CANNABIS USE AND SUICIDE IN NON-AFFECTIVE PSYCHOSIS: A MINI-REVIEW OF RECENT LITERATURE

Valerio Ricci1,*, Enrico Cristofori2, Erica Passarello2, Andrea Paggi2, Alex Cavallo2, Franca Ceci3, Giovanni Martinotti2 & Giuseppe Maina1,2

1 San Luigi Gonzaga Hospital, 10043 Orbassano, University of Turin, Regione Gonzole, Italy
2 Department of Neurosciences “Rita Levi Montalcini”, University of Turin; Italy
3 Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio Chieti-Pescara, Italy;
4 NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital “G. Mazzini”, Italy;
* Corresponding author

Summary
Proof of correlation between psychotic spectrum disorders and suicide are found in literature, as well as between cannabis use disorder (CUD) and suicide and between CUD and schizophrenia. The study population of the selected papers consists of subjects diagnosed with schizophrenia spectrum or cannabis or SCs induced psychosis. Our objective is to assess how suicide risk (defined as suicidal ideation/attempt or death by suicide) in this population may vary with exposure to cannabis or one of its main active compounds. We searched PubMed, Scopus and Psycinfo database from January 2010 to February 2022. Study designs of the included articles are distributed as follows: 6 cross-sectional studies, 3 cohort studies, 1 case-control studies, 1 randomized double-blind study, 1 case report. Selected cohort studies seem to agree in identifying an increased suicide risk in patients with schizophrenia spectrum disorders when exposed to cannabis use.
The case-control study and selected cross-sectionals provide contradictory data. However, qualitative analysis seem to point toward a positive correlation between cannabis use and increased suicidal risk in patients with schizophrenia spectrum disorders. In conclusion, emerging data on the correlation between cannabis use and suicide risk in patients with schizophrenia or other schizophrenic spectrum disorders are insufficient to draw firm conclusions. Nonetheless these studies seem to suggest a positive correlation of cannabis use with increased suicide risk, particularly regarding first episode psychosis (FEP) and male gender. Clinicians should be aware of the possibility of a higher risk of suicidal behavior associated specifically with cannabis use for men and patients during FEP.

Keywords: cannabis, schizophrenia, non-affective psychosis, suicide, suicide risk, first episode psychosis

INTRODUCTION

Compared to the general population, schizophrenic patients have and increased risk of suicide (Barbeito et al. 2021, Castelein et al. 2015, Yin et al. 2020; Fantegrossi et al. 2014). Patients appear particularly vulnerable during the first psychotic episode (FEP) (Pelizza et al. 2021), especially with regards to male patients(Sicotte et al. 2021). Some studies have identified risk factors associated with an increased susceptibility of suicide in psychotic patients: social problem solving (Breitborde et al. 2021a, 2021b; Deep et al. 2018), sleep disorders (Miller et al. 2019), reduced cognitive functions (Canal-Rivero et al. 2018), and depressive symptoms during FEP (Bornheimer et al. 2021).
There is also a strong interdependency between schizophrenia and substance abuse disorder (SAD), in particularly cannabis (Patel et al. 2020). Not only cannabis use disorder (CUD) and synthetic cannabinoids (SCs) seem to be a possible risk factor for the development of a psychotic disorder, but also are likely to be involved in the progression of the disease as well as determining the severity of symptoms (Ricci et al. 2021, Papanti et al. 2013) Indeed, cannabis use is considered a preventable risk factor for psychosis. The association between cannabis use and nonaffective psychotic pathology appears to be stronger in cases of early age use (Arseneault et al. 2002) or in the case of consumption of cannabis with a high concentration of THC (Di Forti et al. 2015, Di Forti et al. 2009). On the other hand, patients with schizophrenia have an increased risk of developing a substance use disorder (McGinty et al. 2018, Large et al. 2011). In fact, the rate of cannabis dependence is disproportionately high among people with psychosis and may be related to the underlying neurobiology of the disorder (Galletly et al. 2016).
Cannabis contains more than 80 cannabinoids. These are chemicals of natural origin that interact with the receptors of the endocannabinoid system. Among these, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the ones present in greater quantities. THC, the
The main psychoactive component of Natural Cannabis (NC), is a partial agonist of the cannabinoid receptors CB1 and CB2 and it is believed to be responsible for the risk of developing psychotic symptoms (Iseger & Bossong, 2015). CBD has little binding affinity to cannabinoid receptors and it carries antipsychotic and anxiolytic properties (Iseger & Bossong, 2015). Over the last decade, several studies have reported that cannabis strains with a higher ratio of THC, such as SCs have a stronger association with the risk of developing psychotic disorders (Di Forti et al. 2015).

Several articles emerge from the literature showing a link between chronic cannabis use and suicidal ideation and attempts (Di Forti et al. 2009, Fenton 2000; Hirvonen et al. 2012) particularly if consumed at a young age (14-15 years old) (Gobbi et al. 2019). Some studies suggest that a dysregulation of the cannabinoid system (up-regulation of the CB1 receptor) is associated with an increased risk of suicide, implying that THC may be implicated in altering this system (Mannekote et al. 2021).

Given the link between schizophrenia and suicide, cannabis and suicide, cannabis and schizophrenia, and since some of the most relevant risk factors for suicide in schizophrenia patients may be influenced by cannabis use, we decided to conduct a literature search.

Our study population consists of subjects diagnosed with schizophrenia spectrum disorders or diagnosed with cannabis or SCs induced non-affective psychotic disorders; current or past use of cannabinoids or SCs or other cannabis components; presence of suicidal ideation/attempt or death by suicide (we will use the expression ‘suicide risk’ to refer to these three scenarios); only reports written in English. Specifically, we included all articles that reported on the effects of cannabis and synthetic cannabinoids (Fattore et al. 2016). In particular, considering that cannabis is a plant that contains multiple psychoactive components(Cohen et al. 2019), we chose to consider also the studies that reported the effects of the two main components: THC and CBD. Case reports have also been included in order to provide a complete overview of the literature.

We applied the following exclusion criteria: 1) articles in which were reported self-injurious acts without suicidal intent; 2) articles in which patients were not diagnosed with schizophrenia or schizophrenic spectrum disorders or were not diagnosed with non-affective psychotic disorder induced after using SCs; 3) articles that did not include specifically cannabinoids use but included drug abuse as a general category.

RESULTS

The research yielded a total of 88 articles on Pubmed database, 181 articles on Scopus database and 60 articles on Psycinfo, among which 137 overlapped. The remaining 229 papers have been screened to exclude other 31 articles represented by reviews or study designs that were not suitable for the purpose of this article, such as editorials and commentaries. In this group also articles whose full text was not available are included. The following process consisted in discarding 72 papers whose subject of matter utterly diverged from the search topic and 62 more articles whose field of study was not consonant with the aim of this review. A further screening, executed through the application of the exclusion criteria, resulted in the rejection of 52 studies. Eventually, 12 studies published between 2010 and 2021 were eligible for inclusion. The detailed process is described in fig. 1 flow-chart.

The results have been summarized in Tables “1”, “2”, “3”.

Eligibility criteria

For our review, we focused on studies involving patients with the following characteristics: 1) diagnosed with schizophrenic spectrum disorders or diagnosed with cannabis or SCs induced non-affective psychotic disorder; 2) current or past use of cannabinoids or SCs or other cannabis components; 3) presence of suicidal ideation/attempt or death by suicide (we will use the expression ‘suicide risk’ to refer to these three scenarios); 4) only reports written in English. Specifically, we included all articles that reported on the effects of cannabis and synthetic cannabinoids (Fattore et al. 2016). In particular, considering that cannabis is a plant that contains multiple psychoactive components (Cohen et al. 2019), we chose to consider also the studies that reported the effects of the two main components: THC and CBD. Case reports have also been included in order to provide a complete overview of the literature.

We applied the following exclusion criteria: 1) articles in which were reported self-injurious acts without suicidal intent; 2) articles in which patients were not diagnosed with schizophrenia or schizophrenic spectrum disorders or were not diagnosed with non-affective psychotic disorder induced after using SCs; 3) articles that did not include specifically cannabinoids use but included drug abuse as a general category.

RESULTS

The research yielded a total of 88 articles on Pubmed database, 181 articles on Scopus database and 60 articles on Psycinfo, among which 137 overlapped. The remaining 229 papers have been screened to exclude other 31 articles represented by reviews or study designs that were not suitable for the purpose of this article, such as editorials and commentaries. In this group also articles whose full text was not available are included. The following process consisted in discarding 72 papers whose subject of matter utterly diverged from the search topic and 62 more articles whose field of study was not consonant with the aim of this review. A further screening, executed through the application of the exclusion criteria, resulted in the rejection of 52 studies. Eventually, 12 studies published between 2010 and 2021 were eligible for inclusion. The detailed process is described in fig. 1 flow-chart.

The results have been summarized in Tables “1”, “2”, “3”.

Eligibility criteria

For our review, we focused on studies involving patients with the following characteristics: 1) diagnosed with schizophrenic spectrum disorders or diagnosed with cannabis or SCs induced non-affective psychotic disorder; 2) current or past use of cannabinoids or SCs or other cannabis components; 3) presence of suicidal ideation/attempt or death by suicide (we will use the expression ‘suicide risk’ to refer to these three scenarios); 4) only reports written in English. Specifically, we included all articles that reported on the effects of cannabis and synthetic cannabinoids (Fattore et al. 2016). In particular, considering that cannabis is a plant that contains multiple psychoactive components (Cohen et al. 2019), we chose to consider also the studies that reported the effects of the two main components: THC and CBD. Case reports have also been included in order to provide a complete overview of the literature.

We applied the following exclusion criteria: 1) articles in which were reported self-injurious acts without suicidal intent; 2) articles in which patients were not diagnosed with schizophrenia or schizophrenic spectrum disorders or were not diagnosed with non-affective psychotic disorder induced after using SCs; 3) articles that did not include specifically cannabinoids use but included drug abuse as a general category.
Table 1: Main findings and study designs pt.1/3. Three cross sectional studies and a restrospective case-control study are here displayed. Half articles showed presence of a correlation between cannabis use and suicidal risk in psychosis, one in a positive and the other in negative sense, while this link was denied in the remaining articles.

<table>
<thead>
<tr>
<th>Study title</th>
<th>Authors and journal</th>
<th>Study design</th>
<th>Sample</th>
<th>Diagnosis Criteria</th>
<th>Cannabis use evaluation</th>
<th>Suicide risk evaluation</th>
<th>Main findings</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is cannabis a risk factor for suicide attempts in men and women with psychotic illness?</td>
<td>A. Waterreus et al. 2018</td>
<td>Cross-sectional</td>
<td>1790 subjects M: 59.5%; F: 40.5%; age: 18-64 y.o.</td>
<td>Non-affective psychosis according to ICD 10</td>
<td>Self-reported information about the past 12 months; patients divided into “daily users”, “casual users” and “non-users”</td>
<td>Suicidal attempts/ideas in the previous 12 months through SMIWGB (National Survey of Mental Health and Wellbeing)</td>
<td>Positive correlation between cannabis consumption and rate of suicidal attempts in older males (>35 y.o.), negative correlation in younger males (<35 y.o.)</td>
<td>Cannabis use and suicidal attempts before the last 12 months are not considered. Cross-sectional data collection. Lack of objective data on current use of cannabis.</td>
</tr>
<tr>
<td>Significant relationship between lifetime alcohol use disorders and suicide attempts in an Australian schizophrenia sample.</td>
<td>D. McLean et al. 2012</td>
<td>Cross-sectional</td>
<td>821 subjects 167 first-degree related individuals contained within 79 independent families; M: 71%, F: 29%; age > 18 y.o.</td>
<td>93% schizophrenia 7% schizo-affective disorder according to DSM IV</td>
<td>DIGS (Diagnostic Interview for Genetic Studies) and FIGS (Family Interview for Genetic Studies)</td>
<td>Frequency of any suicide attempt</td>
<td>No correlation</td>
<td>Sample not representative of non-affective psychotic population (related patients, originally recruited for genetic studies). Cross-sectional data collection.</td>
</tr>
<tr>
<td>Differential effects of childhood trauma and cannabis use disorders in patients suffering from schizophrenia.</td>
<td>G. Baudin et al. 2016</td>
<td>Cross-sectional</td>
<td>366 subjects M: 74.86%, F: 25.14%; age: 15-84 y.o. Selected on referral from psychiatrists or general practitioners.</td>
<td>Schizophrenia or schizo-affective disorder according to DSM IV</td>
<td>SCID-I</td>
<td>Columbia-Suicide Severity Rating Scale (C-SSRS)</td>
<td>No correlation</td>
<td>Cross-sectional data collection.</td>
</tr>
<tr>
<td>Psychopharmacological comparison of schizophrenia spectrum disorder with and without cannabis dependency.</td>
<td>Z. Makkos et al. 2011</td>
<td>Retrospective case-control</td>
<td>85 first-time hospitalized patients age < 35 y.o.</td>
<td>Schizophrenia spectrum disorder according to DSM IV</td>
<td>Self-reported information</td>
<td>Frequency of any suicide attempt</td>
<td>Negative correlation between cannabis consumption and suicide attempts rates (higher in non-users group)</td>
<td>Age and gender distribution is different between the two groups (substance-using group younger and mostly males). Lack of objective data on current use of cannabis.</td>
</tr>
</tbody>
</table>
Table 2: Main findings and study designs pt.2/3

<table>
<thead>
<tr>
<th>Study Title</th>
<th>Authors and Journal</th>
<th>Study Design</th>
<th>Sample</th>
<th>Diagnosis criteria</th>
<th>Cannabis use evaluation</th>
<th>Suicide risk evaluation</th>
<th>Main Findings</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morbidity and mortality in schizophrenia with comorbid substance use disorders.</td>
<td>M. Lähteenvuo et al. 2021 Acta psychiatrica scandinavica</td>
<td>Longitudinal Cohort</td>
<td>45,476 subjects from Finland and Sweden</td>
<td>Finnish SUD group: M: 71.9% F: 28.1% age <46 y.o at cohort entry mean age: 32.9 y.o</td>
<td>Diagnosed SUD according to ICD 10</td>
<td>Suicide attempts in treatment register; complete suicides in the Cause of Death Register</td>
<td>Partial correlation between cannabis consumption and suicidal risk in psychosis. Despite only partially in one of the works presented.</td>
<td>Results difficult to generalize (only to countries with similar Health Care Systems); only registered suicidal behaviors and diagnosed SUD are considered with risk for underestimation</td>
</tr>
<tr>
<td>Attempted Suicide in a Xhosa Schizophrenia and Schizoaffective Disorder Population.</td>
<td>M. Luckhoff et al. 2013 The official journal of the american association of suicidology</td>
<td>Cross-sectional</td>
<td>974 subjects</td>
<td>Schizoprhenia or schizoaffective disorders according to DSM IV DIGS (at least 21 time/year)</td>
<td>DIGS</td>
<td>Positive correlation between cannabis consumption and suicide attempts</td>
<td>Only Xhosa population involved and prevalence of male.</td>
<td></td>
</tr>
<tr>
<td>Associations between substance use disorders and suicide or suicide attempts in people with mental illness.</td>
<td>M. LD Østergaard et al. 2017 Addiction</td>
<td>Cohort - 35,625 subjects - mean age: 27 – 33 y.o</td>
<td>Psychotic spectrum disorder according to ICD 10</td>
<td>Diagnosed SUD in hospital treatment register</td>
<td>Suicide attempts in treatment register; complete suicides in the Cause of Death Register</td>
<td>Positive correlation between cannabis consumption and rates of suicide attempts</td>
<td>Only diagnosed SUD and suicide attempts which caused hospitalization are considered (risk for underestimation)</td>
<td></td>
</tr>
<tr>
<td>Suicidal behavior in first-episode nonaffective psychosis: Specific risk periods and stage-related factors.</td>
<td>R. Ayesa-Arriola et al. 2015 European Neuropsychopharmacology</td>
<td>Longitudinal Cohort</td>
<td>397 subjects</td>
<td>Psychotic spectrum disorders (schizophrenia, schizophreniform disorder, schizoaffective disorder, brief psychotic disorder, psychosis NOS and delusional disorder) according to DSM IV</td>
<td>Self-reported data (“yes or no” questionnaire)</td>
<td>Medical records. Patients divided into: “Early attempters” (within 2 months from FEP) “Late attempters” (beyond 2 months from FEP)</td>
<td>Positive and strong correlation (p=0.043) between cannabis consumption and suicidal risk especially in “late attempters”</td>
<td>Data about suicidal behavior collected through medical records with risk for underestimation (some suicide deaths could occur before first contact with hospital) Cannabis use evaluation method not specified Other suicide-related variables not considered</td>
</tr>
</tbody>
</table>

TABLE 2: Main findings and study designs pt.2/3. The effects of cannabis and cross-sectional study are not depicted. All articles contained the presence of a positive correlation between cannabis use and suicidal risk in psychosis, despite only partially in one of the works presented.
Table 3: Main findings and study designs pt.3/3. Two cross sectional studies, a case report and a case-control study are here displayed. Almost every article showed presence of a positive correlation between cannabis use and suicidal risk in psychosis, except for one work which denied any link.

<table>
<thead>
<tr>
<th>Study title</th>
<th>Authors and Journal</th>
<th>Study design</th>
<th>Sample</th>
<th>Diagnosis criteria</th>
<th>Cannabis use evaluation</th>
<th>Suicide risk evaluation</th>
<th>Main findings</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent cannabis use among young adults with early psychosis receiving coordinated specialty care in the United States</td>
<td>L. Marino et al. 2020</td>
<td>Cross-sectional</td>
<td>938 subjects</td>
<td>M: 74%; F: 26%; age: 16-30 y.o.</td>
<td>Standardized hospital admission forms</td>
<td>Clinician-reported data regarding suicidal ideation (use from admission continued during follow-up or use started during follow-up)</td>
<td>Positive correlation between cannabis consumption (especially persistent use) and increase of suicidal ideation or behaviour (p=0.045)</td>
<td>Impossible to stratify the risk depending on reduced or persistent drug use (lacking information about cannabis use frequency and transversal nature of the study)</td>
</tr>
<tr>
<td>Clinical characteristics of synthetic cannabinoid-induced psychosis in relation to schizophrenia: a single-center cross-sectional analysis of concurrently hospitalized patients</td>
<td>M. Altintas et al. 2016</td>
<td>Cross-sectional</td>
<td>81 subjects</td>
<td>M: 100%; age 16 – 60 y.o.</td>
<td>Self-reported data for at least 4 months and no previous psychiatric diagnosis; 31 subjects with schizophrenia according to DSM-V criteria</td>
<td>Rates of suicide attempts and ideation reported</td>
<td>Positive correlation between synthetic cannabis consumption and suicide risk</td>
<td>SC abuse investigated through anamnesis and not objective urinalysis (all resulted negative). Lack of objective data on current use of cannabis.</td>
</tr>
<tr>
<td>Synthetic Cannabis Analogues and Suicidal Behavior: Case Report.</td>
<td>P.M. dos Santos Oliveira et al. 2017</td>
<td>Case report</td>
<td>1 male</td>
<td>Age 32 y.o.</td>
<td>Self-reported data</td>
<td>Clinical presentation at hospital access</td>
<td>Positive correlation between synthetic cannabis consumption and suicidal risk</td>
<td>Case report (results are difficult to generalize). Diagnosis criteria not specified. Lack of objective data on current use of cannabis.</td>
</tr>
<tr>
<td>The effects of cannabidiol (CBD) on cognition and the other symptoms in outpatients with chronic schizophrenia: a randomized, placebo-controlled, double-blind trial.</td>
<td>D. L. Boggs et al. 2018</td>
<td>Randomized placebo-controlled double-blind study</td>
<td>39 subjects</td>
<td>age: 18 – 65 y.o.</td>
<td>CBD 600 mg/die administered for the study purpose in the case group of the trial</td>
<td>Clinical observation for increase of suicide risks as adverse effect</td>
<td>No correlation</td>
<td>Higher doses of CBD could have been tested (it has a low oral bioavailability and higher doses have been proven to be tolerated).</td>
</tr>
</tbody>
</table>
Study characteristics and main findings

Study designs of the included articles distributed as follows: 6 cross-sectional studies, 3 cohort studies, 1 case-control studies, 1 randomised double-blind study, 1 case report. (see tables “1”, “2”, “3”).

A major cross-sectional study (Waterreus et al. 2018), involved five different centers in Australia covering a population of about 1.5 million people in total. In selected patients, although preliminary analyses showed a positive correlation between cannabis and suicide in both genders, when adjusted for risk and confounding factors (age, depression, anxiety, hallucinations, delusions, other illicit drug use, loneliness, being the victim of assault and stigma/discrimination, child-hood abuse, childhood loss and being a caregiver of their children, negative symptoms, hazardous alcohol use and homelessness) no correlation was shown. However, further examination with other covariates (gender and age) revealed that although the link between cannabis abuse and suicide ideation in psychotic disorders is absent in females, it is found when analyzing males. Adult male patients (>35 years) show an increased risk of suicide in daily users compared to non-users; unexpectedly, in young male people (18-35 years) likelihood of suicide seems to decrease as cannabis use increases.

A correlation between cannabis abuse and suicide attempts was denied in a cross-sectional study conducted by McLean (McLean et al. 2012). Multivariate models involving “cannabis use” variable was created and revealed no influence on the frequency of suicide attempts in these patients, also evaluating age and gender covariates.

The results of the previous articles seem to agree with the multicenter study conducted by Baudin (Baudin et al. 2016). Of the selected sample only 27 % (99 patients) were using cannabis or had a history of cannabis use, according to the declarations on their past habits. The study found no correlation between cannabis use and suicidal behaviour.

An opposite conclusion was achieved in the Hungarian study carried out by Makkos (Makkos et al. 2011). The study compared patients (at first hospitalization and under 35 years of age) who had been using cannabis daily (0.5-1 g/day) for at least one year to patients who had never used this drug. Patients from substance-using group were mostly males and significantly younger in age. Results showed a five-fold higher rate of suicide attempts in non-users compared to daily-users, suggesting a negative correlation between the consumption of this drug and a greater suicide risk.

Lähteenvuo (Lähteenvuo et al. 2021), contradicts, at least partially, the previous conclusions. The study,
carried out in a Finnish and a Swedish center, seems to find a positive correlation between cannabis and suicide. These cohorts were followed for 11 and 22 years in Sweden and Finland respectively.

An increased mortality due to self-inflicted death was found in cannabis users, but only in the Finnish population.

Two other studies supporting the positive correlation between cannabis and suicide, were conducted by Lückhoff (Lückhoff et al. 2014) and Østergaard (Østergaard et al. 2017). The cross-sectional (Lückhoff et al. 2014) shows how cannabis use or abuse is a significant predictor of suicide attempts in a population of hospital patients in the Xhosa community. The cohort study (Østergaard et al. 2017) focuses on the clinical information from psychiatric patients resident in Denmark. Patients were divided into the following categories: never user, former user and current user. Persons were considered current users from the date of first use and for a subsequent period of two years. After this period of current use, the person was considered a ‘former user’ of that substance until the start of a new treatment or the end of the study. In this study, a higher rate of suicide attempt is observed for the current user category.

The three-year longitudinal study published by Ayesa Arriola (Ayesa-Arriola et al. 2015) investigates suicide risk in patients enduring FEP, that were not previously pharmacologically treated for more than six weeks or, if previously treated, a total life time of adequate antipsychotic treatment of less than 6 weeks. Results show a positive correlation between cannabis use and suicide, especially for ‘later attempters’ (patients who attempted suicide after the second month of follow-up). This correlation was also confirmed by Marino (Marino et al. 2020) when studying patients who had been experiencing FEP for less than two years.

The only paper concerning SCs is from Altintas (Altintas et al. 2016). Patients with acute SCs intoxication were excluded. The article concludes that there is strong evidence of an increased risk of suicidal ideation and acts in relation to SCs-induced psychosis.

In support of the previous article, a case report (Oliveira et al. 2017) displays a severe suicidal attempt after smoking “Shiva Ultrastrong” by a patient diagnosed with paranoid schizophrenia with no history of suicide ideation or attempts.

Bogg’s work focuses on CBD (Bogg et al. 2018a), investigating the effects of oral CBD (600 mg/day) added to a stable dose of antipsychotic medication in patients with the purpose of addressing the cognitive impairments associated with schizophrenia. The exclusion criteria consisted of consumption of other substances in the last three months and the presence of use disorder in the last six months. Results did not reveal any sign of increased suicide risk.

Most of these studies do not indicate the timeframe between cannabis use and the development of psychosis.

The studies selected in this review, with the exception of two papers, include patients with Schizophrenia spectrum disorder using the presence of a diagnosis made according to DSM-IV/V or ICD10. These manuals state as a diagnostic criterion: ‘the disorder is not attributable to the physiological effects of a substance’. Thus, they are patients diagnosed with non-substance-induced schizophrenia who have substance use as a comorbidity.

The majority of these studies employed a single scale to assess symptoms of depression.

DISCUSSION

Selected cohort studies seem to agree in identifying an increased suicide risk in patients with schizophrenia spectrum disorders when exposed to cannabis use. Overall, the qualitative analysis performed classifies these three cohort studies as being of “good quality”. Østergaard’s (Østergaard et al. 2017) and Lähteenvuo’s (Lähteenvuo et al. 2021) studies have as important strengths the large sample selected, ensuring a strong reliability in the selection; furthermore the Danish study (Østergaard et al. 2017) having maintained a follow-up of 42 years ensures a high quality of outcome measurement. However the Ayesa-Arriola (Ayesa-Arriola et al. 2015) study shows a weakness in the methodology of collecting data on cannabis exposure, which was carried out through self-reported information, thus showing a shortcoming in sample selection. It should be noted that the Lähteenvuo (Lähteenvuo et al. 2021) study, carried out in two separate cohorts, found an increased risk to such exposure in only one of the two cohorts, the Finnish one. This result, as emphasized by the authors themselves, may be explained by the important difference in the duration of follow-up in the two courts (10 years less in the Swedish court).

The only case control selected (Makkos et al. 2011) denies a correlation between cannabis use and increased suicide risk. This study from a qualitative and methodological point of view shows shortcomings both in the representativeness of the cases and in the assessment of exposure. In detail: choosing patients > 35 years old as an exclusion criterion, there is a limit to the representativeness of the cases; the methodology of ascertaining exposure is questionable in that only patients who self-report a daily consumption of 0.5-1 g of cannabis for one year are considered, thus excluding all those patients who use the
substance with different frequency and dosages or who have used it in the past.

Cross-sectional studies, due to their intrinsic methodological nature, provide with prevalence data at a specific time and thus prove the presence of a phenomenon at a specific time. Therefore, the information provided by these forms of study has a relative weight in meeting the objectives of our study.

The cross sectional studies selected provide us with contradictory information. Nonetheless, a more in-depth analysis allows us to argue that these studies also suggest an increased suicidal risk in response to cannabis exposure. One of the main reasons for this is the great heterogeneity of the study populations and research instruments used. For example, the studies that do not find an increased risk of suicide (McLean et al. 2012, Baudin et al. 2016) select a different sample from the other articles: Baudin has a sample of patients selected by referral from specialists and family doctors, whereas McLean uses a sample of patients selected for genetic studies and which is represented by many relatives and twins. On the other hand, studies that find an increased suicide risk (Lückhoff et al. 2014, Marino et al. 2020. Waterreus et al. 2018) use data extrapolated from patients who have been treated in hospitals and are numerically larger and thus more representative of our study population. The case of the Waterreus study is interesting since it found an increase in suicide risk only in patients > 35 years and a decrease in risk < 35 years; this result can be explained by considering the longer drug exposition of older cannabis-abusers in comparison to younger patients, who are likely to have the same rates of suicide attempts during their future life. It should be noted, however, that the qualitative analysis of these studies classifies these studies as being of good quality, but not free of certain limitations, especially concerning the way in which data on cannabis use were collected.

In conclusion, while an initial collection of data in the literature seems to provide confounding and contradictory results, a qualitative analysis allows us to state that there appears to be a positive correlation between cannabis use and increased suicidal risk in patients on the schizophrenia spectrum.

However, we cannot identify which mode of intake (duration of intake, quantity, type) is most related to the risk of psychosis. It is also unclear whether there is a time window during which the psychotic patient appears to be at greater suicidal risk if related to cannabis use. Certainly FEP is a time of increased vulnerability in this regard. Studies support that both lifetime and episodic cannabis use are associated with an increased risk of suicidal ideation and behavior (Karila et al. 2014; Price et al. 2009), particularly if consumed at a young age (14-15 years old) (Gobbi et al. 2019) or in patients with preexisting nonsuicidal self-harm (Mars et al. 2019). Another study, on the other hand, claims that there is no evidence that acute use can increase suicide risk; rather, the evidence seems to support the hypothesis that chronic cannabis use may be associated with increased suicide risk (Borges et al. 2016). Furthermore, it would appear that stopping use in late adolescence does not protect against the dangerous adverse effects of cannabis (Brook et al. 2011; Epstein et al. 2015).

Another study shows how an alteration of the endocannabinoid system can predispose to suicidal behavior and wonders if cannabis, acting on this system, could be one of the causes of this dysregulation (Mannekot Thippaiah et al. 2021).

Lastly, we have decided to discuss the most salient results broken down by the most important variables.

Gender

Focusing on the correlations with gender, most papers that display a higher likelihood of suicide attempts in psychotic subject who used cannabinoids consisted of samples where males were prevalent, and in some cases even represented the only gender evaluated. This is also the case of A. Waterreus (Waterreus et al. 2018) study whose sample is made for the 59,5 % of males. In these subjects a correlation between cannabis consumption and a greater risk for self-inflicted death is confirmed, while it is denied in females. A specific link with male gender is also seen in patients enduring firs-episode psychosis, as seen in Ayesa Arriola (Ayesa-Arriola et al. 2015) work, where male percentage in suicide attempters raised to the value of 70%. However, in this study there was no specific analysis about the interaction between the influence of cannabis on suicidal risk in this population and gender. This information however should be examined taking in consideration the already known higher rate of suicide deaths in male schizophrenic population (Sicotte et al. 2021). Epidemiological data show a male dominance also in cannabis use (Greaves & Hemsing 2020) that appears to be maintained in the male schizophrenia patients. The selected studies reflect this clear predominance of men, who appear to have higher rates of cannabis use and consequently suffer from the associated adverse effects. However, it is unclear whether the male prevalence is due to incorrect selection methods or whether fewer women actually consume cannabis. In the latter case, it would be interesting to understand what protective factors (in the case of females) or risk factors (in the case of males) lead to this difference in consumption. It would be useful to understand whether the neurobiological mechanisms...
associated with an increased risk of cannabis use found in schizophrenia patients (Galletly et al. 2016) are the same in both genders, or whether the female gender implies different neurobiological mechanisms.

Age

It is difficult to draw a conclusion regarding the age variable in light of the heterogeneity of the results that emerged as well as the non-representativeness of the samples of the studies, which all differ in age distribution. The correlation noted between cannabis consumption and increased rates of suicide attempts in schizophrenic spectrum disorders in the work by Markku Lähteenvuori (Lähteenvuori et al. 2021) was only proven in one of the cohorts involved in the study, which however hosted the most numerous and youngest sample. In Lückhoff paper (Lückhoff et al. 2014), the highest peak of age distribution of first suicide attempts is shown to range from 20 to 30 years old, usually happening within 3 years of the beginning of the illness or even before when onset occurs at a later age, thus confirming that it is necessary to address young patients as the most vulnerable schizophrenic population for suicide risk in relation to cannabinoid consumption. Studies also provided contradictory findings regarding age (Bornheimer et al. 2021, Miller et al. 2019, Waterreus et al. 2018), whose study only confirmed a positive correlation between cannabis use and suicide risk in older males. Surprisingly, younger male subjects of the sample saw their risk odd decreasing while increasing cannabis use. This result can be explained considering the longer drug exposition of older cannabis-abusers in comparison to younger patients, who are likely to have the same rates of suicide attempts during their future life. Zoltan Makkos (Makkos et al. 2011) in their article found a negative correlation between cannabis use and the rates of suicides in young schizophrenic patients, being their sample made of subject under 35 years old.

FEP

The most definitive findings regarding the cannabis-suicide association emerge in patients with FEP. Both Rosa Ayesa-Arriola (Ayesa-Arriola et al. 2015) and Leslie Marino (Marino et al. 2020) works found a positive correlation between cannabis consumption and increased suicide attempts and deaths during FEP. In the former paper (Ayesa-Arriola et al. 2015) cannabis use, as well as depressive symptoms and a shorter duration of untreated psychosis (DUP), is identified as a specific risk factor in “late attempters”, patients who attempted suicide beyond the two months since FEP. “Late attempts” seem to differ in terms of risk factors compared to early attempts, which appear to be the direct consequence of the acute state of psychosis. It is noteworthy that authors not only worried about immediate risk after cannabis consumption, but also showed preoccupation that drug use could represent a long-term threat for life. In the Marino paper (Marino et al. 2020) it is specifically persistent use to be suggested as a risk factor for self-inflicted death in patients enduring FEP. Nevertheless, there are not enough information or objective measures about the frequency and the duration of cannabinoid abuse to utterly assess how these variables modify the entity of suicidal risk.

SCs and CBD

Specific consumption of Synthetic Cannabinoids was examined in the article written by Altintas (Altintas et al. 2016) and in case report described by Oliveira (Oliveira et al. 2017). SCs use has not only been related to suicide risk in already diagnosed schizophrenic spectrum disorders, but SC-induced psychosis also seems to be characterized by an extremely high rate of suicide ideation and attempts. No female patients were included in these studies. Moreover, in Altintas (Altintas et al. 2016) depression in non-affective psychosis is found to be related, as already mentioned, both to suicidality in psychotic disorders and synthetic cannabinoids use.

The results regarding clinical consequences of cannabidiol consumption, presented in a case-control study (Boggs et al. 2018a, 2018b) concluded that no suicide risk was reported in literature in association with CBD treatment in schizophrenic patients. Nevertheless, they seemed to confirm the neuroprotective and precognitive effect already found in literature.

AFFECTIVE EPISODES

Co-occurrence of depressive episodes is central to suicide risk in schizophrenic patients, especially during FEP (Berardelli et al. 2021).

Depressive symptomatology is present in 30% of cases during the first psychotic episode and reaches 70% when considered over the entire duration of the pathology (Maj et al. 2021, Peralta and Cuesta, 2009). Often it is difficult to distinguish between affective episodes and primary psychosis. The finding of sadness or feelings of guilt often suggests the presence of depressive symptomatology (Maj et al. 2021); The Calgary Depression Scale for Schizophrenia is the best option for assessing depression in the context of psychotic symptoms (Addington et al. 1992). Depressive symptomatology is also associated
with an increased risk of suicide (Hor and Taylor, 2010). Remarkably, according to the scientific literature, some suicide risk factors in schizophrenic patients, such as depression (Bornheimer et al. 2021, Crebbin et al. 2008, Fenton WS 2000, Gobbi et al. 2019, Vinod and Hungund, 2006) may be influenced by cannabis use. Indeed, chronic cannabis use has been shown to correlate with dysregulation of the cannabinoid system (Ceccarini et al. 2015, Hirvonen et al. 2012). Such dysregulation may be associated with depression and suicide risk (Boorman et al. 2016, Vinod and Hungund, 2006, Volkow et al. 2017).

Many of the studies selected in our review look for depressive symptoms or EDM in the samples examined and correct the final data by considering depression as a confounding factor.

The studies by Ayesa-Aryola and Waterreus, when correcting the results by considering depression as a confounding factor, detect a weaker association between cannabis use and suicide risk.

The Altintas study (2016) also detects depressive symptoms and corrects the results for this variable, finding higher suicide rates both in synthetic cannabinoid-induced psychosis and in patients with schizophrenia who use this substance.

Marino’s (Marino et al. 2020) study searches for the presence of depressive symptoms using the MIRECC Global Assessment of Functioning (GAF), but does not correct the results for this variable.

Baudin (Baudin et al. 2016) in his study searches for depressive symptoms and corrects the data for this variable, finding clinical and functional worsening associated with cannabis use but no increased suicidal risk.

Ostergaard and colleagues (Ostergaard et al. 2017) found that patient with depression, but non schizophrenic, had the lowest prevalence of lifetime SUDs, suicides and suicide attempts and cannabis consumption and hard drug use disorders were most widespread in the population with schizophrenia, followed by personality disorder, bipolar disorder, and depression.

A previous study (Flanagan and Compton, 2012) found that depression, insight and suicidality were predictors of suicidal ideation prior to the initial hospitalization. Hence, depression seems to be a high risk factor for suicide in both early and later stages of FEP: finally depression in the prodromal stage was reported to predict suicidality at first presentation and further depressive episodes both in the acute and recovery stages of FEP which appears to challenge the so-called demoralization syndrome (Drake and Cotton, 1986, Upthegrove et al. 2014, Pompili et al. 2011).

In conclusion, we cannot rule out the possibility that the presence or absence of depressive symptomatology may be a confounding factor in the final outcome of our review. It remains to be clarified whether cannabis may be the cause of the onset of depressive symptomatology and thus increased suicide risk or whether cannabis and depression are but two independent factors and both may cause increased risk.

Limitations

Limitations regarding papers included are primarily represented by the different evaluation scales and measures used to identify and study the variables involved in our hypothesis, such as diagnosis, cannabis consume and suicide ideation/attempt. In fact, non-affective psychosis and schizophrenia spectrum disorders were not diagnosed according to a single manual parameter but following criteria from DMS-IV, DSM-V, ICD 10. Also cannabis use is assessed through all kinds of methods such as self-reported information, or collecting diagnosed SUD recorded in treatment register. Suicidal risk makes no exception, since it is was analyzed by the means of scales, such as National Survey of Mental Health and Wellbeing or Columbia-Suicide Severity Rating Scale, register-based data and medical reports. This heterogeneity makes results difficult to compare and question the reliability of the conclusions presented. Moreover, cannabis use is calculated only on the basis of frequency of assumption, ignoring the amount and type of cannabis consumed. Cannabis contains hundreds of different molecules with different actions. There are also many varieties of cannabis that contain psychoactive substances greatly differing in type, quantity and ratio (Cohen et al. 2018). In addition, cannabis bought illegally on the black market may often have been contaminated with other substances not naturally found in the plant (McLaren et al. 2008). Cannabis has multiple modes of intake (combustion, vaporization and ingestion) and consequently may release different metabolites, in different concentrations (Grotenhermen 2003). Furthermore, it is important to highlight that most samples studied cannot be considered representative of the general population suffering from schizophrenia spectrum disorder. Lastly, few studies were able to robustly control for the presence of confounding factors, particularly polysubstance use.
CONCLUSIONS

Emerging data on the correlation between cannabis use and suicide risk in patients with schizophrenic spectrum disorders are not sufficient to draw firm conclusions. Nonetheless these studies seem to point toward a positive correlation of cannabis use with increased suicide risk, particularly regarding FEP and male gender.

In directing future research, it would be important to: homogenize data collection instruments, specifically investigate the type and amount of cannabis used, enroll samples which are representative of the population, study the relationship between cannabis and the other suicide risk factors. In fact, it is necessary to clarify not only the direct relationship between cannabis and suicide risk, but also the correlation between cannabis use and independent risk factors for suicide risk, in particular depressive symptoms.

Moreover, the results indicate a different gender and age-related susceptibility in response to cannabinoids regarding suicide risk, hence laying the foundations for future inquests to understand whether regular cannabis use has an influence on specific biological mechanisms that could explain the differences observed. In conclusion, clinicians should be aware of the possibility of a higher risk of suicidal behavior associated specifically with cannabis use for men and patients during FEP.

Acknowledgments: We would like to thank all those that have contributed to this study throughout the years.

Conflicts of Interest: G.M. (Giovanni Martinotti): has been a consultant and/or a speaker and/or has received research grants from Angelini, Doc Generici, Janssen-Cilag, Lundbeck, Otsuka, Pfizer, Servier, Recordati. V.R., F.C., S.C., F.D.C., O.S., D.Q., D.D.B., G.M. (Giuseppe Maina), M.P.: nothing to be declared. M.D.G.: has been a consultant and/or a speaker and/or has received research grants from Angelini, Janssen-Cilag, Lundbeck, Otsuka, Pfizer, Servier, Recordati. In the past several years J.B. has been working as a consultant at Cogstate, Ltd. These did not influence the present study and its results in any way.

Author Contributions: Conceptualization, V.R; Methodology, G.M. D.D.B; Formal Analysis and Data Curation, E.C.; Writing—Original Draft Preparation, E.C, A.P, E.P, F.C; Writing—Review & Editing, G.M, R.V.; Supervision, D.D.B., G.M., G.M. (Giuseppe Maina), and V.R. All authors have read and agreed to the published version of the manuscript.

References

29. Fenton WS: Depression, suicide, and suicide prevention in schizophrenia. Suicide Life Threat Behav 2000; Spring 30, 49–49.

50. Miller BJ, Parker CB, Rapaport MH, Buckley PF, McCall W. Insomnia and suicidal ideation in nonaffective psychosis. Sleep 2019; 42. DOI:10.1093/sleep/zsy215

52. Østergaard MLD, Nordentoft M, Hjorthøj C. Associations between substance use disorders and suicide or suicide attempts in people with mental illness: a Danish nation-wide, prospective, register-based study of patients diagnosed with schizophrenia, bipolar disorder, unipolar depression or personality disorder. Addiction 2017; 112, 1250–1259.

