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Abstract 
In this work, the glassy carbon electrode (GCE) surface was modified with nitrogen-doped 
hollow carbon spheres (N-HCSs) to achieve a new electrochemical  sulphite sensor (N-
HCSs/GCE) in water samples. The N-HCSs were explored for electrocatalytic behavior 
through voltammetric approaches using a routine three-electrode system. The findings 
revealed an admirable efficiency for modified electrodes towards  sulphite oxidation, 
highlighting the effectiveness of our as-produced  sulphite sensor. The differential pulse 
voltammetry was utilized under obtained optimal circumstances to study the as-
developed sensor, the results of which underlined linear electrochemical current in 
relation to  sulphite concentration, with dynamic range as wide as 1.0-100.0 μM and limit 
of detection as narrow as 0.35 μM. Moreover, N-HCSs/GCE had commendable practical 
applicability for sensing sulphite present in real specimens with voltammetric techniques. 
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Introduction 

Sulphite, with its multifaceted function as a preservative, antibacterial, bleaching agent and inhibitor 

of oxidation and enzyme processes, is widely applied as an additive in the pharmaceutical, beverage and 

food products within production and storage [1,2]. Sulphites added to vegetables and fruits can prevent 

rotting and browning and cause food starch to whiten [3]. These substances in pharmaceuticals maintain 

the strength and stability of some drugs [4]. Correspondingly, sulphite content should be determined 

and maintained within standard limits to prevent toxicity and adverse effects on human health and the 

environment [5,6]. Sulphite ions (SO3
2-), as the main constituent of aqueous solutions of sulphur dioxide 

(SO2), if found in natural waters, can influence the balance of acid and base, and reduce dissolved 
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oxygen, thus leading to a harmful impact on aquatic organisms. Excessive levels of sulphite in human 

body may be accompanied by nettle rash, swelling, headache, diarrhea, nausea, stomach irritation, and 

asthma episodes [7,8]. The sulphite determination has been carried out previously using diverse 

methods, including high-performance liquid chromatography [9], spectrophotometry [10], flow 

injection analysis [11], capillary electrophoresis [12] and electrochemical technique [13-16]. 

In comparison, electrochemical approaches have been of prominent importance in determi-

nation of various electroactive compounds due to their admirable advantages such as time-

effectiveness, cost-effectiveness, and facile instrumental demands [17-22]. Glassy carbon (GC) is a 

form of carbon with a smooth, glass-like surface and a high degree of structural disorder. GC has 

become an interesting and widely applied inert electrode material in electroanalysis because of its 

low cost, low background current, electrochemical inertness in a wide potential window, chemical 

stability, good electrical conductivity, impermeability, high hardness, resistance to fouling, and easy 

surface modification [23-25]. Reports have shown a positive effect of modifying the electrode 

surface on increasing the performance of the electrochemical methods [26-29]. Today, thanks to 

nanomaterials and nanoparticles, nanotechnology has led to various technological advances 

globally, including nanomedicine, water treatment, catalysis, sensors and energy storage, which can 

be related to their adjustable physical and chemical properties [30-36]. Hence, various 

nanomaterials were synthesized in the past decades using different approaches to achieve strong 

properties in various applications in different fields. 

Researchers recently reported the production of many electrocatalytic nanomaterials for the 

fabrication of electrochemical sensors due to their excellent electrochemical properties, such as 

specific surface area, chemical stability, and admirable electrical conductivity [37-46]. Carbon-based 

materials, as modified electrode agents, have recently found a special place for themselves due to 

their unique properties such as green nature, cost-effectiveness, significant conductivity, wide 

potential range, and portable modification [47]. For example, hollow carbon spheres (HCSs) are 

appropriate options as effective catalyst materials in electroanalysis and electrochemical deter-

mination, owing to their good conductivity, large specific surface area, high surface permeability, 

chemical stability, and low density [48-50]. One of the surface modification methods is heteroatom 

doping, which can improve some properties of HCSs, such as increasing catalytic active sites, 

electrical conductivity, edge plane defect sites, and induction of synergistic impact [51]. Nitrogen-

doped HCSs (N-HCSs) have shown recently commendable electroanalysis behaviours [52,53]. 
According to the merits mentioned for N-HCSs, the present work developed to construct a new 

electrochemical sulphite sensing system based on N-HCSs/GCE. The electrochemical performance 

of sulphite was explored on the surface of both bare GCE and modified N-HCSs/GCE. As-developed 

N-HCSs could significantly enhance the response of sulphite and decrease the potential of oxidation. 

The differential pulse voltammetry (DPV) findings revealed the admirable performance of N-

HCSs/GCE for sulphite determination, with great sensitivity, broad linear dynamic range and narrow 

limit of detection (LOD). Moreover, our proposed sensor had commendable practical applicability 

for sensing sulphite present in real specimens with voltammetric techniques. 

Experimental 

Equipment  

The Autolab PGSTAT 302N electrochemical workstation (Eco Chemie, The Netherlands) with a 

conventional three-electrode cell was used for all electrochemical studies. The Metrohm -713 

Model pH meter's combination glass electrode has been employed to measure pH values.  
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Chemicals  

Each chemical used in this study was of analytical grade and used exactly as supplied. The 

Millipore Direct-Q® 8 UV (ultra-violet) device (Millipore, Germany) was utilized to create deionized 

water utilized during all of the tests. This investigation employed phosphate-buffered solutions (PBS, 

pH 7.0, 0.1 M). The synthesis and characterization of N-HCSs and related nanostructures have been 

reported in our previous work [54]. 

Modification of GCE with N-HCSs 

GCE was polished using alumina slurries on a polishing cloth before modification, then rinsed 

thoroughly with deionized water and dried. In the next step, 1 mg of prepared N-HCSs were 

suspended in deionized water (1 ml) and subjected to ultrasonication for 20 min to disperse 

completely. Subsequently, N-HCSs dispersion (3 μL) was gently drop-casted on the electrode surface 

by using a micropipette and allowed to dry at ambient temperature. Finally, a thin layer of N-HCSs 

was formed on the surface of GCE (N-HCSs/GCE). 

To estimate the electrochemically active surface area (EASA) of unmodified GCE and N-HCSs/GCE, 

cyclic voltammograms were recorded at different scan rates in 0.1 M KCl solution containing 1.0 mM 

K3[Fe(CN)6] as a redox probe. By using Randles–Ševčik equation, the value of ESCA for N-HCSs/GCE 

(0.128 cm2) was 4.1 times greater than unmodified GCE. 

Results and discussion 

Evaluation of electrocatalytic activity of N-HCSs towards sulphite 

In order to explore the impact of PBS's pH value (pH 2.0 to 9.0) on the electrochemical detection 

of sulphite, DPV analysis was performed. When the current response of sulphite in PBS was com-

pared at various pH levels, pH 7.0 produced the highest peak current of 100.0 μM sulphite (Figure 1). 

As a result, in subsequent investigations, detection of sulphite was done in 0.1 M PBS (pH 7.0). The 

electrochemical oxidation reaction of sulphite on N-HCSs/GCE can be expressed as Eq. (1): 

SO3
2- + H2O → SO4

2- + 2H+ + 2e-  (1) 

 
Figure 1. Plot of Ip against pH values of 0.1 M PBS obtained from DPVs in the presence of 100.0 µM sulphite 

The cyclic voltammograms (CVs) recorded for sulphite (100.0 μM) on surfaces of unmodified GCE 

and N-HCSs/GCE are shown in Figure 2. The oxidation peak current was very low (Ipa = 2.25 μA) on 

unmodified electrode, meaning a weak electrochemical response of unmodified electrode. The Ipa 

increased to 10.4 µA on the N-HCSs/GCE sufface. In addition, sulphite oxidation peak potential (Epa) 

I /
 

A
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was decreased from 780 mV (on unmodified GCE surface) to 620 mV (on N-HCSs/GCE surface). These 

results imply that the catalytic performance of N-HCSs is significant towards sulphite. 

 
E / mV vs.Ag/AgCl/KCl 

Figure 2. CVs of unmodified GCE (curve a) and N-HCSs/GCE (curve b) in 0.1 M PBS (pH 7.0) containing  
100.0 µM sulphite at scan rate of 50 mV s-1 

Effect of scan rate on oxidation reaction of sulphite 

To investigate the effect of scan rate on the oxidation reaction of sulphite, CV responses of 100.0 μM 

sulphite in 0.1 M PBS (pH 7.0) at different scan rates ranging are recorded (Figure 3).  

 
E / mV vs.Ag/AgCl/KCl 

Figure 3. CV responses of N-HCSs/GCE from a solution of 0.1 M PBS (pH 7.0) and 100.0 µM sulphite at 
different scan rate (a-o: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 and 600 mV s-1). Inset: Plot 

of peak currents of sulphite vs. v1/2 
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The sulphite’s oxidation peak current increases as the scan rate increases. The linearity between 

oxidation peak currents and the square root of the scan rate (v1/2) is depicted in Figure 3 (Inset). With 

increasing v1/2, sulphite oxidation peak currents proportionally increase. This demonstrates that 

sulphite oxidation reaction on the surface of N-HCSs/GCE is a diffusion-controlled mechanism [55].  

Figure 4 (inset) depicts the Tafel plot based on data from the rising section of the current-voltage 

curve at a scan rate of 10 mV/s for 100.0 μM sulphite to determine the rate-determining step. The 

role of electrode process kinetics is evident based on the linear relationship of E against the log I plot, 

whose slope depends on the number of electrons transferred in the process of rate-determining step. 

Figure 4 (inset) shows an estimated Tafel slope of 0.1733 V. Therefore, the one-electron transfer 

process can be seen in the rate-limiting step regarding with the transfer coefficient of α = 0.66  [55].  

 
E / mV vs.Ag/AgCl/KCl 

Figure 4. CV captured from 100.0 μM sulphite at 10 mV s-1 scan rate 
Inset: Tafel plot based on rising part of related CV 

Chronoamperometric analysis 

Using chronoamperometry, the electrochemical reaction of sulphite at N-HCSs/GCE has also been 

examined. The chronoamperograms of various concentrations of sulphite obtained at a potential step 

of 660 mV are shown in Figure 5. In chronoamperometric studies, the diffusion coefficient of sulphite 

was determined. In order to do that, changes in response current were drawn vs. t-1/2 for different 

concentrations of sulphite (Figure 5, Inset A). The acquired lines' slopes were plotted against different 

sulphite concentrations (Figure 5, Inset B). From the slope of the resulting plot and using Cottrell's 

equation, the diffusion coefficient of sulphite on the surface of N-HCSs/GCE was found to be equal to 

4.45×10-5 cm2 s-1. The value of D is comparable with values reported in some previous works 

(1.75×10−5 [56], 2.5×10−5 [57] and 1.2×10−6 cm2 s-1 [58]). 

Quantitative determination of sulphite by DPV 

Utilizing the DPV method, sulphite oxidation on N-HCSs/GCE was measured. Figure 6 shows DPV 

results obtained at  a modified GCE surface in PBS (pH 7.0, 0.1 M) at sulphite concentrations ranging 

from 1.0 to 100.0 µM. The constructed sensor's good detection capabilities were demonstrated by 

increasing oxidation peak currents as sulphite concentration increased. With a coefficient of 

log (I / A) 

y = 0.1733x + 0.3349 
R2 = 0.9981 
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determination (R2) of 0.9996, a plot of sulphite oxidation peak current vs. concentration revealed a 

perfectly linear response for sulphite ranging from 1.0 to 100.0 μM. The LOD was calculated using this 

formula: LOD=3Sb/m, Sb represents the standard deviation of response for blank solution (0.1 M PBS) 

(obtained based on eight measurements) and m denotes slope obtained from linear regression curve. 

The LOD was calculated to be 0.35 µM. The performance comparison of the developed sensors in this 

study with previous studies is shown in Table 1. As can be seen, the developed sensor based on N-

HCSs/GCE provides the least LOD compared to the other reported sensors (Table 1). 

 
Figure 5. Single-step chronoamperograms of N-HCSs/GCE sensor in 0.1 M PBS (pH 7.0) with different 

concentrations of sulphite (a: 0.1, b: 0.5, c: 1.0 and d: 1.5 mM). Insets: Variations of I vs. t-1/2 taken from 
chronoamperograms (A) and plot of corresponding slopes against sulphite concentration 

 
E / mV vs.Ag/AgCl/KCl 

Figure 6. DPV response at N-HCSs/GCE in 0.1 M PBS (pH 7.0) with different concentrations of sulphite  
(a-l: 1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0 and 100.0 μM) 

Inset: Calibration curve of voltammetric response (Ipa) versus sulphite level 

y = 22.851x + 9.7378 
R2 = 0.9991 

y = 0.0917x + 0.8833 
R2 = 0.9996 
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Table 1. Comparison of N-HCSs/GCE sensor with previously reported sulphite sensors 

Electrochemical sensor Electrochemical method Linear range, μM Limit of detection, μM Ref. 

Multiwalled carbon nano-
tubes/carbon paste electrode 

Square-wave voltammetry 25-500  16  [2] 

MIL-101(Cr) metal-organic 
framework/CPE 

Amperometry 2-70 0.58 [13] 

Lutetium (III) hexacyanoferrate 
microparticles/poly(taurine)/GCE 

DPV - 1.33 [14] 

MoS2 flakes/Nafion/GCE DPV 5-500 3.3 [15] 

CuO nanosheet/GCE DPV 50-1600 21.10 [16] 

N-HCSs/GCE DPV 1.0-100.0 0.35 This work 

Stability, repeatability, and reproducibility studies of N-HCSs/GCE toward determination of sulphite 

The stability of the prepared sensor was investigated by examining the current response of N-

HCSs/GCE towards sulphite (70.0 µM) every five days over 20 days (stored at ambient temperature). 

The prepared sensor exhibited only a slight decrease (4.8 %) in the last current response from its 

original current response after 20 days of storage. To investigate repeatability of N-HCSs/GCE sensor, 

measurements were repeated in 0.1 M PBS (pH 7.0) containing 70.0 µM sulphite. The acceptable 

repeatability was obtained with relative standard deviation (RSD) of 3.6 % after using the same sensor 

for six continuous measurements. The reproducibility of the prepared sensor was also investigated by 

observing the current response of four electrodes (N-HCSs/GCE) prepared independently under the 

same conditions. All four prepared electrodes showed a similar response, and RSD was 3.9 % in the 

determination of sulphite (70.0 µM). These finding verifies that prepared N-HCSs/GCE has good 

storage stability, reproducibility, and repeatability towards sulphite sensing. 

Real sample analysis 

To verify the practical application of N-HCSs/GCE for sulphite electrochemical detecting, real 

water matrices, including tap water and well water, were analysed using the standard addition 

method. The sulphite oxidation peak currents were determined using the DPV method after adding 

various known concentrations of sulphite to water samples. The analytical findings are shown in 

Table 2. According to findings, sulphite recoveries for various water samples ranged from 97.5 to 

103.3 %, and RSDs for five consecutive tests were below 3.5 %. These findings show that N-HCSs are 

a superior material for sulphite sensing in real sample analysis. 

Table 2. Estimation of sulphite in water samples using N-HCSs/GCE (n = 5) 

Sample Spiked concentration, μM Found concentration, μM Recovery, % RSD, % 

Tap water 

4.0 3.9 97.5 3.2 

6.0 6.2 103.3 1.7 

8.0 7.9 98.7 3.0 

10.0 10.1 101.0 2.1 

Well water 

5.0 5.1 102.0 1.9 

7.0 6.9 98.6 2.7 

9.0 8.8 97.8 3.5 

11.0 10.9 99.1 2.2 

Conclusion 

The current research reported a facile and sensitive electrochemical sulphite sensor using a  

N-HCSs-modified GCE. Electrochemical investigations by CV showed a considerable increase in 

current intensity and a decrease in the over-potential for sulphite on N-HCSs/GCE compared with 

unmodified GCE. The as-developed electrode exhibited a linear response to sulphite with a dynamic 
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concentration range as wide as 1.0-100.0 μM with a limit of detection as narrow as 0.35 μM. Also, 

the repeatability, stability, and reproducibility of N-HCSs/GCE sensors were studied and provided 

good characteristics. Moreover, N-HCSs/GCE had successful applicability for sensing sulphite in real 

specimens. The good precision (RSD ≤ 3.5 %) and accuracy (recovery for spiked samples ranging 

from 97.5 to 103.3 %) were obtained. 
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