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 Drinking water treatment plant Butoniga is one of the main water 

supply facilities for potable water in Istria (Croatia). Water for 

treatment process is captured from the Butoniga reservoir which 

is a small and relatively shallow reservoir. As such, the reservoir 

is very sensitive to eutrophication and degradation processes 

caused by climate change and human activities in the watershed. 

In summer months during tourist season, when at highest water 

demand and lowest water level at the reservoir, the water 

temperature is the most critical parameter during treatment 
process. To capture colder water, raw water for treatment is taken 

from the lowest water intake, i.e.  from the deepest layer in the 

Butoniga reservoir. This layer has another problem, namely 

increased concentrations of manganese, iron and ammonium 

under lower pH values.  This study provides prediction models for 

manganese, iron and ammonium for seven days in advance, which 

are some of the most critical parameters during summer months 

and have significant influence on treatment process of raw water. 

For modelling purposes, machine learning software Weka was 

used to build models in form of model trees. Obtained prediction 

models for manganese, iron and ammonium have high accuracy 

compared to the measured data with a good prediction of the peak 
values. Therefore, obtained models can help in optimization of the 

treatment processes at the treatment plant, which are depending 

on the quality of raw water in Butoniga reservoir. 
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1 Introduction 
 

Drinking water treatment plants (DWPT) are facilities which are used to produce clean water for human 

consumption with high quality and low cost which can adapt to standards and norms of public health. So, this 

makes DWTP a vital necessary facility to supply sufficient and quality potable water to the public [1]. Many 
DWTP use only mathematical models or empirical formulas as predictive models for their control systems 

which mainly lack a macro understanding of the overall dynamics, and the nonlinear relationships that are 

widely present in drinking water treatment. Accurate prediction models for drinking water treatment and 

production processes must be established to guide water treatment processes. [2]. The amount of data 

generated along DWTP allows development of data-based models like machine learning (ML) methods which 

are subfield of artificial intelligence (AI) and are able to predict operational parameters which can be 
incorporated into environmental decision support systems (DSS) [3]. Unlike mathematical models or statistical 

methods, ML methods have ability to handle complex nonlinear relationships and an accurate understanding 

of the overall dynamics of water treatment processes.  
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Therefore, ML methods have the ability to monitor the evolution of water quality, analyse and predict 

water quality, and also reveal the process of pollutant migration and transformation, thereby shifting the focus 

from solving existing problems to identifying risks in advance and dynamically optimizing the facilities [1]. 
Also, models based on ML methods have a certain degree of interpretability, and appropriate analysis methods 

are capable of mining the hidden physical meaning and chemical or some other information to deepen the 

understanding of water treatment processes methods [4], [5]. Some applications of ML can be seen in research 
made by Wang et al. [6] where effluent turbidity in the drinking water flocculation process was estimated with 

an improved random forest model. In research made by Kim and Parnichkun [7] prediction of settled water 

turbidity and optimal coagulant dosage in drinking water treatment plant was done using a hybrid model of k-

means clustering and adaptive neuro-fuzzy inference system. Use of multiple linear regression (MLR) and 
artificial neural network (ANN) models were used by Ayanshola et al. [8] to predict treated water turbidity in 

a water treatment plant, while Alsaeed et al. [9] have done prediction of turbidity and aluminium in drinking 

water treatment plants using hybrid network algorithm (GA-ANN) and gene expression method (GEP). ANN 
were used also by Godo-Pla et al. [1] for predicting the oxidant demand in full-scale drinking water treatment 

plant. Recent advances in artificial intelligence and ML for nonlinear relationship analysis and process control 

in drinking water treatment can be found in research made by Li et al. [3]. Previous studies regarding 

functioning and problems of the Butoniga DWTP were done by Hajduk-Černeha [10], Zorko [11] and Volf et 
al. [12]. First experiences in use of the Butoniga DWTP for drinking water supply are described by Hajduk-

Černeha [10]. Also, in this study [10] is analysed raw water quality from Butoniga reservoir and there are given 

some management guidelines regarding Butoniga reservoir and related DWTP. In the study made by Zorko 
[11] the impact of Butoniga reservoir raw water quality on water treatment processes is considered.  

This study also gives some interesting conclusions such as, the main problem with Butoniga reservoir and 

thus related DWTP appear in summer months when water temperature is the most critical parameter, so in 
order to be suitable for use and also for treatment processes water temperature must not exceed the maximum 

allowable concentration (MAC) of 25 oC according to Croatian regulations for drinking water [13]. During 

this time period water is captured from the lowest water intake which captures water from the deepest water 

layer in the Butoniga reservoir. This layer has another problem, namely increased concentrations of manganese 
(Mn), iron (Fe) and ammonium (NH4) under lower pH values. Increased concentration of Mn, Fe and NH4 

under lower pH values of raw water from the lowest water intake requires enhanced continuous process control 

and higher consumption of chemicals for the treatment process on DWTP. During these conditions the process 
is also stable and all water samples at the effluent are in accordance with the Croatian regulations for drinking 

water [13], where on exceeding values of the water temperature due to the heating of the Butoniga reservoir 

cannot be influenced [11]. Volf et al. [12] in his study presents and describes water quality index (WQI) for 
the Butoniga DWTP and associated WQI prediction models which are used for optimization of treatment 

processes on the DWTP. This study is an extension of the work done by Volf et al. [12] and deals with the 

investigations made by Zorko [11] regarding increased concentrations of Mn, Fe and NH4 during summer 

months. In order to address the issue of increased concentrations of Mn, Fe, and NH4 during the summer 
months, when higher chemical consumption is required for treatment processes, this study developed 

prediction models for Mn, Fe, and NH4 concentrations with a seven-day forecast. Additionally, the research 

includes relevant findings regarding the operational aspects of the Butoniga DWTP, utilizing ML techniques 
in the form of model trees integrated into the Weka modelling software [14].  

The model trees used for numeric prediction use linear equation in the terminal nodes (leaves) which allow 

a more accurate prediction of the target attribute (Please see section 2.2). Unlike other ML based methods 

which provide very good predictions, but sometimes are limited in terms of interpretability (black box models), 
the model trees tend to be more descriptive and interpretable (white box models) [15]. Therefore, specific 

objective of this study is to develop prediction models for Mn, Fe and NH4 for seven days in advance that can 

be used for optimizing of the treatment processes of the Butoniga DWTP. The paper is organized as follows: 
Section 2 describes study area, measured data and modelling methods used in modelling exercise. Section 3 

gives results, i.e. constructed prediction models for Mn, Fe and NH4 with related discussion of the results, and 

finally Section 4 contains the conclusions of this research. 
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2 Experimental investigation 
 

2.1 Study area and data description 
 

DWTP Butoniga produces potable water from the Butoniga reservoir, which is located upstream from the 

DWTP (Figure 1). The Butoniga reservoir is an artificial lake created in year 1987 with two main objectives: 

i) protection from adverse water impacts, and ii) drinking water supply. Butoniga reservoir has a watershed 
area of about 73 km2, ranging in elevation from 40 to 500 masl. The volume of the reservoir is 19.5 million 

m3, while the surface area is around 2.5 km2 with an average depth of 7.8 m and maximum depth of 17.5 m 

[10]. 

According to the above characteristics of the reservoir, Butoniga is a small and relatively shallow reservoir 
which is very sensitive to eutrophication and degradation processes caused by climate change and 

anthropogenic activities (human activities in the watershed). Known pressures in the surrounding watershed 

include erosion and leaching of nutrients (mainly nitrogen and phosphorus) from agricultural lands, as well as 
from untreated wastewater from settlements that are drained to the reservoir through black pits or open sewers 

[10]. 

 

 
 

Figure 1. Location of the Butoniga DWTP and Butoniga reservoir 

 
Butoniga DWTP is located about 600 m downstream from the dam of the Butoniga reservoir on an area of 

80.000 m2 (Figure 1). First phase of Butoniga DWTP is designed to process 1000 l/s or 3600 m3/h. Parts of the 

process are designed for a final capacity of 2000 l/s, which is planned in the second phase. All process units 

are designed for 24-hour full capacity with a hydraulic reserve of 25 %. The plant can operate flexibly by 

changing the capacity from 20 to 100 % of the nominal capacity. The main drinking water treatment process 
(Figure 2) consists of the following units: raw water intake, pre-ozonation, coagulation-flocculation, flotation, 

rapid filtration, main ozonation, slow sand filter, disinfection, final pH correction, pressure pumping and 

chlorination. The auxiliary process (Figure 2) of drinking water treatment consists of the following units: 
station for cleaning sand from slow sand filters, treatment of water from washing filters, sludge treatment and 

neutralization of wastewater from chemicals. The construction of the plant was finished and it became 

operational in June 2002. Since the spring of 2004, it has remained in continuous operation [11].  

The operation of the DWTP is primarily related to the tourist season. Out of the total annual production 
and distribution of 5.000.000 m3 of water, 3.000.000 m3 is generated and distributed between June 15 and 

September 15. During this period, the water quality in the Butoniga reservoir is the worst [11]. As mentioned 

in introduction section main problem with Butoniga reservoir and thus DWTP appear in summer months when 
water temperature is the most critical parameter and water for the treatment process must be captured from the 

lowest layer which have increased concentrations of Mn, Fe, NH4 and lower pH values and thus influence on 

treatment processes [11]. 
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Figure 2. Treatment processes scheme for drinking water treatment plant Butoniga 
 

The data set for building the prediction model of manganese, iron and ammonium (see Table 1) consists 

of physical and chemical parameters measured once a day at the inflow of raw water to the DWTP, from 2011 

to 2020. Physiochemical parameters include water temperature in the reservoir (Temp), pH, turbidity (Tur), 
oxygen concentration (O2), total organic carbon (TOC), potassium permanganate (KMnO4), ammonia (NH4), 

manganese (Mn), aluminium  (Al), iron (Fe) and amount of organic substances (UV254) whose concentration 

were determinate in internal laboratory of the Butoniga DWTP by standard analytical methods according to 
ISO standards [16] and Standard methods for the examination of water and wastewater [17]. In addition to the 

data measured on the DWTP, for prediction models were also used reservoir water level data (Lake level) and 

data from nearby meteorological station which are obtained from Croatian Hydro-Meteorological Service 
(CHMS).  

This data contain daily precipitations (Prec) and air temperatures (Air temp). Also, for better prediction of 

the models, sum of 30, 25, 20, 15, 10 and 5 days precipitations were used for modelling purposes which are 

significant from a hydrological aspect due to the precipitation concentration runoff. All the data were pre-
processed regarding to modelling and research goals. For the prediction models the entire span of the measured 

data was used; from 2011 to 2020. Missing data were managed with a cubic spline interpolation due to best 

fit. 
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Table 1. Data used for prediction models 
 

Symbol Description Unit 

Temp Water temperature oC 

O2 Oxygen concentration mg/l 

pH pH - 

Tur Turbidity NTU 

TOC Total organic carbon mg/l 

KMnO4 Potassium permanganate mg/l 

UV254 Organic matter in water 1/cm 

Al Aluminium mg/l 

NH4 Ammonium mg/l 

Mn Manganese mg/l 

Fe Iron mg/l 

Prec 30 days 30 days sum of precipitations mm 

Prec 25 days 25 days sum of precipitations mm 

Prec 20 days 20 days sum of precipitations mm 

Prec 15 days 15 days sum of precipitations mm 

Prec 10 days 10 days sum of precipitations mm 

Prec 5 days 5 days sum of precipitations mm 

Prec Precipitations mm 

Air temp Air temperature oC 

Lake level Lake level m 

NH4_train Ammonium values shifted 7 days in advance mg/l 

Mn_train Manganese values shifted 7 days in advance mg/l 

Fe_train Iron values shifted 7 days in advance mg/l 

 

2.2 Modelling methods; model trees 
 

Model trees are hierarchical structures composed of nodes and branches. Internal nodes contain tests on 

the input attributes while each branch of an internal test corresponds to an outcome of the test and the 

predictions for the values of the target variable (i.e. the class) are stored in the leaves that are the terminal 
nodes in the tree. If the leaf contain a single value for the class prediction, then it is talked about simple 

regression trees, while if a linear equation is used for prediction in the leaf, then it is talked about model trees 

[14], [18].  One of the most used algorithm for induction of model trees is the M5 algorithm [18], based on the 
TDIDT top-down induction of decision trees (TDIDT) algorithm [19].  For the experiments conducted in this 

research a variation of the M5 algorithm was used, called M5P, implemented in the software package Weka 

[14].   

The M5P algorithm uses a decision tree as the base model, with the addition of linear regression models at 
the leaf nodes of the tree. This allows for more complex models that can better handle continuous target 

variables. The M5P algorithm works by first growing a decision tree based on the input data, and then fitting 

a linear regression model to the data at each leaf node. The final model is a combination of these decision tree 
and linear regression models, which can be used to make predictions on new data [14]. After the tree is 

constructed from the training (learning) set of data, it is necessary to assess the model quality, i.e., the accuracy 

of prediction. This can be done by simulating the model on a testing set of data and comparing the predicted 
values of the target with the actual values. Another option is to employ cross-validation. The given (training) 

data set is partitioned on a chosen number of folds (n), usually 10. In turn, each fold is used for testing, while 

the remainder (n-1 folds) is used for training. The final error is the average error of all the models throughout 

the procedure. 
The size of the error between the actual and the predicted values can be calculated by several measures to 

evaluate the model accuracy: root mean-squared error (RMSE), mean absolute error (MAE), root relative 

squared error (RRSE), relative absolute error (RAE), and correlation coefficient (R) [14]. In the performed 
experiments the accuracy of the models is evaluated through all the measures of accuracy. 
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2.3 Design of the modelling experiments 
 

The data used for building prediction models of manganese, iron and ammonium are depicted in Table 1. 

As mentioned, all data were pre-processed with respect to modelling and research goals based on the 
knowledge of modelling experts on the analysed DWTP. Models are built to predict concentrations of 

manganese, iron and ammonium seven days in advance with purpose to improve treatment processes on DWTP 

regarding to changes of raw water quality in the Butoniga reservoir. Therefore, these models would help to 
manage treatment processes which are depending on the quality of raw water in the Butoniga reservoir. For 

the experiments the machine learning algorithm M5P for induction of model trees integrated in the Weka 

modelling software [14] was used. Predicted concentrations of Mn, Fe and NH4 seven days in advance were 

set as a target (dependent) variable for each build model, whereas water temperature, pH, turbidity, KMnO4, 
NH4, Mn, Al, Fe, O2, TOC, UV254, Prec 30 days, Prec 25 days, Prec 20 days, Prec 15 days, Prec 10 days, Prec 

5 days, Prec, Air temp and Lake level (Table 1) were set as independent variables (descriptors) from which the 

predicted values of Mn, Fe and NH4 were modelled in separate models. The above parameters were mainly 
used because they best represent the parts of the system (DWTP and Butoniga reservoir) on top of which the 

target variable relays. 

The aim of obtained prediction models is to be as much as possible applicable and valid for the prediction 
of Mn, Fe and NH4, meaning that they should perform as accurately as possible. To achieve this, the most 

commonly used procedures of building and testing models were applied; the entire data set was taken for 

training while validating with 10-fold cross-validation (see Section 2.2). To achieve the highest correlation 

coefficient (R) and the optimal number of rules default values of parameters for building models were used in 
Weka modelling software [14]. The model performing most accurately according to the validation method was 

selected as a representative model for the prediction purposes. The accuracy of the models is evaluated through 

the RMSE, MAE, RRSE, RAE and R. 
 

3 Results and discussion   
 

As stated in the introduction section, the main problem concerning the Butoniga reservoir and the 
associated DWTP arises during the summer months when water temperature becomes the most critical 

parameter. During this time, water for the treatment process must be captured from the deepest layer of the 

reservoir, which exhibits increased concentrations of Mn, Fe, NH4, lower pH values, and reduced oxygen 
concentrations. These factors significantly impact the treatment processes on the DWTP [11]. Figure 3 

illustrates the measured concentrations of Mn, Fe, NH4, along with pH values and oxygen concentrations, 

throughout the observed period from 2011 to 2020. It is evident from the data that all parameters exceed the 
Maximum Allowable Concentrations (MAC) for drinking water according to Croatian regulations [13]. The 

exceedance of limit values, such as 0.5 mg/l for NH4, 0.05 mg/l for Mn, and 0.2 mg/l for Fe, is recorded 

throughout the whole year, with a more pronounced occurrence during the summer months, particularly during 

the tourist season. During this period, the exceedances of MAC are significantly higher, coinciding with lower 
pH values and oxygen concentrations, while the water temperature is higher than the rest of the year, as 

depicted in Figure 3. 
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Figure 3. Concentrations of manganese, iron and ammonium in raw water along with pH values and 

oxygen concentrations 

 

Prediction models of manganese, iron and ammonium concentrations for seven days in advance were built 
with Weka modelling software using M5P algorithm for induction of model trees [14]. As mentioned in section 

2.3 for building prediction models entire span of the measured data was used, from 2011 to 2020 with daily 

sampling frequency. Missing data were managed by using a cubic spline interpolation, and selection of the 
best model was done according to the procedure mentioned in section 2.3. Prediction model for manganese is 

presented on Figure 4, while related model equations are given in Table 2. The model is composed of nine 

leaves, i.e. equations, were each equation is used to predict manganese concentrations seven days in advance 
using parameters given in model tree nodes (Figure 4). The model tree nodes in Figure 4 demonstrate that the 

most prevalent parameters are the current concentration of manganese (as anticipated), pH values, the 

cumulative sum of five days' precipitation, water temperature, and iron concentration. Table 2 contains the 

equations associated with the model tree leaves, including parameters such as temperature, pH values, 
manganese, iron, and the sum of five day precipitation.  

The selection of equations in the model tree leaves is contingent upon the variable values in the tree nodes. 

Once the selection based on the variable values in the tree nodes is made, the corresponding equation is applied 
to predict the manganese concentration seven days ahead. For example, if manganese concentration (top node) 

is lower or equal than 0.232 (left side of the tree) and again manganese concentration is higher than 0.134 and 

pH value is higher than 7.873 than equation 6 is applied for manganese prediction; otherwise if pH value is 
lower or equal than 7.873 than equation 5 is applied. 

The model has very high correlation coefficient (R) of 0.92, while MAE is 0.049, RMSE is 0.084, RAE of 

33.71 % and RRSE of 41.12 %.  
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Figure 4. Model tree for manganese prediction 7 days in advance 

 

Table 2. Equations for model tree presented on Figure 6 (manganese prediction, i.e. Mn pred) 
 

Equation 
number 

Equations 

Equation 1 Mn_pred = 0.0001*Temp - 0.0018*pH + 0.0065*Mn + 0.0276*Fe + 0*Prec 5 days + 0.0742 

Equation 2 Mn_pred = 0.0001*Temp - 0.0018*pH + 0.0065*Mn + 0.0273*Fe + 0*Prec 5 days + 0.1071 

Equation 3 Mn_pred = 0.0002*Temp - 0.0018*pH + 0.0065*Mn + 0.0345*Fe + 0*Prec 5 days + 0.1365 

Equation 4 Mn_pred = 0*Temp - 0.0018*pH + 0.0065*Mn + 0.022*Fe + 0.0001*Prec 5 days + 0.1447 

Equation 5 Mn_pred = −0*Temp - 0.0157*pH + 0.0094*Mn + 0.0077*Fe + 0*Prec 5 days + 0.378 

Equation 6 Mn_pred = −0*Temp - 0.007*pH + 0.0094*Mn + 0.0077*Fe + 0*Prec 5 days + 0.2279 

Equation 7 Mn_pred = −0*Temp - 0.0108*pH + 0.0189*Mn - 0.0011*Fe + 0*Prec 5 days + 0.43 

Equation 8 Mn_pred = −0*Temp - 0.015*pH + 0.0189*Mn - 0.0011*Fe + 0*Prec 5 days + 0.3625 

Equation 9 Mn_pred = −0*Temp - 0.008*pH + 0.0298*Mn - 0.0011*Fe + 0*Prec 5 days + 0.6041 

 

The prediction model for iron is presented on Figure 5, with related model equations in Table 3. Similar 

as the model for manganese, the iron prediction model is consisted of nine leaves, i.e. model equations were 
each equation is used to predict the iron concentrations for seven days in advance using parameters given in 

the model tree (Figure 5). Figure 5 reveals that the model tree's prominent parameters in the tree nodes are the 

current concentration of iron (as anticipated), pH values, the cumulative sum of five days' precipitation, 
turbidity, lake level, and oxygen concentration. Table 3 includes the equations associated with the model tree 

leaves, which involve parameters such as oxygen concentration, pH values, turbidity, manganese, iron, the 

sum of five day precipitation, and lake level.  

The equation selection process remains the same as in the previous model. This model has also very high 
correlation coefficient (R) of 0.91, while MAE is 0.034, RMSE is 0.060, RAE of 34.82 % and RRSE of 42.52 

%.  
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Figure 5. Model tree for iron prediction 7 days in advance 
 

Table 3. Equations for model tree presented on Figure 7 (iron prediction, i.e. Fe_pred)) 
 

Equation 

number 
Equations 

Equation 1 
Fe_pred = 0.0001*O2 - 0.0006*pH + 0.001*Tur  + 0.0022*Mn + 0.0037*Fe + 0 Prec 5 days - 

0.0003*Lake level + 0.0853 

Equation 2 
Fe_pred = 0.0001*O2 - 0.0006*pH + 0.0008*Tur + 0.0022*Mn + 0.0037*Fe + 0*Prec 5 days 

- 0.0003*Lake level + 0.1148 

Equation 3 
Fe_pred = 0.0001*O2 - 0.0006*pH + 0.0005*Tur + 0.0025*Mn + 0.0037*Fe + 0*Prec 5 days 

- 0.0005*Lake level + 0.1703 

Equation 4 
Fe_pred = 0.0001*O2 - 0.0006*pH + 0.0005*Tur + 0.0025*Mn + 0.0037*Fe + 0*Prec 5 days 

- 0.0008*Lake level + 0.1423 

Equation 5 
Fe_pred = 0.0001*O2 - 0.0006*pH + 0.0005*Tur + 0.0028*Mn + 0.0037*Fe + 0*Prec 5 days 

- 0.0003*Lake level + 0.1624 

Equation 6 
Fe_pred = 0.0004*O2 - 0.0054*pH - 0*Tur + 0.0004*Mn + 0.0104*Fe + 0*Prec 5 days - 

0.0002*Lake level + 0.3082 

Equation 7 
Fe_pred = 0.0004*O2 - 0.0043*pH - 0*Tur + 0.0004*Mn + 0.0104*Fe + 0*Prec 5 days - 

0.0002*Lake level + 0.2567 

Equation 8 
Fe_pred = 0.0006*O2 - 0.0043*pH - 0*Tur + 0.0004*Mn + 0.0104*Fe + 0*Prec 5 days - 

0.0002*Lake level + 0.2712 

Equation 9 
Fe_pred = 0.0005*O2  0.0052*pH - 0*Tur + 0.0004*Mn + 0.0246*Fe + 0*Prec 5 days - 

0.0002*Lake level + 0.43 

 

The prediction model for ammonium is given in Figure 6, while Table 4 contains related model equations 

for prediction of the ammonium concentration for seven days in advance. Similar as the prediction models for 
manganese and iron, the prediction model for the ammonium is consisted of nine leaves, i.e. model equations 

were each equation is used to predict the ammonium concentrations for seven days in advance using parameters 

given in model tree nodes (Figure 6). Figure 6 demonstrates that the model tree primarily features are the 
current concentration of ammonium (as anticipated), pH values, the cumulative sum of thirty days' 

precipitation, and manganese concentration as the most appearing parameters.  

The related equations in Table 4 involve parameters such as pH values, ammonium, the sum of thirty day 
precipitation, and manganese concentration. The equation selection process remains the same as in the previous 

model. Model for NH4 has very high correlation coefficient of (R) 0.92, while MAE is 0.047, RMSE is 0.087, 

RAE of 32.79 % and RRSE of 39.53 %.  
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Figure 6. Model tree for ammonium prediction 7 days in advance 

 

Table 4. Equations for model tree presented on Figure 7 (ammonium prediction, i.e. NH4_pred) 
 

Equation 
number 

Equations 

Equation 1 NH4_pred = −0.0015*pH + 0.0285*NH4 - 0*Prec 30 days + 0.0588 

Equation 2 NH4_pred = −0.0027*pH + 0.0258*NH4 + 0*Prec 30 days + 0.1922 

Equation 3 NH4_pred = −0.0018*pH + 0.0258*NH4 + 0*Prec 30 days + 0.1587 

Equation 4 NH4_pred = −0.0018*pH + 0.0258*NH4 + 0*Prec 30 days + 0.1969 

Equation 5 NH4_pred = −0.0024*pH + 0.0429*NH4 + 0*Prec 30 days + 0.2365 

Equation 6 NH4_pred = −0.0042*pH + 0.0119*NH4 + 0.01*Mn - 0*Prec 30 days + 0.3968 

Equation 7 NH4_pred = −0.0033*pH + 0.0119*NH4 + 0.032*Mn - 0*Prec 30 days + 0.2405 

Equation 8 NH4_pred = −0.0033*pH + 0.0119*NH4 + 0.0194*Mn - 0*Prec 30 days + 0.3301 

Equation 9 NH4_pred = −0.0037*pH + 0.0271*NH4 + 0.0088*Mn - 0*Prec 30 days + 0.609 

 

The performance of the prediction models is presented in Figures 7 to 9. Each figure represents the 

modelled (predicted) vs. measured values of manganese (Figure 7), iron (Figure 8) and ammonium (Figure 9) 
for the given time period from 2011 to 2020 for seven days in advance. Figures 7 to 9 indicate very high 

accuracy of the prediction models for all predicted parameters with a relatively good prediction of the peak 

values included. Overall, obtained results i.e., prediction models are acceptable for optimizing the management 

of the Butoniga DWTP, looking at the correlation coefficients and prediction of the peak values. As such, the 
models can be used for prediction purposes and therefore for optimization of the treatment processes on the 

Butoniga DWTP. 

 

 
 

Figure 7. Comparison of measured and predicted values of manganese concentration for the modelled 
period 
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Figure 8. Comparison of measured and predicted values of iron concentration for the modelled period 

 

 
 

Figure 9. Comparison of measured and predicted values of ammonium concentration for the modelled 

period 
 

In recent times, the rising complexity of water quality and more stringent drinking water standards have 

created challenges for the economic efficiency and operation of DWTPs. This has necessitated the 

development of more complex modelling and optimization techniques for treatment processes, as well as an 
overall proper management approach for DWTPs as a whole [1]. As mentioned earlier, traditional 

mathematical models and statistical methods have been commonly used for modelling DWTPs. However, 

these approaches often lack a comprehensive understanding of the overall dynamics and nonlinear 
relationships that are prevalent in DWTP systems. On the other hand, ML methods have the capability to 

handle complex nonlinear relationships and provide a more accurate understanding of the overall dynamics in 

drinking water treatment processes. ML methods enable monitoring of water quality evolution, analysis, and 

prediction of water quality, as well as revealing the migration and transformation processes of pollutants.  
This allows for a shift in focus from merely solving existing problems to proactively identifying risks in 

advance and dynamically optimizing the facilities [1]. Today, the utilization of ML methods is becoming 

increasingly widespread in various aspects of DWTP modelling, including prediction, optimization, and 
facility management. Below are some examples showing the application of ML methods. Wang et al. [6] 

conducted research on the estimation of effluent turbidity in the drinking water flocculation process. They used 

an improved random forest (IRF) model that consisted of both long-term and short-term components.  
The study demonstrated that the IRF model exhibited high flexibility and adaptability. In a separate study, 

Kim and Parnichkun [7] used a hybrid model combining k-means clustering and adaptive neuro-fuzzy 

inference system to predict settled water turbidity and determine optimal coagulant dosage in a drinking water 

treatment plant. Their approach showed improved prediction capability. Ayanshola et al. [8] utilized MLR and 
ANN models to predict treated water turbidity in a water treatment plant, achieving reasonable prediction 

accuracy with both methods. Alsaeed et al. [9] developed prediction models for turbidity and aluminium in 

drinking water treatment plants using GA-ANN and GEP which can be used as early warning systems to 
provide information about water treatment plants. Godo-Pla et al. [1] employed ANN to predict the oxidant 

demand in a full-scale drinking water treatment plant. This predictive capability is integrated into an 

environmental decision support system, which can be fed with real-time data to enhance and expedite the 
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decision-making process for plant managers and operators. Furthermore, recent research by Li et al. [3] has 

explored the use of AI and ML for analysing nonlinear relationships and process control in drinking water 

treatment. In summary, ML methods have demonstrated remarkable performance in capturing complex 
relationships and making predictions in DWTPs. These methods excel in processing data with nonlinear 

relationships that are challenging to fit using single mathematical models or traditional statistical methods [3]. 

In this study, ML methods in the form of model trees were used to develop prediction models for 
manganese, iron, and ammonium. Model trees employ linear equations within their terminal nodes, enabling 

numerical predictions. This method is straightforward to use and can be very simple integrated into a DSS for 

the DWTP. The model trees' "decision" nodes incorporate parameters that are significant for the predicted 

variable, providing insights into the dependencies of the target variable on specific parameters. Unlike other 
ML based methods that offer highly accurate predictions but may lack interpretability (black box models", 

model trees aim to be more descriptive and interpretable (white box models) [15]. The prediction models for 

manganese, iron, and ammonium developed in this study are an extension of the research conducted by Volf 
et al. [12].  

The previous research introduced and described the WQI for the Butoniga DWTP, along with prediction 

models for the WQI, which were used to optimize treatment processes at the DWTP. As the Butoniga DWTP 

faces challenges primarily related to increased concentrations of manganese, iron, and ammonium throughout 
the year, with a particular focus on the summer months during the tourist season, as described by Zorko [11], 

this current research is primarily focused on predicting manganese, iron, and ammonium concentrations. The 

aim of this prediction models is to be able to respond promptly and effectively manage the Butoniga DWTP. 
During this critical period characterized by increased concentrations of manganese, iron, and ammonium, 

enhanced and continuous process control is required, along with higher chemical consumption, to maintain 

stability in the treatment process and to ensure that all water samples in the effluent remain below the MAC 
[13]. 

 

4 Conclusion  
 

The importance of DWTP which produce potable water for human consumption is nowadays very 

significant. Therefore, a model that represents functioning and dynamics of the DWTP becomes very useful 

and important tool for developing strategies and management that improve its behaviour and use of resources 
through proper optimization of the treatment processes and also with minimizing the risks of an inadequate 

actions. In this research prediction models for Mn, Fe and NH4 concentrations in raw water for seven days in 

advance were built with use of ML method in form of the model trees, which was applied on measured data 

for the Butoniga DWTP. Models were built to cope with problem of high concentrations of Mn, Fe and NH4, 
which occurs during summer months, when water is captured from the lowest water intake, i.e. the lowest 

water layer in the Butoniga reservoir. Predictions of the Mn, Fe and NH4 are done according to current values 

of measured parameters at the intake of the raw water. Obtained models have high correlation coefficients and 
thus provide accurate predictions of the Mn, Fe and NH4, including the predictions of the peak values when 

compared to measured data. As such, the models can help with the optimization and management of treatment 

processes at the DWTP, especially during the summer months (tourist season), when the quality of raw water 
in the Butoniga reservoir is poorest, and where changes in the raw water quality can result in direct action and 

optimization of the operation of the Butoniga DWTP. 
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