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 In order to satisfy electricity customers and avoid some 

environmental constraints and problems, the transition to 

renewable energy sources has become increasingly important 

given their advantages and benefits, such as reducing pollution 

and improving the reliability of the targeted distribution system. In 

this paper, several state-of-the-art metaheuristic optimisation 

algorithms are used to investigate the optimal setting and sizing of 

wind turbines (WTs) when connected to the electricity distribution 

network (EDN). The selected algorithms were implemented to 
optimise and minimise a multi-objective function (MOF) 

considered as the sum of the techno-economic parameters of total 

active power loss (TAPL), total voltage deviation (TVD) and 

investment cost of the WTG (ICWTG) when the daily uncertainties 

and variations of the load-source powers are taken into account. 

The effectiveness of the selected algorithms was validated on the 

two standard test systems IEEE 33-bus and 69-bus. The simulation 

results in this paper showed the superiority of the Gorilla Troops 

Optimizer (GTO) algorithm compared to other new metaheuristic 

optimisation algorithms in terms of providing the best optimised 

results. Accordingly, the GTO algorithm showed excellent 
effectiveness and robustness in determining the optimal setting and 

sizing of the WTG units in EDN. Thus, the daily active power losses 

were reduced to 1,415 MWh for the first test system and 1,072 

MWh for the second test system, while also improving the bus 

voltage profiles and favouring the investment costs of the installed 

WTG units, all with daily uncertainties in terms of load demand 

and WTG power variations. 
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1 Introduction 
 

The increasing use of electricity, the increased cost of building large power generation plants and the 

significant pollution associated with electricity generation have led to decentralised generation (DG), based 
mainly on renewable energy sources (RES), representing a major shift in the power generation sector. In 

addition to providing affordable and clean energy, distributed generation based on wind turbines (WTG) offers 

numerous significant benefits, such as minimising electricity losses, purchasing electricity, reducing voltage 
deviations and improving power quality [1]. In the context of smart grids, optimal power flow and renewable 

energy planning in the electricity distribution network (EDN) are the most common optimisation tasks. On the 

other hand, metaheuristic methods are a subset of optimisation algorithms that are theoretically best able to 

address the challenges of smart grid optimisation and achieve higher quality results than conventional methods 

                                                
 Corresponding author 

E-mail address: nasreddine.belbachir.etu@univ-mosta.dz 



N. Belbachir, M. Zellagui, S. Settoul, A. Benali: Optimal design of wind energy generation… 116 
________________________________________________________________________________________________________________________ 

[2].  

The challenge of optimal WT allocation is to calculate the best position and size of DG units to be installed 

in an existing EDN based on various technical constraints [3]. In [12], the Manta-Ray Foraging Optimisation 
(MRFO) algorithm was applied to reduce the total cost, pollutant emissions and voltage fluctuations, in [13] 

the Modified Equilibrium Algorithm (MEA) was applied to reduce the power generation cost and active power 

loss, and in [14] the Aquila Optimizer Algorithm (AOA) was applied to minimise the heat generation cost. 
The authors in [15] proposed a Modified Symbiotic Organisms Search (MSOS) algorithm based on several 

technical and economic objectives, the Chaotic Sequence Spotted Hyena Optimizer (CS-SHO) algorithm was 

used to minimise losses and improve the voltage age profile based on the voltage stability index in [16], the 

New Chaotic Stochastic Fractal Search (CSFS) algorithm was used to minimise power loss in [17], Quasi-
Oppositional Grey Wolf Optimizer (QOGWO) algorithm to minimise the total annual economic losses with 

maximum techno-economic benefit in [18], Chaotic Differential Evolution (CDE) technique to reduce various 

technical and economic indices in [19], Artificial Electric Field Algorithm (AEFA) to reduce power loss and 
voltage deviation in [20]. Application of Salp Swarm Algorithm (SSA) to reduce active power losses in [21], 

Student Psychology-Based Optimisation (SPBO) algorithm with cost analysis considering load models in [22]. 

Chimp Optimisation Algorithm (COA) was used to reduce effective losses in chimpanzees in [23], and Grey 

Wolf Optimizer (GWO) algorithm was used to minimise simultaneous indices of different technical parameters 
considering seasonal uncertainties in [24]. Recently, an Adaptive PSO algorithm was developed to reduce the 

annual energy losses and voltage fluctuations in power lines [25], and Applied the Transient Search 

Optimisation (TSO) algorithm was used to minimise power losses and improve voltage stability [26]. In this 
work, the authors have applied numerous new nature-inspired metaheuristic algorithms that have been used to 

address nonlinear optimisation problems for the integration of WTG units in EDN: Dingo Optimization 

Algorithm (DOA) in [27], Archimedes Optimization Algorithm (AOA) in [28], Coot Optimization Algorithm 
(COA) in [29], Mayfly Optimization Algorithm (MOA) in [30], Smell Agent Optimization (SAO) algorithm 

in [31], Equilibrium Optimization Algorithm (EOA) in [32], African Vulture Optimization (AVO) algorithm 

in [33], Gorilla Troops Optimizer (GTO) algorithm in [34].  

The applied algorithms are tested and validated for two different standard EDNs, IEEE 33-bus and IEEE 
69-bus. The proposed method is formulated in a Multi-Objective Function (MOF). The objectives of the study 

reflect the techno-economic aspects of total active power losses (TAPL), total voltage deviation (TVD) and 

investment costs for the WTGs installed in the tested distribution system (ICWTG) under the daily 
uncertainties of load-source powers. 

 

2 Problem formulation and constraints 
 

2.1 The multiple-objective functions 
 

The multiple-objective functions (MOF) resolved in this paper were devoted to searching and identifying the 

optimal setting and size of multiple WTG units in an electricity distribution system. These equations show 
their mathematical formulation: 
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The TAPL is formulated as follows [11-18], [35]: 

 

, ,

1 2

bus bus
NN

i j i j

i j

TAPL APL
 

                                                        
 

(2) 
 

 

   ,i j ij i j i j ij i j i jAPL PP Q Q Q P PQ      (3) 

 



N. Belbachir, M. Zellagui, S. Settoul, A. Benali: Optimal design of wind energy generation… 117 
________________________________________________________________________________________________________________________ 

 cos
ij

ij i j

i j

R

VV
     (4) 

 

 sin
ij

ij i j

i j

R

VV
     (5) 

                                                                                               

where, Rij refers to the resistance in the distribution line, Nbus is the number of buses. (δi, δj). (Pi, Pj) and (Qi, 
Qj) is the active and reactive powers, respectively, and (Vi, Vj) is the bus voltages. 

The TVD is formulated as in [36, 37]: 
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The investment cost ICWTG of WTG means the total capital, operating and maintenance cost, of the WTG’s 

installed units [38]:, and is formulated as: 
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(7) 

 

where, NWTG, CWTG, and PWTG are the number of installed WTG units, the cost of one WTG in $/kW, and the 
active injected power by WTG in kW, respectively. 

The ICWTG represents capital cost (CWTG
Capital), operating, and maintenance cost (CWTG

O&M) [38]: 

 

& ($ / )WTG WTG

WTG Capital O MC C C kW    (8) 

 

The capital cost (CWGT
Capital) is 5800 $/kW, comprising turbines, converters, transportation, and installation. 

The cost of maintenance (CWTDG
O&M) is 40 $/kW. 

 
2.2 Equality constraints 
 

G WTG D LossP P P P                                                            (9) 

 

G WTG D LossQ Q Q Q    
(10) 

 
where, PG and QG are the generator powers; PWTG and QWTG are the total powers of WTG. PD and QD are total 

load powers. PLoss and QLoss are the total active and reactive losses. 
 

2.3 Inequality constraints of distribution line 

 

min maxiV V V   (11) 

 

max1 jV V    (12) 

 

maxijS S  (13) 
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where, Vmax and Vmin are the maximum and minimum specified voltages; ΔVmax is the maximum voltage drop. 

V1 is sub-stations voltage =1.0 p.u. Sij is the apparent power in ij. Smax is the maximum apparent power. 
 

2.4 Inequality constraints of WTG units 
 

min max

WTG WTG WTGP P P   (14) 

 
min max

WTG WTG WTGQ Q Q   (15) 
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where, (PWTG
min, QWTG

min, PWTG
max, QWTG

max) are limits of WTG powers. (WTGPosition, NWTG, NWTG.max) are the 

WTG position, number, and maximum units per location at bus i, respectively. PFWTG is the power factor of 

WTG. 
 

3 Test networks, comparisons, and results 
 

3.1 Test networks 
 

The chosen meta-heuristic algorithms were validated and applied on the two standards IEEE 33-bus, and 

IEEE 69-bus using the MATLAB software (version 2020b) with a PC containing a processor of Intel Core i5, 

3.4 GHz, and 8 GB of RAM. The two standard test systems are demonstrated using their line diagrams in 
Figure 1, where the applied base voltage is 12.66 kV in both of them. The IEEE 33-bus comprised 33 buses 

and 32 branches, including a total load of 3715.00 kW and 2300.00 kVar, while the IEEE 69-bus comprised 

69 buses and 68 branches, including a total load of 3790.00 kW, 2690.00 kVar [39, 40]. 
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(a) 

 

 

(b) 
 

Figure 1. Single line diagram of tested EDN: 
a - IEEE 33-bus; b - IEEE 69-bus 

 

3.2   Assessment of the applied algorithms 
 

Figure 2 represents the convergence curves of the applied algorithms for both test systems EDNs while 

optimally integrating the WTG units. From Figure 2, it is remarkable that in terms of analyzing the results, the 

GTO algorithm provided the best convergence curves. Notably, the GTO algorithm needs more than 50 

iterations to converge. On the other hand, the MOA algorithm provided the best curves regarding the 
convergence speed for both cases which can obtain a solution near its best solution after only 20 iterations. 

The DOA and AOA algorithms are the worst regarding MOF results and convergence speed. In addition, the 

EOA and AVO algorithms show an excellent convergence speed, and their results are close to the optimal 
values obtained by the GTO algorithm. 

 

 
 

(a) 
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(b) 
 

Figure 2. The convergence curves of the applied algorithms :  

a - IEEE 33-bus; b - IEEE 69-bus 
 

Figure 3 illustrates the Boxplot of the applied algorithms after 20 executions for both test systems while 

integrating the WTG units. 
 

 
 

(a) 
 

 
 

(b) 
 

Figure 3. Boxplot of MOF using applied algorithms: 

a - IEEE 33-bus; b - IEEE 69-bus 

 



N. Belbachir, M. Zellagui, S. Settoul, A. Benali: Optimal design of wind energy generation… 121 
________________________________________________________________________________________________________________________ 

The analysis of Figure 3 reveals that the results of 20 runs of the GTO algorithm are very close, one to the 

other. The DOA algorithm results for IEEE 33-bus are also close to each other, but in terms of quality, they 

seem the worst. The results whose far from each other in the IEEE 33-bus are obtained by applying the COA 
and then ASO algorithms. On the other hand, for IEEE 69-bus, the results of COA and EOA algorithms are 

also the most distant from each other. Tables 1 and 2 show the statistical analysis for the selected metaheuristic 

algorithms applied for the optimal placement of the WTG units into both test systems EDNs. As mentioned in 
the tables, the statistical analysis was carried out after 20 executions for each applied algorithm to validate 

their efficiency and effectiveness. Hence, based on the selected indices: Best, Worst, Mean, Standard Deviation 

(SD), and CPU Time. The analysis summary shows that the GTO algorithm was superior and showed the best 

efficiency in all statistical analysis sides for both systems EDNs. The GTO algorithm provided and delivered 
the best and the smallest values of MOF by 18.214 and 18.829, respectively. Also, the minimum Mean and 

SD values of 18.515 and 0.207, including the second quickest CPU Time of 166.04 seconds after the SAO 

algorithm reached its optimal solution only after 164.33 seconds. 
 

Table 1. Analysis of the algorithms results for IEEE 33-bus 
 

Applied 

Algorithm 
Worst Mean Best SD 

CPU Time 

(sec) 

DOA 19.207 19.018 18.727 0.131 90.22 

AOA 19.438 19.092 18.538 0.258 93.28 

COA 19.200 18.685 18.166 0.363 91.80 

MOA 18.679 18.279 18.079 0.177 82.42 

SAO 19.151 18.581 18.059 0.349 99.30 

EOA 18.699 18.295 17.992 0.231 89.89 

AVO 18.854 18.366 17.984 0.260 93.28 

GTO 18.434 18.064 17.900 0.152 86.88 

 

Table 2. Analysis of the algorithms results for IEEE 69-bus 
 

Applied 

Algorithm 
Worst Mean Best SD 

CPU Time 

(sec) 

DOA 19.879 19.430 19.082 0.282 162.19 

AOA 19.631 19.115 18.765 0.250 158.48 

COA 19.748 18.970 18.483 0.321 172.30 

MOA 19.212 18.802 18.269 0.272 174.03 

SAO 19.107 18.763 18.267 0.275 164.33 

EOA 19.221 18.739 18.262 0.316 169.84 

AVO 18.991 18.575 18.244 0.240 189.43 

GTO 18.829 18.515 18.214 0.207 166.04 

 
Tables 3 and 4 illustrate the optimal results after applying the different metaheuristic algorithms to integrate 

multiple WTG units in both EDNs. Both results from Tables 3 and 4 revealed the effectiveness and robustness 

of all the applied and selected metaheuristic algorithms in providing perfect results of MOF minimization for 

both test systems EDNs. Hence, the comparison clearly shows that the GTO algorithm represents the best 

technique that delivered the minimum MOF of 17.900 for the IEEE 33-bus and 18.214 for the IEEE 69-bus 

optimally integrated with the WTG units.  
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Table 3. Optimal results using the IEEE 33-bus 
 

Applied       

Algorithm 
Bus 

PWTG 

(MW) 

QWTG 

(MVar) 

APL 

(MWh) 

 ∆APL 

(%) 

VD 

(p.u.) 

ICWTG 

(M$) 
MOF 

DOA 
2 
13 

33 

0.0134 
0.7277 

0.8017 

0.0101 
0.5457 

0.5092 

1.483 58.30 20.388 9.009 18.727 

AOA 
2 
17 

29 

0.0132 
0.6091 

0.9478 

0.0099 
0.3750 

0.7109 

1.493 
 

58.02 
20.581 9.169 18.538 

COA 
15 
17 

30 

0.5554 
0.1035 

0.9934 

0.3418 
0.0381 

0.7451 

1.459 58.98 19.860 9.649 18.166 

MOA 

12 

15 
31 

0.1062 

0.6544 
0.7645 

0.0500 

0.4131 
0.5734 

1.449 59.26 20.168 8.906 18.079 

SAO 

15 

18 
30 

0.6114 

0.0950 
0.8598 

0.4333 

0.0101 
0.6449 

1.421 60.05 20.111 9.147 18.059 

EOA 

10 

15 

31 

0.0139 

0.7301 

0.7707 

0.0100 

0.4487 

0.5781 

1.458 59.01 20.159 8.845 17.992 

AVO 

15 

31 

33 

0.7346 

0.7336 

0.0549 

0.4529 

0.5502 

0.0333 

1.453 59.15 20.127 8.894 17.984 

GTO 

11 

17 

32 

0.4486 

0.3874 

0.7320 

0.3365 

0.1973 

0.5490 

1.415 60.21 19.830 9.157 17.900 
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Table 4. Optimal results using the IEEE 69-bus 
 

Applied       

Algorithm 
Bus 

PWTG 

(MW) 

QWTG 

(MVar) 

APL 

(MWh) 

∆APL 

(%) 

VD 

(p.u.) 

ICWTG 

(M$) 
MOF 

DOA 
15 
61 

65 

0.5972 
0.3127 

0.9783 

0.3998 
0.2001 

0.6403 

1.329 64.88 19.841 11.027 19.082 

AOA 
26 
60 

60 

0.3274 
0.3569 

1.1960 

0.2313 
0.2487 

0.8945 

1.104 70.08 19.980 10.981 18.765 

COA 
13 
21 

63 

0.0155 
0.4063 

1.3155 

0.0116 
0.2597 

0.9276 

1.275 66.31 21.042 10.145 18.483 

MOA 

20 

58 
62 

0.4819 

0.0113 
1.2506 

0.3170 

0.0085 
0.9379 

1.273 66.36 20.611 10.183 18.269 

SAO 

23 

62 
69 

0.4525 

1.2661 
0.0201 

0.2925 

0.9496 
0.0143 

1.273 66.36 20.663 10.154 18.267 

EOA 

21 

61 

65 

0.4157 

1.1485 

0.1691 

0.2826 

0.8613 

0.1222 

1.228 67.55 20.812 10.122 18.262 

AVO 

21 

24 

62 

0.4003 

0.0704 

1.2545 

0.2817 

0.0338 

0.9409 

1.281 66.15 20.641 10.075 18.244 

GTO 

24 

61 

64 

0.4394 

0.4865 

0.7882 

0.2865 

0.3649 

0.5912 

1.072 71.67 20.690 10.010 18.214 

 
Also, the GTO revealed excellent efficiency in providing even the minimum of each parameter on its own. 

Where minimized the APL and VD until 1.415 MWh and 19.830 p.u. for the first test system, besides the APL 

and ICWTG until 1.072 MWh and 10.01 M$ for the second test system. Another remark is that the EOA and 

DOA algorithms delivered the minimum values of ICWTG and VD until 8.845 M$ and until 19.84 p.u. for the 

first and the second test systems, respectively. 

 

3.3 Analysis of the voltage efficiency using the GTO algorithm 
 

Figure 4 represents the daily voltage profile variation for both cases, before and after the optimal integration 

of WTG units into both EDNs using the GTO algorithm. From both Figures 4, it is evident that the daily values 

of the voltage profiles have been enhanced directly after the installation of WTG units in the two test systems 

EDNs. The injection of both reactive and active powers in different optimal locations based on the GTO 

algorithm was the reason for those exemplary achievements. The improvement of voltage profiles was reversed 

to the daily depreciation of the voltage deviation values, which was until 19.830 p.u. for IEEE 33-bus and until 

20.69 p.u. for IEEE 69-bus. 
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(a) 
 

 
 

(b) 
 

Figure 4. The daily bus voltages profile variation: 

a - IEEE 33-bus; b - IEEE 69-bus 

 

Another remark is that the voltage profiles ameliorating was registered almost along the days' hours, as long 

as the WT provides their power generation for 24 hours and with no interruptions. Besides, after the optimal 

integration of the WTG units, the voltage profiles got raised above the value of 0.95 p.u. in all buses for the 

two test systems EDNs. For the reason that the voltage value of 0.95 p.u. represents one of the voltage 

constraints that have been respected while optimising the GTO algorithm. Figure 5 represents the daily 

variation of active power loss in both studied network branches for the WTG units' optimal integration. 
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(a) 

 

 
 

(b) 
 

Figure 5. The daily active power loss variation in branches: 

a - IEEE 33-bus; b - IEEE 69-bus 

 

The optimal presence of the WTG units affected the technical parameters of the two test systems. Meanwhile, 

mentioning the 3D graphics in Figure 5 of the daily active power loss in all branches. The daily active power 

loss in all branches significantly minimises the two test systems after optimal installation of the WTG units 

along all the day's hours. The WTG units caused a depreciation in the total value of daily active power loss 

from 3557.02 kWh to 1415.50 kWh, including a rate of reduction of 60.21 % for the first EDN, also from 

3785.31 kWh until 1072.00 kWh, including a rate of reduction of 71.67 % for the second EDN. That 

minimization impact was related to the WTG units’ production of both reactive and active generated powers 

for both EDNs, almost throughout the day. 

 

4 Conclusion  
 

In this work, the application of various new metaheuristic optimisation algorithms to solve the problem of 

optimal integration of WTs into two standard EDNs was investigated. The optimisation was performed by 

minimising several objective functions, which were considered as total techno-economic parameters, taking 
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into account the daily uncertainties of the load demand and the source power fluctuations. Among the applied 

algorithms, the GTO algorithm proved to be the most reliable and effective, as it provided the best results for 

both EDNs, including a demanding behaviour and fast convergence properties when reaching the optimal 
solutions. The results also highlight the efficiency of the optimal presence of WEA, which provides a 

noticeable performance improvement for both test systems. This is because WTG generation is present for 

most of the day and is dependent on wind speed. They also provide both reactive and active power. However, 
the optimisation led to an improvement in voltage and a minimisation of active power losses, while at the same 

time the investment costs for the WTG systems were favourable. At least, the GTO algorithm was a perfect 

choice that reached the optimal solutions quickly and converged after a small number of iterations, which is 

recommended when solving the problem of optimal integration of different renewable energy sources in 
practical electrical distribution systems. 
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