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Abstract 
Inorganic/organic interface assemblies were created from poly 3,4-ethylenedioxythio-
phene (PEDOT) interfaced with amorphous BiVO4 and with BiVO4-TiO2. Electrochemical 
cells-based thermoplastic gel electrolytes containing KI/I2 were used to study the 
photoelectrochemical behavior of the Inorganic/organic interface electrodes. Optical 
studies show that doping BiVO4 with TiO2 narrowed the optical band gap to allow more 
absorption in the visible region and increases solar energy conversion. Evidence for both 
direct and indirect band gaps was observed. Refractive index data indicates that BiVO4 

and BiVO4/TiO2 obey the anomalous dispassion multiple-oscillator model. Chronoampero-
metry of these assemblies shows the phenomena of dark current, which correlates to the 
presence of random electron/hole generation in the depletion layer. PEDOT enhances the 
photoactivity of BiVO4 only. Electrochemical impedance spectroscopy studies indicated 
that both kinetic and diffusional control at high and low frequencies, respectively. 
Furthermore, studies show that as frequency increases, the conductivity increases due to 
dispersion and charge carrier hopping. All photoactivity outcomes were reproducible.  
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Introduction 

Effective photoactive materials possess a narrow bandgap for visible light activities, noticeable 

electron-hole separation, longer electron lifetime, and longer charge carrier diffusion length. Among 

these materials are transition metal oxides, which possess several functional properties. Their 

crystal structure, composition, intrinsic defects, and doping may determine their optical, dielectric, 

and catalytic outcomes. To have the desired band gaps and conduction band (CB) edge positions 

that can be used in a needed photoelectrochemical process, a selective method of preparation must 
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be used. The process’s parameters strongly govern the morpho-structural characteristics and, 

therefore, the physicochemical properties of metal oxides [1,2]. 

Bandgap modulation, microstructure, and optoelectronic properties are fundamental for a wide 

range of metal oxide applications [3-6]. Several studies were performed with some transition metal 

oxides, such as WO3 as a planar electrochemical sensor [3] and as a sensor for NO2 [4]. Studies were 

carried out on ZnO [5,6], TiO2 [7], Fe2O3[8], and Co3O4 [9] to name but a few.  

The photochemical stability of TiO2 drove the attention to couple it with another metal oxide to 

create narrower band gap assemblies. Examples of such work includes NiO/TiO2 [10], Ag2O/TiO2 [11], 

Bi2O3/TiO2 [12], SnO2/TiO2 [13], Fe2O3/TiO2 [14]. Narrow or small band gap semiconductors increase 

the absorption of visible light. It also inhibits photo-generated electron-hole recombination in a 

semiconductor heterojunction structure. To overcome the intrinsic limitations of binary metal oxides, 

several studies were directed to investigate the use of multiple cations to build multi-ternary oxides. 

These multi-ternary oxide assemblies, which contain some post-transition metal elements, should 

possess band gap edges that can be aligned with some desired redox systems. Mixed-valence 

transition-metal oxides with a spinal structure were found to be catalytically active for oxygen 

reduction reactions in alkaline conditions [15]. Further, the catalytic activities of Bi20TO32 [16], SnNb2O6 

[17], and BiVO4 [18,19] with visible light were investigated. Some studies show that the overall 

performance of BiVO4 is limited by poor carrier transport properties [20,21]. Such poor carrier 

transport lengths were explained on the basis that some doping strongly decreases carrier mobility by 

introducing intermediate-depth donor defects as carrier traps [22]. 

Most studies on BiVO4 took place in liquid electrolytes to investigate its effectiveness in water 

splitting to produce hydrogen and oxygen. Recently, BiVO4 has been used as a competitive anode in 

lithium-ion batteries [23,24]. Some metal oxide composites in connection with reduced graphene 

(rGO) or other conducting polymers in what is known as pseudocapacitors have been studied [25-27].  

The lack of studies on the photoelectron-chemical (PEC) behavior of BiVO4 in gel electrolytes or 

under immobilization conditions drove our interest in exploring the PEC behavior of pure BiVO4 and 

BiVO4-TiO2 /poly 3,4- ethylene-dioxythiophene (PEDOT) interfaces in thermoplastic gel electrolyte 

(TPGE). The objective is to study the contribution of the BiVO4 /PEDOT interface to the PEC outcome 

in TPGE. One of the advantages of gel electrolytes is their potential to the creation of safe 

electrochemical (EC) devices (batteries or supercapacitors). Both BiVO4, and PEDOT are 

electrochemically stable, and TPGE has no hazardous effect. Our goal is to have a stable and 

reproducible electrochemical system that provides useful data for future applications. 

Experimental  

Reagents  

The monomer 3,4-ethylenedioxythiophene (EDOT) (Alfa Aesar Inc., USA) was used to prepare 

poly 3,4-ethylenedioxythiophene (PEDOT). All other chemicals used were of analytical grade. Unless 

otherwise stated, all the solutions were prepared using the appropriate solvents, and deionized (DI) 

water was used for the aqueous solution. 

Preparations 

Both BiVO4 and BiVO4-TiO2 were prepared as previously described [19], briefly, BiVO4 and/or 

BiVO4/TiO2 composites are synthesized by adopting a sol-gel method and a facile hydrothermal 

route. A Teflon-lined stainless steel autoclave of 100 mL capacity was used and maintained at 190 °C 

for 8 h to get the needed composite. The obtained products were collected by centrifugation and 

https://www.sciencedirect.com/topics/chemistry/stainless-steel
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washed several times with deionized water and dried at 90 °C for 12 h. Suspensions of BiVO4 or 

BiVO4-TiO2 in acetonitrile were dispersed evenly on the surfaces of fluorinated tin oxide (FTO) to 

create FTO/BiVO4 and FTO/BiVO4-TiO2 and allowed to dry at 40 °C. at ambient conditions for 4 hours. 

The inorganic/organic interface (IOI) thin films of BiVO4 and BiVO4-TiO2 deposited on FTO occluded 

in PEDOT were prepared electrochemically, using cyclic voltammetry (CV) technique, by repetitive 

cycling (3 cycles) of the FTO glass electrode potential between -0.5 V and 1.7 V vs. Ag/AgCl in an 

acetonitrile suspension (1 mg/mL) of the inorganic materials, 5 mM of the EDOT monomer and 

0.2 M LiClO4.  

Preparation of thermoplastic gel electrolyte (TPGE)  

Thermoplastic gel electrolyte (TPGE) was prepared following the published procedure [28]. 

Briefly, 0.65M KI and 0.065M I2 were dissolved in 10 mL polycarbonate (PC), and then 8.5 g of PEG 

(M-20 000) was added to the mixture. The mixture was heated at 100 °C under continuous stirring 

for ca. 12 h in a flask under an inert atmosphere. The mixture was hydrothermally treated at 180 °C 

for 14 h in a Teflon autoclave container.  

Instrumentation 

A conventional three-electrode cell consisting of a Pt sheet as a counter electrode, an Ag/AgCl 

reference electrode, and FTO with a surface area of 2.0 cm2 was used as the working electrode for 

occlusion electrodeposition of BiVO4 or BiVO4-TiO2 during electrochemical polymerization of EDOT. 

Photoelectrochemical studies of the thin solid films in gel electrolyte were performed using the 

experimental setup described in Figure 1, where the FTO covered with the photoactive material was 

a working electrode and platinized FTO (Pt-FTO) served as both reference and counter electrode. 

The gel electrolyte was poured on top of the working electrode, and the counter electrode was 

pressed on top of the gel electrolyte to make a uniform electrolyte thickness of 10 μm (Figure 1). A 

Solartron 2101A, USA, was used for the electrochemical impedance spectroscopy (EIS) studies in a 

frequency range between 100 kHz to 0.01 Hz. A BAS 100W electrochemical analyzer (Bioanalytical 

Co. IN, USA) was used to perform electrochemical studies. Optical parameters were calculated 

based on the steady-state reflectance spectra measured by the Shimadzu UV-2101PC 

spectrophotometer. Irradiations were performed with a solar simulator 300-watt xenon lamp 

(Newport, NJ, USA) with an IR filter. All measurements were performed at 298 K.  

 
Figure 1. Electrochemical cell-based thermoplastic gel electrolyte setup. W = working electrode,  

C = counter electrode, R = reference electrode 
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Results and discussion 

Optical studies 

Optical bandgap  

The absorption spectra of BiVO4 and BiVO4-TiO2 were investigated along with other optical 

parameters such as refractive index (n) and optical conductivity (σopt). Both n and σopt have been 

calculated and plotted as a function of photon energy, the results are displayed in Figures 2, 3, and 

4. Figure 2 A indicates that doping BiVO4 with TiO2 narrowed the band gap to allow absorption in 

the visible region. This behavior is related to the formation of surface states at the interface of 

BiVO4-TiO2 heterojunction, as it was also reported in other composite materials such as ZrO2/TiO2, 

SnO2/TiO2 and WO3/BiVO4 [13]. Furthermore, Figures 2B and 2C were obtained after treatment of 

the absorption data in Figure 2A, as plots of α½ vs. photon energy [hν] and (αhv)2 vs. hν respectively, 

where α is the absorption coefficient as described in previous studies [29]. Figures 2B and 2C indicate 

the existence of both direct and indirect band gaps in the studies assemblies. The estimated values 

of these band gaps are listed in Table 1. While the absorption spectrum for PEDOT is not displayed, 

the bandgap, direct, and indirect bandgap values are listed for comparison. The existence of direct 

or indirect bandgaps may indicate the creation of interfacial hybrid sub-bands with the PEDOT 

interface. This also indicates that doping BiVO4 with TiO2 shifts the absorption peak to photon 

energies smaller than the undoped BiVO4. 

 

  
Figure 2. A) Absorption spectra, B) plots of α½ vs. hν, and C) (αhv)2 vs. hν  

The contribution of the hard/soft acid-base characteristics (HSAB) to the reactivities of these 

composites on FTO can be evaluated from a calculation of ΔN (the fraction of electrons transferred 

between the assemblies and the FTO interface) [30]. The calculated hardness (η), electronegativity 

(), softness (š), and ΔN are listed in Table 1. The calculated η of BiVO4-TiO2 is less than that of BiVO4, 

while that of PEDOT is the least. Thus, š increases in this order PEDOT> BiVO4-TiO2> BiVO4. Such an 

increase in the acid softness character reflects strong adsorption on the substrate. Such adsorption 

facilitates the electron transfer process. The values of ΔN listed in the table are calculated as 

published elsewhere [30], indicating the fraction of electron transfer between the substrate (FTO 

glass) and any studied composites. The increase of ΔN is evidence of increasing electron transfer at 

the thiophene-substrate interface.  
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Table 1. The optical band gap and other acids/base characters for the studied compounds  

Assembly  
Direct band 

gap, eV 
Electron 

affinity, eV 
Ionization 

potential, V 
η / eV š / eV-1 ΔN 

BiVO4 6.04 2.90 4.56 7.46 1.45 0.689 1.48 

BiVO4-TiO2 5.92 2.40 4.86 7.26 1.20 0.833 1.59 

PEDOT 3.38 2.15 2.3 4.45 1.07 0.933 1.20 

FTO 3.35 3.45 1.65 5.1 1.73 0.578  

Refractive index 

The optical, electronic, and optoelectronics properties of a semiconductor (SC) material are 

dictated by its refractive index (n) and its energy gap (Eg). The refractive index is a measure of the 

SC transparency to the incident spectral radiation [31]. The greater the polarizability of the interface 

the greater the n. On that basis, the refractive index can reflect the purity of the system and the 

coexistence of multiple phases. The greater the deviation of n from the accepted measured value 

for a pure substance, the greater the existence of multiple phases.  

Equations (1) and (2) [32,33] are based on the general assumption that all energy is scaled down 

by 1/ԑeff, where ԑeff is the dielectric constant. 

n4/λ =0.077/nm-1 (1) 

n4 Eg = 95 (2) 

where λ is the wavelength, nm. The plot of refractive index (n) vs. photon energy is displayed in 

Figure 3. The wavelength corresponding to the absorption edge is 450 nm for BiVO4 and 550 nm for 

BiVO4-TiO2. According to Equation 1, the calculated n value for BiVO4 is 2.43, while n for BiVO4-TiO2 

is ≈2.55. Figure 3 indicates that these n values correspond to an Eg of 2.0 eV for BiVO4-TiO2 and 

Eg ≈2.6 eV for BiVO4. These Eg values support the presence of an indirect bang gap (cf. Figure 2B). 

This validates the approximation of Equation 2, as applying the indirect Eg values in this equation 

generates n = 2.47 for BiVO4 and n = 2.46 for BiVO4-TiO2. These values agree with previous studies 

[34]. Figure 3 also indicates that the refractive index increases with increasing photon energy 

(shorter λ) and decreases at low photon energy (longer λ). High n means that light travel through 

the sample is slow. Such slow light travel will result in changing light direction and other optical 

properties related to this change. The material with a high n is designated as optically denser. Doping 

BiVO4 with TiO2 lowers the band gap and increases the refractive index.  

  
Energy, eV 

Figure 3. The absorbance of (a) BiVO4, and b) BIVO4-TiO2, and refractive index n vs. photon energy of 
(c) BiVO4, and d) BIVO4-TiO2  

n
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Optical conductivity σopt and electrical conductivity σ ele 

Both σopt and σele were calculated using equations (3) and (4) [35,36]:  

opt 
4

nc
 =

  (3) 

opt

ele

2
 





=

 (4) 

Figure 4 clearly shows that 1) σopt increases with increasing photon energy up to 2.4 eV for  

BIVO4-TiO2, while σopt for BiVO4, increases up to 3.4 eV, after which they remain constant for both 

compounds: 2) BIVO4-TiO2 has a greater conductivity than BiVO4 and 3) the great rise around the 

band gap of each assembly can be attributed to the electron excitation in this range of photon 

energy. Figure 4 also indicates that optical conductivity is much greater than electrical conductivity. 

Such behavior can be explained based on the Edwards [37] or the Drude model [38]. However, 

electrical conductivity for BiVO4 increases with increasing photon energy, while that of BIVO4-TiO2 

reaches a maximum at photon energy ca 2.4 eV and then decreases with increasing photon energy.  

 
Figure 4. Optical conductivity vs. photon energy of 1) BiVO4 and 3) BiVO4-TiO2; and  

electrical conductivity (σele) of 2) BiVO4, and 4) BiVO4-TiO2 

Photoelectrochemical (PEC) behavior  

All electrochemical studies performed in gel electrolyte took place in the electrochemical cell 

described in Figure 1, where the modified FTO with either inorganic or organic PEDOT both acts as 

working electrode, thermoplastic KI/I3
- gel acts as an electrolyte, and platinized FTO (Pt/FTO) acts as 

both counter and reference electrode. 

Effect of TiO2 on the EC behavior of BiVO4 thin film 

PEC studies were performed in the dark and under illumination, with a scan rate of 0.10 V s-1, 

between -1.5 to 2.0 V unless otherwise stated. The results are displayed in Figure 5. This figure 

shows that upon illumination, an increase in the photocurrent for FTO/BiVO4 (trace 3 or FTO/BiVO4-

TiO2 (trace 4) in both cathodic and anodic scans. Furthermore, FTO/BiVO4-TiO2 gives the highest 

photocurrent, which indicates that TiO2 enhances the charge separation and decreases the (e/h) 

recombination. This is consistent with the values of ΔN (listed in Table 1), as BiVO4-TiO2 has greater 

ΔN than BiVO4.  
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Potential, V 

Figure 5. I / μA and E / V at scan rate 0.1 V s-1 for metal oxides/FTO in gel electrolyte:  
1) BiVO4 (dark), 2) BiVO4-TiO2 (dark)), 3) BiVO4 (illumination) and 4- BiVO4-TiO2 (illumination)  

Effect of PEDOT on the EC behavior of BiVO4 thin film 

FTO-modified PEDOT occluded with BiVO4 or BiVO4-TiO2 was subjected to CV studies in the dark 

and under illumination, the results are shown in Figures 6 and 7. Figure 6 shows that PEDOT increases 

the photocurrent of BiVO4 during cathode scanning. On the other hand, Figure 7A shows that PEDOT 

did not increase the BiVO4-TiO2 photocurrent in the cathode scan (shaded traces 2 and 3). This can be 

explained if consideration is given to the possibility of the formation of a broken-band alignment 

between PEDOT and BiVO4-TiO2 with n-type heterojunction. Figure 7B shows that a larger photo-

current was recorded in the anode scan for BiVO4-TiO2/PEDOT (trace 3) than for solely BiVO4-TiO2 

(trace 2). The band alignments between PEDOT and BiVO4-TiO2 (Figure 8) show higher HOMO energy 

for PEDOT than that of the conduction band of BiVO4-TiO2. In broken-band alignments, the current 

transport [39] can be achieved with three mechanisms: 1) interface tunneling, 2) drift-diffusion, and 

3) ballistic tunneling. Any of these mechanisms can negatively affect the photocurrent outcome of the 

assembly. The fact that such behavior was not reported with BiVO4/PEDOT suggests that the presence 

of TiO2 as a dopant created a different subband at the interface with PEDOT. 

 
Potential, V 

Figure 6. I/μA and E/V at scan rate 0.1 V s-1 for BiVO4 /FTO/gel electrolyte:  
1) BiVO4 (dark), 2) BiVO4 (illumination), and 3) PEDOT/ BiVO4 (illumination) 
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Potential, V     Potential, V 

Figure 7. I/μA and E/V at scan rate 0.1 V s-1 for BiVO4-TiO2/FTO in gel electrolyte: A) cathodic scan, and  
B) anodic scan for: 1 - BiVO4-TiO2 (dark), 2 - BiVO4-TiO2 (illumination), 3 - PEDOT/ BiVO4-TiO2 (Illumination)  

 
Figure 8. Band energy map of the studied assemblies 

Chronoamperometric studies 

Figure 9 displays the chronoamperometric studies at -1.20 V for FTO/ BiVO4 and FTO/PEDOT- 

-BiVO4 (Figure 9A) and for FTO/BiVO4-TiO2 and FTO/PEDOT-BiVO4-TiO2 (Figure 9B). It can be noticed 

that in all studied assemblies, the gradual increase in photocurrent and the lack of sudden 

photocurrent rise indicate that the studied interfaces did not generate hole accumulation. On the 

other hand, under dark conditions, no sudden drop in the measured current instead a gradual drop 

of the measured current took place for ≈200 s (shaded area). The current generated in the absence 

of incident light photons is known as dark current, which may reflect the random generation of 

electrons and holes within the depletion region at the interface [40,41]. Figure 9A and B shows that 

such behavior is reproducible with less photocurrent generation. 

 
Figure 9. Chronoamperometric studies at -1.20 V vs. platinized FTO for: A) 1- FTO/BiVO4 , 2- 
FTO/BiVO4/PEDOT, and B) 1- FTO/BiVO4-TiO2 ,2- FTO/BiVO4-TiO2/PEDOT(D = dark, L = light) 
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Electrochemical impedance spectroscopy 

Impedance spectra of the assemblies FTO/BiVO4, FTO/BiVO4-TiO2, FTO/BiVO4/PEDOT, and 

FTO/BiVO4-TiO2/PEDOT were measured between 105 and 10-2 Hz. Nyquist plot, as well as other 

dielectric properties generated from the assemblies on FTO substrate in the dark and under 

illumination, are displayed in Figures 9, 10, 11, and 12.  

Effect of TiO2 doping in BiVO4  

Nyquist plots as well as conductivity measurements for FTO/BiVO4 and FTO/BiVO4-TiO2, are 

displayed in Figures 10 and 11, respectively. Figure 10 shows both kinetic and diffusional control 

across the studied frequency range. The figure also shows that illumination increases the resistance 

(real impedance) and decreases the imaginary component of the studied assembly. This may be 

attributed to the fact that upon illumination, the photogenerated charges affect the charge 

transport properties. The generated electron/hole (e/h) pairs change the charge carriers' density, 

this will lead to a decrease in its mobilities and therefore increases the impedance. The fact that 

illumination increases the real impedance (true resistance) and decreases the imaginary impedance 

may reflect fewer effects on the inductive and capacitive impedances but more effects on the 

resistance. Furthermore, the doping of BiVO4 with TiO2 results in increases in the impedance. The 

shape of an un-concentered semicircle at high frequencies and the existence of Warburg impedance 

reflect the film porosity [42].  

 
Figure 10. Nyquist plot at -1.200 V vs. platinized FTO for: A) 1 - BiVO4 D, 2 - BiVO4 L , 3 - BiVO4-TiO2 D,  

4 - BiVO4-TiO2 L , B) and C) are exploded views (D = dark, L = light) 

The dielectric behavior of the generated assemblies was explored at 25 °C, by further treatment of 

EIS data for each assemblies. The AC conductivity was calculated using the following equation [43]: 

ac 2 2

'
 

' "

L Z

a Z Z
 =

+  (5) 

where ac is ac conductivity, L is film thickness, m, and a is electrode surface area, m2. Z’ and Z” are 

the real and imaginary impedance, respectively. Figure 11 is the plot of the log ac vs. log . This 

figure clearly shows that under illumination the ac conductivity increases by raising the frequency 

for FTO/BiVO4 up to 100 Hz (Figure 11, trace 1, 2) after which the conductivity becomes independent 

of frequency. However, the illuminated BiVO4 shows less conductivity than that measured in the 

dark. Similar behavior was reported with FTO/BiVO4-TiO2 (Figure 10, trace 3, 4) showing that, in the 

dark, the conductivity of BiVO4-TiO2 increases by raising the frequency to 100 Hz. However, under 
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illumination, the conductivity continues to increase by increasing frequency up to 10 kHz (Figure 11, 

trace 4). Figure 11 shows that the addition of TiO2 to BiVO4 causes a decrease in the AC conductivity 

in comparison to that of BiVO4. This decrease in conductivity may be attributed to the increase in 

the capacitive reactance of the assembly. This leads to an increase in the impedance and 

consequently decreases the AC conductivity. The conductivity can also increase due to the hopping 

of charge carriers at high frequencies.  

 
Figure 11. A) log σ vs. log , of the 1- BiVO4 D, 2- BiVO4 L, 3- BiVO4-TiO2 D, and 4- BiVO4-TiO2 L;  

B) exploded view (D=Dark, L =Light) 

Similar results were obtained when FTO/BiVO4 was interfaced with PEDOT (Figures 12 and 13). 

Figure 12A (trace 1, 2) shows that interfacing BiVO4-TiO2 with PEDOT results in similar results to that 

without PEDOT (Figure 10 A, trace 1, 2), where the illuminated interface shows increasing both real 

and imaginary impedance of the assembly. The doping of BiVO4 with TiO2 and interfacing it with 

PEDOT alters the equivalent circuits of this interface to include more inductive and capacitive 

elements (Figure 12 A, trace 3, 4). 

  
Figure 12. Nyquist plots at -1.20 V vs. platinized FTO for the assemblies FTO/BiVO4/PEDOT, and  

FTO/BiVO4-TiO2/PEDOT: A) 1- BiVO4/PEDOT D, 2- BiVO4 /PEDOT L, 3- BiVO4-TiO2 /PEDOT D,  
4- BiVO4-TiO2/PEDOT L, B) exploded view. (D = dark, L = light) 

Figure 13 is the plot of the log of conductivity vs. log frequency. Under illumination, the AC 

conductivity increases by raising the frequency for studied assemblies to ≈300 Hz (Figure 13, traces 

1,2,3, and 4) after which the conductivity becomes independent of frequency. However, illumination 
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decreases the AC conductivity, especially at frequencies greater than 100 Hz. Such behavior can be 

attributed to the decrease in conductivity due to the increase in the capacitive reactance of the 

assembly.  

 
Figure 13. Log electrical conductivity vs. log frequency of the 1 - BiVO4 /PEDOT D, 2 - BiVO4 /PEDOT L,  

3 - BiVO4-TiO2 /PEDOT D, and 4 - BiVO4-TiO2 /PEDOT L: A) log conductivity σ vs. log frequency, B) exploded 
view. (D = dark, L = light) 

Conclusion 

Photoelectrochemical behavior (PEC) of mixed transition and post-transition metal oxides with 

or without interfacing with PEDOT in thermoplastic gel electrolyte (TPGE) shows that gel electrolyte 

has proven validity in electrochemical measurements. In comparison with the studies took place in 

liquid or aqueous electrolytes, the results obtained in gel electrolytes were reproducible and 

consistent. This confirms our assumption of the validity of gel electrolytes in electrochemical studies 

with mixed metal oxide systems. The noticeable photoactivity outcome confirms that mixed-metal 

oxide composites are excellent photocatalysts even in gel electrolytes. The results obtained in this 

study will add to the data bank of electrochemical studies in gel electrolytes.  
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