint:

• 0 ≤ 𝑝𝑖
∗𝑉𝑁𝐹 ≤ 1.

IV. SOLUTION

There are two main goals in this work: (1) to calculate the

average packet delay in a P4-based switch with multiple VNFs

using an M/M/1 queuing model, and (2) to propose an

optimization algorithm that finds the optimal offloading

probabilities for packets to go to multiple VNFs based on the

F. F. NEHA et al.: OFFLOADING IN P4 SWITCH INTEGRATED WITH MULTIPLE VIRTUAL NETWORK 281

derived formulas for average packet delay.

A. Average Packet Delay

 We now calculate the total average packet delay of the

proposed queuing network. To do so, we will first calculate the

arrival and service rates at each queue shown in Fig. 1, and then

use the M/M/1 theory to find the total average packet delay. We

have listed the notations used in our analytical model in Table

II.

 For mathematical analysis, we have considered three types of

packets:

1) Packets that require network function at PNF,

2) Packets that require network function at VNF,

3) Packets that do not require any network function.

Then, we calculate packet delay for all of these three types of

packets.

1) Packets that require network function at PNF: Packets

destined for PNF pass through the SP queue, the PNF queue,

and finally the SC queue."

a) Delay at the SP queue: Initially, packets enter the switch

at an arrival rate λ through the switch's processing queue SP.

Additionally, packets that have undergone processing by

multiple VNFs re-enter the switch via the SP queue at an

arrival rate (𝜆𝑝𝑁 ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1). Here, the probability of

requiring network function is 𝑝𝑁 and total probability of

going to all the VNF queues is ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 . Hence, arrival rate

at SP queue denoted as 𝜆𝑆𝑃 can be calculated as

 𝜆𝑆𝑃 = 𝜆 + 𝜆𝑝𝑁 ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 . (1)

Using M/M/1 queuing theory, the average packet delay at the

switch’s processing (SP) queue, denoted as 𝑡𝑆𝑃, can be

calculated as

 𝑡𝑆𝑃=
1

𝑐𝑆𝑃− 𝜆𝑆𝑃 , (2)

 where, 𝑐𝑆𝑃 is the service rate at the SP queue.

b) Delay at the PNF queue: Some packets that require

network function traverses the PNF queue. Therefore, the

arrival rate at the PNF queue, denoted as 𝜆𝑃𝑁𝐹 , is expressed

as

 𝜆𝑃𝑁𝐹 = 𝜆𝑝𝑁(1 − ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1). (3)

Using M/M/1 queuing theory, the average packet delay at the

switch’s PNF queue can be calculated as

 𝑡𝑃𝑁𝐹 =
1

𝑐𝑃𝑁𝐹−𝜆𝑃𝑁𝐹
. (4)

where, 𝑐𝑃𝑁𝐹 is the service rate at the PNF queue.

c) Delay at the SC queue: Packets leave the system through

the switch’s communication queue SC. Packets which does

not require any network function at VNF, leave the switch

using the SC queue with an arrival rate 𝜆 and packets which

require VNF exit through the SC queue with an arrival rate

(𝜆𝑝𝑁 ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1) . Hence, the arrival rate at SC queue,

denoted as 𝜆𝑆𝐶 , is expressed as

 𝜆𝑆𝐶 = 𝜆 + 𝜆𝑝𝑁 ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 . (5)

If service rate at the SC queue is 𝑐𝑆𝐶 , then using M/M/1

queuing theory the average packet delay at the switch’s

communication (SC) queue can be calculated as

 𝑡𝑆𝐶 =
1

𝑐𝑆𝐶 − 𝜆𝑆𝐶 . (6)

So, packet delay for packets that require network function at

PNF is

 𝑑𝑃𝑁𝐹 = (𝑡𝑆𝑃 + 𝑡𝑃𝑁𝐹 + 𝑡𝑆𝐶). (7)

2) Packets that require network function at VNF: Packets

requiring VNFs traverse both the SP and SC queues twice and

the VNF queues once. We have already provided calculations

for the average packet delay at the SP and SC queues in (2) and

(6). Consequently, our focus here is on deriving the equation for

calculating the average packet delay specifically for the VNF

queues.

a) Delay at the VNF queues: Some packets that require

network functions at VNFs first pass through the SP and SC

queues before traversing the VNF queues. In this scenario,

we make use of multiple VNFs. Hence, arrival rate for the i
th

VNF queue, denoted as 𝜆𝑖
𝑉𝑁𝐹, is expressed as

 𝜆𝑖
𝑉𝑁𝐹 = 𝜆𝑝𝑁𝑝𝑖

𝑉𝑁𝐹 . (8)

As depicted in Fig. 1, packets that pass through the VNF queues

must return to the switch, incurring a 2𝐷𝑖
𝑆𝑉 propagation delay.

If the service rate at the ith VNF queue is 𝑐𝑖
𝑉𝑁𝐹, then, accounting

for the fixed propagation delay, the average packet delay at the

ith VNF queue is expressed as

 𝑡𝑖
𝑉𝑁𝐹 =

1

𝑐𝑖
𝑉𝑁𝐹− 𝜆𝑝𝑁𝑝𝑖

𝑉𝑁𝐹 + 2𝐷𝑖
𝑆𝑉. (9)

Considering the total probability of going to all VNF queues as

∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 , we can determine the delay for packets requiring

network functions at VNFs as

 𝑑𝑉𝑁𝐹 = ∑ 𝑝𝑖
𝑉𝑁𝐹𝐾

𝑖=1 (2𝑡𝑆𝑃 + 𝑡𝑖
𝑉𝑁𝐹 + 2𝑡𝑆𝐶) . (10)

3) Packets that do not require any network function: Packets

that do not require any network function pass through the SP

and SC queues once. We have already provided calculations for

the average packet delay at the SP and SC queues in (2) and (6),

respectively. Consequently, the packet delay for packets not

requiring any network function is determined as

 𝑑𝑂𝑁𝐹 = (𝑡𝑆𝑃 + 𝑡𝑆𝐶). (11)

Finally, from (7), (10) and (11), according to the ratios of

packets we can obtain the average packet delay, as

 𝐷 = 𝑝𝑁(1 − ∑ 𝑝
𝑖
𝑉𝑁𝐹𝐾

𝑖=1)𝑑𝑃𝑁𝐹 + 𝑝𝑁𝑑𝑉𝑁𝐹 + (1 − 𝑝𝑁)𝑑𝑂𝑁𝐹 . (12)

282 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023

Subsequently, our proposed algorithm explores the state space

to determine the optimal probabilities (𝑝𝑖
∗𝑉𝑁𝐹) for directing

packets to the VNFs. This optimization aims to minimize the

average packet delay as defined in (12).

B. Algorithm for Finding Optimal Offloading Probabilities

 Algorithm 1 is known as the P4 switch integrated with

multiple VNFs (PINOpt) algorithm. PINOpt algorithm is

designed to explore the state space and to return the optimal

probabilities (𝑝𝑖
∗𝑉𝑁𝐹) for directing packets to VNFs, resulting in

the minimum average packet delay. The algorithm employs a

searching method based on the gradient descent algorithm.

 To begin, we initialize 𝑝𝑖
𝑉𝑁𝐹 with the value of pINI (initial

probability) divided by k (number of VNFs). Two parameters:

step and stepRF, are used to control the searching range and

gradually reduce the step size in each iteration, respectively.

Four arrays: minscope[], maxscope[], optimal[], and x[], are

declared. The PINOpt algorithm searches for optimal values of

𝑝𝑖
𝑉𝑁𝐹 by generating a search space [minscope, maxscope] in

each step. The min and max values are appended to the

minscope[] and maxscope[] arrays, respectively, as shown in

lines 8 to 12. Moving on to lines 13 to 21, the algorithm finds

the optimal 𝑝𝑖
𝑉𝑁𝐹 values that correspond to the minimum delay

within the defined search space. Initially, the values of

minscope[] are copied to the optimal[] array. The minDelay

(minimum delay) is initially set to Infinity. Then, we assign the

ith value of the minscope[] array to the ith value of the x[] array.

The while loop continues until the ith value of the x[] array

exceeds the ith value of the minscope[] array. Within the loop,

the DelayforProb(x[i]) function calculates the average packet

delay based on the 𝑝𝑖
𝑉𝑁𝐹 values stored in the x[] array.

 Equation (12) is used in the DelayforProb(x[i]) function to

calculate the total average packet delay. The necessary

parameter values for the Delay (total average packet delay)

calculation are listed in Table III. During the calculation, if the

computed Delay value is less than the current minDelay,

minDelay is updated accordingly. The optimal 𝑝𝑖
𝑉𝑁𝐹 values,

which correspond to the minimum delay, are stored in the

optimal[] array. As we approach the solution, the x[] array is

updated using the step value. This step value gradually

decreases, controlled by the stepRF parameter. The required

accuracy for finding the optimal 𝑝𝑖
𝑉𝑁𝐹 values is controlled by

an input parameter 𝜀 (precision).

V. ANALYTICAL AND SIMULATION RESULTS

A. Designing a Custom Simulator

 We have designed a custom simulator using the Ciw event

simulation library [28-29] to validate our analytical model. Fig.

2 shows the flowchart of the simulation process. This simulator

generates packets following the Poisson distribution and routes

them through different queues based on specific probabilities.

Poisson distribution is commonly used to model packet arrivals

in network traffic. This distribution is often applied to events

that occur randomly and independently over time. In our

simulator, we have implemented a packet class and routing

function to handle the packet routing process. We have assumed

fixed packet sizes for reducing overhead associated with

variable-sized packets. In variable-sized packet systems, the

headers and metadata required for each packet can vary,

potentially leading to increased overhead. Fixed-sized packets

ensure a consistent overhead for each packet, promoting

efficiency. The routing function assigns packets to specific

queues based on probabilities, and we use an event queue to

ensure sequential processing of queuing events. To evaluate

system performance, we log each packet's path through the

queues, enabling us to calculate average packet delay. We plan

to analyze this data to optimize the probabilities for sending

packets to VNF queues from the P4 switch, with the goal of

minimizing average packet delay. By integrating our analytical

model with simulation results from the custom simulator, we

can comprehensively understand the system's behavior and

validate our proposed approach's effectiveness.

B. Parameter Settings

Table III presents the baseline parameters used in both the

analysis and simulation. In a typical OpenFlow network, the

probability of requiring a network function (pN) is assumed to

be 50%. The VNF service rate (𝑐1
𝑉𝑁𝐹) is set to 95,000

packets/sec, representing a low VNF computing capacity [20].

The packet arrival rate (𝜆) is 125,000 packets/sec [30]. To

examine the impact of varying VNF service rates on

performance, we consider a high capacity of 950,000

packets/sec for 𝑐2
𝑉𝑁𝐹 and a very high capacity of 9,500,000

packets/sec for 𝑐3
𝑉𝑁𝐹. The switch communication rate (cSC) is

fixed at 1 Gbps (625,000 packets/sec), while the switch

processing rate (cSP) is set at 12,500,000 packets/sec, as

indicated by previous studies [30-31]. Each simulation is

repeated 100 times, and the average values of the metrics are

recorded.

Algorithm 1: PINOpt for finding optimal 𝒑𝒊
𝑽𝑵𝑭 values

Input: 𝜺 , pINI , stepRF, k

Output: 𝒑𝟏
𝑽𝑵𝑭, 𝒑𝟐

𝑽𝑵𝑭, … , 𝒑𝒌
𝑽𝑵𝑭

1 step = pINI / stepRF

2 minscope=[]

3 maxscope=[]

4 𝒐𝒑𝒕𝒊𝒎𝒂𝒍=[]

5 x = []

6 while i ≤ k : do

7 𝒑𝒊
𝑽𝑵𝑭 = pINI/k

8 while (step ≥ 𝛆) : do

9 min = max [0, 𝒑𝒊
𝑽𝑵𝑭 - (step×stepRF)]

10 minscope.append (min)

11 max = min [1, 𝒑𝒊
𝑽𝑵𝑭 + (step×stepRF)]

12 maxscope.append (max)

13 𝒐𝒑𝒕𝒊𝒎𝒂𝒍[𝒊]= minscope[i]

14 minDelay = ∞

15 x [i] = minscope[i]

16 for i in range (len(x)):

17 while 𝒙 [𝒊] ≤ 𝒎𝒂𝒙𝒔𝒄𝒐𝒑𝒆[𝒊]: do

18 Delay = DelayforProb(x[i])

 /* Eqn. (12) according to x[i]

19 if (Delay < minDelay): then

20 minDelay = Delay

21 𝒐𝒑𝒕𝒊𝒎𝒂𝒍[𝒊]= x[i]

22 𝒙[𝒊] + = step

23 𝒑𝒊
𝑽𝑵𝑭=𝒐𝒑𝒕𝒊𝒎𝒂𝒍[𝒊]

24 step = step / stepRF

25 return 𝒑𝒊
𝑽𝑵𝑭

26 i=i+1

27 end

F. F. NEHA et al.: OFFLOADING IN P4 SWITCH INTEGRATED WITH MULTIPLE VIRTUAL NETWORK 283

 Initially, we demonstrate the impact of 𝑝𝑖
𝑉𝑁𝐹 on the average

packet delay to highlight its significance. Subsequently, we

analyze the sensitivity of various parameters, including 𝜆, pN,

𝑐𝑖
𝑉𝑁𝐹, and 𝐷𝑖

𝑆𝑉.

Fig. 2. Flowchart of the simulation process.

C. Optimal Values of 𝑝𝑖
𝑉𝑁𝐹

 Fig. 3 shows the impact of probabilities for routing packets

to multiple VNFs (𝑝𝑖
𝑉𝑁𝐹) on average packet delay, considering

k = 2. The plot depicts the relationship between 𝑝1
𝑉𝑁𝐹 , 𝑝2

𝑉𝑁𝐹 ,

and the average packet delay. Notably, our analytical results

closely align with the simulation results, confirming the

precision of our analytical model in replicating real-world

scenarios. Optimal 𝑝𝑖
𝑉𝑁𝐹 values vary with the number of VNFs.

Consequently, as k changes, 𝑝𝑖
𝑉𝑁𝐹 values also shift. We

systematically varied 𝑝1
𝑉𝑁𝐹 from 0 to 1 while applying the same

range to 𝑝2
𝑉𝑁𝐹, with the constraint that 𝑝1

𝑉𝑁𝐹 + 𝑝2
𝑉𝑁𝐹≤ 1. In this

scenario, we assigned a low capacity of 95,000 packets/sec to

𝑐1
𝑉𝑁𝐹 and a high capacity of 950,000 packets/sec to 𝑐2

𝑉𝑁𝐹. The

average packet delay plot shows that when both 𝑝1
𝑉𝑁𝐹 and

𝑝2
𝑉𝑁𝐹 are 0 (indicating no offloading to VNFs), severe

congestion occurs in the PNF queue, leading to higher packet

delays. As the probabilities of using VNFs (𝑝1
𝑉𝑁𝐹 and 𝑝2

𝑉𝑁𝐹)

increase, average packet delay decreases. This is because

offloading packets to VNFs reduces the load in the PNF queue,

easing congestion. The lowest average packet delay (7.69 µs for

the analytical model and 7.91 µs for the simulation) occurs

when 𝑝1
𝑉𝑁𝐹 is 0.175810 and 𝑝2

𝑉𝑁𝐹 is 0.289530.

TABLE III
BASELINE PARAMETERS FOR THE ANALYSIS AND SIMULATION

Symbol Value

cSP 12,500,000 pkts/sec

cSC 625,000 pkts/sec

cPNF 125,000 pkts/sec

 λ 125,000 pkts/sec

 k 3

𝑐1
𝑉𝑁𝐹 95,000 packets/sec

𝑐2
𝑉𝑁𝐹 950,000 packets/sec

𝑐3
𝑉𝑁𝐹 9,500,000 packets/sec

𝑝𝑁 0.5

𝐷𝑖
𝑆𝑉 10 μs

𝜀 10−6

𝑝𝑁 0.5

stepRF 10

Fig. 3. Impact of 𝑝𝑖

𝑉𝑁𝐹on the average packet delay.

 Additionally, it is observed that 𝑝2
∗𝑉𝑁𝐹 is higher than 𝑝1

∗𝑉𝑁𝐹.

This discrepancy arises due to the different VNF service rates

(𝑐𝑖
𝑉𝑁𝐹) for each VNF queue. A higher 𝑐𝑖

𝑉𝑁𝐹value results in a

reduced average delay for packets requiring VNF processing.

Consequently, higher 𝑐𝑖
𝑉𝑁𝐹 values lead to higher 𝑝𝑖

∗𝑉𝑁𝐹 values,

as sending more packets to the VNF queues becomes more

advantageous.

 Beyond a certain threshold, as 𝑝1
𝑉𝑁𝐹 and 𝑝2

𝑉𝑁𝐹 increase, the

average packet delay again tends to increase. This is due to the

increased number of packets routed through VNFs, which

introduces additional overhead and consequently leads to

higher delays associated with processing packets through

multiple VNFs.

 In the following results, we investigate the sensitivity of

various parameters for k = 3. We examine the impact of

offloading packets from the P4 switch to multiple VNFs,

considering aspects such as 𝜆, 𝑝𝑁 , 𝑐𝑖
𝑉𝑁𝐹 , and 𝐷𝑖

𝑆𝑉 . Our study

offers valuable insights and recommendations for service

providers dealing with latency issues and tackling design and

284 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023

service administration challenges when utilizing multiple VNFs

with distinct service rates for each VNF queue.

 To facilitate the comparison and analysis of the impact of

different numbers of VNFs on the average packet delay, we

denote the average packet delay for k = 1 as delay_k(1) and for

k = 3 as delay_k(3).

D. Impact of Packet Arrival Rate, λ

 Fig. 4 demonstrates the relationship between the arrival rate

(λ) and the optimal offloading probabilities (𝑝𝑖
∗𝑉𝑁𝐹) as well as

the average packet delay. The results obtained from both the

analytical model and simulation align closely. In Fig. 5, we

compare the packet delay when using a single VNF versus using

multiple VNFs.

 As shown in Fig. 4, an increase in λ leads to a significant

increase in 𝑝𝑖
∗𝑉𝑁𝐹, causing more packets to be offloaded to all

three VNFs based on their VNF service rates (𝑐𝑖
𝑉𝑁𝐹). This is

because, as λ increases, the packet delay for packets requiring

PNF increases at a faster rate compared to the packet delay for

packets requiring VNFs (as shown in Fig. 6 and will be

explained later). Consequently, it becomes more advantageous

to offload a greater portion of packets to VNFs, resulting in

higher offloading probabilities for all three VNFs. When

network traffic is low, offloading packets to VNFs may not

provide significant benefits since the PNF can handle incoming

packets without congestion. However, as network traffic load

increases, it becomes more advantageous to offload packets to

VNFs to alleviate congestion at the PNF queue. In summary,

the optimal offloading probabilities (𝑝𝑖
∗𝑉𝑁𝐹) and average packet

delay are influenced by the packet arrival rate (λ). With

increasing λ, 𝑝𝑖
∗𝑉𝑁𝐹 increases notably as more packets are

offloaded to VNFs to prevent congestion at the PNF queue.

However, there comes a point where the slope of the curve starts

to decrease, indicating diminishing returns from further

offloading. This occurs because excessively offloading packets

to VNFs can lead to congestion at the VNF queues, reducing

the benefits of offloading. Overall, it is more effective to offload

packets to VNFs as the load at the PNF queue increases.

Fig. 4. Impact of arrival rate, λ on delay and offloading probability for k=3.

Fig. 4 also reveals that the values of 𝑝2
∗𝑉𝑁𝐹 and 𝑝3

∗𝑉𝑁𝐹 are

higher than that of 𝑝1
∗𝑉𝑁𝐹. This is due to the higher VNF service

rates (𝑐2
𝑉𝑁𝐹 and 𝑐3

𝑉𝑁𝐹) compared to 𝑐1
𝑉𝑁𝐹. Additionally, the gap

between 𝑝2
∗𝑉𝑁𝐹 and 𝑝3

∗𝑉𝑁𝐹 is relatively smaller, indicating that

a significant increase in VNF capacity does not yield substantial

improvements in the optimal probability of going to VNFs and

average delay beyond a certain point. Therefore, it is important

to choose the VNF service capacity appropriately.

Fig. 5. Impact of arrival rate, λ on average packet delay for k = 1 and k = 3.

Additionally, in Fig. 5 we observe that the total average

packet delay decreases as the number of VNFs used in the

system increases. This is because offloading packets to multiple

VNFs reduces the load on individual VNFs and the PNF,

resulting in reduced packet delays. Interestingly, as the number

of VNFs increases, the optimal probabilities for routing packets

to each VNF (𝑝𝑖
∗𝑉𝑁𝐹) shift toward a more balanced distribution.

This balanced distribution allows for a more even workload

distribution among different VNFs, leading to decreased load

on each VNF and an overall improvement in system

performance. However, it's essential to consider that a higher

number of VNFs also introduces added complexity and costs to

the system. Thus, maintaining a balance between system

performance and cost becomes crucial.

Fig. 6. Impact of arrival rate, λ on packet delay on different paths for k = 3.

In Fig. 6, we can see the impact of λ on the average packet

delay for packets passing through all three VNFs (VNF1, VNF2,

and VNF3), PNF, and those that do not require any network

function. Since our analytical result matches with our

simulation result precisely, we present the graph for analytical

analysis only. The delays for each type of packet are labeled as

VNF1_delay, VNF2_delay, VNF3_delay, PNF_delay, and

non_delay. We can observe that as λ increases, packet delay

increases for all types of packets. This is because the higher

arrival rate leads to increased congestion in all the queues,

resulting in more extensive delays. Notably, the slopes of

packet delays differ as λ increases. The delay for packets that

do not require any network function remains almost stable. On

F. F. NEHA et al.: OFFLOADING IN P4 SWITCH INTEGRATED WITH MULTIPLE VIRTUAL NETWORK 285

the other hand, packet delays for VNF1, VNF2 and VNF3 exhibit

gradual increases, while the delay for PNF escalates at a faster

rate. This discrepancy arises from the heavier load on the PNF

queue compared to the queues of the VNFs. Multiple VNFs

introduce additional propagation delay between the switch and

VNFs, contributing to the higher delay observed in the PNF

queue.

 Once the packet arrival rate exceeds a certain point (160,000

pkts/sec), the delay for PNF increases notably due to the heavy

load, while the delay for VNF increases only slightly due to the

light load. Additionally, the delay for VNF1 is much higher than

that of VNF2 and VNF3 because the service rates of VNF2 and

VNF3 are higher than that of VNF1. The gap between

VNF2_delay and VNF3_delay is smaller for the same reason.

 The analytical result indicates that the packet delays for all

three VNFs are significantly higher than that of PNF due to the

longer path that packets requiring VNF must travel (as shown

in (7) and (10)). This difference in delay also results from the

additional propagation delay that packets experience between

the switch and VNFs.

E. Impact of 𝑝𝑁

Fig. 7 shows the impact of the probability of requiring a

network function (𝑝𝑁) on both the average packet delay and the

optimal offloading probability. As the percentage of packets

requiring a network function (𝑝𝑁) increases, the average packet

delay also increases. This is because more packets require

network functions, leading to higher loads on both the PNF and

VNFs.

Fig. 7. Impact of 𝑝𝑁on delay and offloading probability for k = 3.

Additionally, we observe that as 𝑝𝑁 increases, the optimal

probabilities of packets offloaded to multiple VNFs

(𝑝1
∗𝑉𝑁𝐹 , 𝑝2

∗𝑉𝑁𝐹, and 𝑝3
∗𝑉𝑁𝐹) also increase. This is due to the fact

that the service rate of the PNF (cPNF) is much lower than that

of the VNFs (𝑐1
𝑉𝑁𝐹 , 𝑐2

𝑉𝑁𝐹 , and 𝑐3
𝑉𝑁𝐹) (as shown in Table III). As

𝑝𝑁 increases, the average delay for packets requiring the PNF

increases faster than packets requiring multiple VNFs.

Therefore, offloading more packets to multiple VNFs helps to

reduce the average packet delay. Furthermore, the probabilities

of offloading to VNFs vary due to the differences in their

service rates (𝑐1
𝑉𝑁𝐹 , 𝑐2

𝑉𝑁𝐹 , and 𝑐3
𝑉𝑁𝐹), with 𝑝2

∗𝑉𝑁𝐹 and 𝑝3
∗𝑉𝑁𝐹

being greater than 𝑝1
∗𝑉𝑁𝐹 . Importantly, this difference is not

affected by 𝑝𝑁 as it is independent of this parameter. Therefore,

the gap between the probabilities of going to VNFs (𝑝1
∗𝑉𝑁𝐹 ,

𝑝2
∗𝑉𝑁𝐹 , and 𝑝3

∗𝑉𝑁𝐹) is fixed, regardless of the chosen 𝑝𝑁 . This

gap is solely attributed to the varying VNF service rates (𝑐1
𝑉𝑁𝐹 ,

𝑐2
𝑉𝑁𝐹 , 𝑎𝑛𝑑 𝑐3

𝑉𝑁𝐹).

F. Impact of 𝑐1
𝑉𝑁𝐹

Fig. 8 illustrates the impact of VNF service rate (𝑐1
𝑉𝑁𝐹) on

average packet delay and optimal offloading probabilities

(𝑝1
∗𝑉𝑁𝐹 , 𝑝2

∗𝑉𝑁𝐹 , and 𝑝3
∗𝑉𝑁𝐹). As 𝑐1

𝑉𝑁𝐹 increases, the packet

delay for packets requiring multiple VNFs decreases, leading to

an overall reduction in total average packet delay. Additionally,

the increase in 𝑐1
𝑉𝑁𝐹 initially raises all three optimal

probabilities (𝑝1
∗𝑉𝑁𝐹 , 𝑝2

∗𝑉𝑁𝐹 and 𝑝3
∗𝑉𝑁𝐹), as it becomes more

advantageous to direct more packets to multiple VNFs.

 Increasing the capacity of 𝑐1
𝑉𝑁𝐹 from 95,000 (pkts/sec) to

950,000 (pkts/sec) results in higher values for 𝑝𝑖
∗𝑉𝑁𝐹 , and the

gap between 𝑝1
∗𝑉𝑁𝐹 𝑎𝑛𝑑 𝑝2

∗𝑉𝑁𝐹 decreases. Interestingly, when

𝑐1
𝑉𝑁𝐹 = 𝑐2

𝑉𝑁𝐹 =950,000 pkts/sec, both VNFs have identical

optimal probabilities for directing packets to VNFs, making

𝑝1
∗𝑉𝑁𝐹 equal to 𝑝2

∗𝑉𝑁𝐹 .

 However, beyond a certain point, further increases in 𝑐1
𝑉𝑁𝐹

result in an increase only in 𝑝1
∗𝑉𝑁𝐹 , while the values of 𝑝2

∗𝑉𝑁𝐹

and 𝑝3
∗𝑉𝑁𝐹 decrease. This phenomenon can be attributed to the

fact that at higher values of 𝑐1
𝑉𝑁𝐹, the advantages of offloading

more packets to VNF1 become more beneficial, leading to a

reduction in the optimal probabilities of routing packets to

VNF2 and VNF3.

Fig. 8. Impact of 𝑐1
𝑉𝑁𝐹on delay and offloading probability for k = 3.

G. Impact of 𝐷𝑖
𝑆𝑉

Fig. 9 illustrates how increasing the fixed propagation delay

(𝐷𝑖
𝑆𝑉), impacts the average packet delay and the optimal

offloading probabilities (𝑝1
∗𝑉𝑁𝐹 , 𝑝2

∗𝑉𝑁𝐹 , 𝑝3
∗𝑉𝑁𝐹). As 𝐷𝑖

𝑆𝑉

increases, the average packet delay also increases because

packets experience longer propagation delays to reach multiple

VNFs. This phenomenon occurs because the benefits of

offloading decrease as the fixed propagation delay becomes

larger. Offloaded packets experience more delay due to the

longer path they have to travel to reach multiple VNFs. As a

result, the optimal offloading probabilities decrease to minimize

the overall packet delay.

 In summary, increase of fixed propagation delay results in

higher average packet delays. It also decreases the optimal

probabilities of offloading packets to VNFs. This information

is crucial for network administrators and service providers to

understand the trade-offs between fixed propagation delay,

offloading probabilities, and overall system performance.

286 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023

Fig. 9. Impact of 𝐷𝑖

𝑆𝑉 on delay and offloading probability for k = 3.

As explained earlier, the optimal probabilities of offloading

packets to VNFs (𝑝1
∗𝑉𝑁𝐹 , 𝑝2

∗𝑉𝑁𝐹 , and 𝑝3
∗𝑉𝑁𝐹) differ due to

variations in VNF service rates (𝑐1
𝑉𝑁𝐹 , 𝑐2

𝑉𝑁𝐹 , 𝑎𝑛𝑑 𝑐3
𝑉𝑁𝐹).

Irrespective of the value of 𝐷𝑖
𝑆𝑉, this gap between probabilities

remains constant because packet arrival rates and other

parameters remain consistent. Thus, the gap is solely

determined by the use of distinct VNF service rates and remains

unaffected by changes in 𝐷𝑖
𝑆𝑉.

VI. CONCLUSION

 In this paper, we have introduced an integration of multiple

virtual network functions (VNFs) within a P4 switch, aiming to

determine the optimal probabilities for directing packets to

VNFs and ultimately minimizing the average packet delay. Our

investigation encompassed various VNF computing capacities,

allowing for a comprehensive comparison of their respective

optimal offloading probabilities and their effects on

performance metrics. To assess the average packet delay, we

employed the M/M/1 queuing model. Also, we proposed an

optimization solution based on gradient descent to find the

optimal offloading probabilities for various VNF servers.

 The study highlights the importance of VNF server

computing capacities in determining the optimal offloading

probabilities. Servers with larger computing capacities can

process more packets, consequently yielding higher optimal

offloading probabilities. Integrating more VNFs into the system

reduces overall average packet delay. This is because by

distributing packets among multiple VNFs, we can reduce

workload on individual VNFs and the PNF. However,

increasing the number of VNFs also increases system

complexity and cost, which should be taken into consideration.

The research findings demonstrate that optimal offloading from

a P4 switch to three VNFs can yield reductions in average

packet delay ranging from 4.76% to 40.02% when compared to

a single VNF scenario. With the exception of 𝐷𝑖
𝑆𝑉, when other

parameters (λ, 𝑝𝑁 , 𝑐𝑖
𝑉𝑁𝐹) increase, the average packet delay

also increases, leading to the need for higher offloading

probabilities. This trend aligns with the idea that offloading a

greater number of packets to multiple VNFs can effectively

mitigate packet delay. In conclusion, the study provides

valuable insights for enhancing system performance,

emphasizing the importance of considering VNF computing

capacities and offloading probabilities.

 This model provides a mathematical framework for

analyzing multiple VNF queues with Poisson arrivals,

exponentially distributed service times, and a single server.

Recognizing the potential impact of different packet arrival

distributions on results, we plan to explore alternative

distributions in our future work.

REFERENCES

[1] Q. Waseem, W. Isni Sofiah Wan Din, A. Aminuddin, M. Hussain

Mohammed, and R. F. Alfa Aziza, “Software-Defined Networking (SDN):

A Review,” in 2022 5th International Conference on Information and
Communications Technology (ICOIACT), 2022.

[2] S. Papavassiliou, “Software Defined Networking (SDN) and Network

Function Virtualization (NFV),” Future Internet, vol. 12, no. 1, p. 7, 2020.
[3] H. A. Jawdhari and A. A. Abdullah, “The application of network Functions

Virtualization on different networks, and its new applications in
blockchain: A survey,” Webology, vol. 18, no. Special04, pp. 1007–1044,

2021.

[4] H. Li et al., “Deployment of VNF service chains with grooming and
resilience in elastic optical networks,” Opt. Fiber Technol., vol. 81, no.

103482, p. 103482, 2023.

[5] B. Goswami, M. Kulkarni, and J. Paulose, “A survey on P4 challenges in
software defined networks: P4 programming,” IEEE Access, vol. 11, pp.

54373–54387, 2023.

[6] M. He, “P4NFV: An NFV Architecture with Flexible Data Plane
Reconfiguration,” in 14th International Conference on Network and

Service Management (CNSM), IEEE, 2018, pp. 90–98.

[7] L. A. Makara, Y. C. Lai, Y. D. Lin, W. Seah, and A. Pekar, Offloading
from P4 Switches to Nfv in Programmable Data Planes. Available at SSRN

4090265.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Van
wijngaarden-dekker-brent method,” in Numerical Recipes in FORTRAN:

The Art of Scientific Computing, Cambridge, England: Cambridge

University Press, 1992, pp. 352–355.
[9] J. Raychev, G. Hristov, D. Kinaneva, and P. Zahariev, “Modelling and

evaluation of software defined network architecture based on queueing

theory,” in 28th EAEEIE Annual Conference (EAEEIE), Hafnarfjordur,
Iceland, 2018.

[10] C. Sarkar and S. K. Setua, “Analytical model for OpenFlow-based

software-defined network,” in Advances in Intelligent Systems and
Computing, Singapore: Springer Singapore, 2018, pp. 583–592.

[11] L. O. Nweke and S. D. Wolthusen, “Modelling adversarial flow in

software-defined industrial control networks using a queueing network
model,” in IEEE Conference on Communications and Network Security

(CNS), 2020.

[12] Y. Goto, B. Ng, W. K. G. Seah, and Y. Takahashi, “Queueing analysis of
software defined network with realistic OpenFlow–based switch model,”

Comput. Netw., vol. 164, no. 106892, p. 106892, 2019.

[13] D. Singh, B. Ng, Y.-C. Lai, Y.-D. Lin, and W. K. G. Seah, “Modelling
Software-Defined Networking: Software and hardware switches,” J. Netw.

Comput. Appl., vol. 122, pp. 24–36, 2018.

[14] D. Singh, B. Ng, Y.-C. Lai, Y.-D. Lin, and W. K. G. Seah, “Full
encapsulation or internal buffering in OpenFlow based hardware

switches?,” Comput. Netw., vol. 167, no. 107033, p. 107033, 2020.

[15] N. Pitaev, M. Falkner, A. Leivadeasy, and I. Lambadarisy, “Multi-VNF
performance characterization for virtualized network functions,” in 2017

IEEE Conference on Network Softwarization (NetSoft), 2017.

[16] P. T. A. Quang, A. Bradai, K. D. Singh, G. Picard, and R. Riggio, “Single
and multi-domain adaptive allocation algorithms for VNF forwarding

graph embedding,” IEEE Trans. Netw. Serv. Manag., vol. 16, no. 1, pp.

98–112, 2019.
[17] D. Yamada and N. Shinomiya, “A solving method for computing and

network resource minimization problem in service function chain against

multiple VNF failures,” in 2019 IEEE 5th International Conference on
Collaboration and Internet Computing (CIC), 2019.

[18] S. Van Rossem, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester,
“VNF Performance modelling: From stand-alone to chained topologies,”

Comput. Netw., vol. 181, no. 107428, p. 107428, 2020.

[19] G. Ramya and R. Manoharan, “Traffic-aware dynamic controller
placement in SDN using NFV,” J. Supercomput., vol. 79, no. 2, pp. 2082–

2107, 2023.

[20] A. Fahmin, Y.-C. Lai, M. S. Hossain, and Y.-D. Lin, “Performance
modeling and comparison of NFV integrated with SDN: Under or aside?,”

J. Netw. Comput. Appl., vol. 113, pp. 119–129, 2018.

F. F. NEHA et al.: OFFLOADING IN P4 SWITCH INTEGRATED WITH MULTIPLE VIRTUAL NETWORK 287

[21] J. Billingsley, W. Miao, K. Li, G. Min, and N. Georgalas, “Performance
analysis of SDN and NFV enabled mobile cloud computing,” in

GLOBECOM 2020-2020 IEEE Global Communications Conference,

2020.
[22] N. Surantha and N. A. Putra, “Integrated SDN-NFV 5G network

performance and management-complexity evaluation,” Future Internet,

vol. 14, no. 12, p. 378, 2022.
[23] F. Paolucci, F. Cugini, P. Castoldi, and T. Osinski, “Enhancing 5G

SDN/NFV Edge with P4 Data Plane Programmability,” IEEE Netw., vol.

35, no. 3, pp. 154–160, 2021.
[24] S. Ji, DE4NF: High Performance Nfv Frameworkwith P4-Based Event

System (Doctoral dissertation). 2020.

[25] T. Osinski, H. Tarasiuk, L. Rajewski, and E. Kowalczyk, “DPPx: A P4-
based Data Plane Programmability and Exposure framework to enhance

NFV services,” in 2019 IEEE Conference on Network Softwarization

(NetSoft), 2019.
[26] A. Mohammad Khan, S. Panda, S. G. Kulkarni, K. K. Ramakrishnan, and

L. N. Bhuyan, “P4NFV: P4 enabled NFV systems with SmartNICs,” in

2019 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), IEEE, 2019, pp. 1–7.

[27] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, L. Iannone, and J.

Roberts, “Comparing the performance of state-of-the-art software switches
for NFV,” in Proceedings of the 15th International Conference on

Emerging Networking Experiments And Technologies, 2019.

[28] G. I. Palmer, V. A. Knight, P. R. Harper, and A. L. Hawa, “Ciw: An open-
source discrete event simulation library,” J. Simul., vol. 13, no. 1, pp. 68–

82, 2019.

[29] G. I. Palmer and Y. Tian, “Implementing hybrid simulations that integrate
DES+ SD in Python,” Journal of Simulation, pp. 1–17, 2021.

[30] H. Harkous, M. Jarschel, M. He, R. Pries, and W. Kellerer, “P8: P4 with

predictable packet processing performance,” IEEE Trans. Netw. Serv.
Manag., vol. 18, no. 3, pp. 2846–2859, 2021.

[31] S.-Y. Wang, J.-Y. Li, and Y.-B. Lin, “Aggregating and disaggregating

packets with various sizes of payload in P4 switches at 100 Gbps line rate,”
J. Netw. Comput. Appl., vol. 165, no. 102676, p. 102676, 2020.

Farhin Faiza Neha is pursuing an MSc in

Computer Science and Engineering at Bangladesh

University of Engineering and Technology
(BUET). She has completed BSc in Computer

Science and Engineering from Chittagong

University of Engineering & Technology (CUET),
Farhin actively contributes to the 'Establishing

Digital Connectivity (EDC)' project as an Assistant

Network Engineer at the Department of ICT, Govt.
of Bangladesh. Her research interests include

wireless networks communication, network

performance evaluation, cyber security, machine learning, artificial
intelligence, internet of things, and connected and autonomous vehicular

systems.

 Yuan-Cheng Lai received the Ph.D. degree in
Computer Science from National Chiao Tung

University in 1997. In August 2001, he joined the

faculty of the Department of Information
Management at National Taiwan University of

Science and Technology where he had been a

professor since February 2008. His research
interests include wireless networks, network

performance evaluation, network security, and

Internet applications.

 Md. Shohrab Hossain received his B.Sc. and
M.Sc. in Computer Science and Engineering from

Bangladesh University of Engineering and

Technology (BUET), Dhaka, Bangladesh in the
year 2003 and 2007, respectively. He obtained his

Ph.D. degree from the School of Computer Science

at the University of Oklahoma, Norman, OK, USA
in December, 2012. During his PhD, he worked

under NASA funded projects related to

survivability, scalability and security of space
networks. He is currently serving as a Professor in

the Department of Computer Science and Engineering at Bangladesh University

of Engineering and Technology (BUET), Dhaka, Bangladesh. His research
interests include Cyber security, Mobile malware detections, Software defined

networking (SDN), security of mobile and ad hoc networks, and Internet of

Things. He has published more than 98 technical research papers in leading
journals and conferences including Journal of Computers & Security, Ad Hoc

Networks, IEEE Access, Journal of Network and Computer Applications,

Journal of Telecommunication Systems, Wireless Personal Communication,
PLOS ONE, IEEE GLOBECOM, IEEE ICC, IEEE MILCOM, IEEE WCNC,

IEEE HPCC, etc. He has been serving as the TPC member of IEEE

GLOBECOM, IEEE ICC, IEEE VTC, Wireless Personal Communication,
Journal of Network and Computer Applications, IEEE Wireless

Communications.

 Ying-Dar Lin (Fellow, IEEE) received the Ph.D.

degree in computer science from the University of
California at Los Angeles (UCLA), in 1993. Since

2002, he has been the Founder and the Director of

the Network Benchmarking Laboratory. He is
currently a Chair Professor of computer science at

the National Yang Ming Chiao Tung University

(NYCU), Taiwan. He published a textbook,
Computer Networks: An Open Source Approach.

His research interests include network security,

wireless communications, and network
softwarization. He has served or is serving on the editorial boards for several

IEEE journals and magazines, and was the Editor-in-Chief of the IEEE

Communications Surveys and Tutorials, during 2017–2020.

288 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 4, DECEMBER 2023

