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Abstract. In some examinations, the changes in performance measures and the efficiency of entities
should be addressed over a span of time despite the undesirable outputs and unsatisfactory convex-
ity property. In this study, the performance of processes is analyzed over several periods of time by
presenting a multi-period model based on the free disposal hull (FDH) approach, incorporating un-
desirable outputs. Using the product of availability, performance (efficiency) and quality, the overall
equipment effectiveness (OEE) is calculated which shows the level of productivity. After estimating the
performance and OEE, an inverse multi-period FDH model is introduced to measure the input changes
for the changes made to outputs in different time periods. The proposed approaches are used in the
automotive industry to analyze the performance and changes in input measures over multiple periods
of time. The results show that the proposed technique is reasonable for assessing the multi-period
efficiency, the period and overall OEE of the systems, and the input changes related to several periods
while the convexity assumption is violated.
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1. Introduction

Data envelopment analysis (DEA) is a valuable tool for calculating the relative efficiency of
decision-making units (DMUs), including multiple inputs and outputs. After determining the
efficiency of organizations, necessary decisions are made to modify DMUs. In some cases,
however, the efficiency decision-making using is not correct, thus, other factors are used. Pro-
ductivity is one of these factors, which is obtained by multiplying several factors, including
efficiency [15]. The free disposal hull (FDH) is one of the most widely used models in DEA to
estimate the relative efficiency of DMUs; in which the convexity principle is not considered.
The incorporation of undesirable data is a significant issue in developing DEA approaches as
all available information is not preferred in systems. For example, carbon dioxide is an unde-
sirable output of factories. Overdue loans of banks are another type of undesirable outputs.
Different methods have been developed in the DEA literature to handle undesirable measures.
For instance, some researchers take undesirable outputs as desirable inputs while considering
undesirable inputs as desirable outputs. Interested readers can refer to [13, 30] for more infor-
mation on the approaches used to address undesirable factors.
The DEA studies also address the estimation of the efficiency of DMUs over a span of time,
including several periods. Park and Park [35] proposed a DEA-based approach to evaluate the
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aggregative efficiency of multi-period processes, in which the efficiency of each period can be
estimated individually. Kao and Liu [24] presented an approach based on the network DEA
model to simultaneously estimate the overall and period efficiency of DMUs. Jablonsky [16]
measured the efficiency of Crezh economic departments over four years by applying multi-period
DEA models. Razavi Hajiagha et al. [12] analyzed the performance of multi-period production
systems using a two-stage DEA model on the basis of Chebyshev inequality bounds. More-
over, some groups (Kordrostami and Jahani Sayyad Noveiri [27] and Liu [31]) evaluated the
multi-period efficiency of systems with uncertainty. Jahani Sayyad Noveiri et al. [17] mea-
sured multi-period efficiency and changes in the performance of processes in the presence of
undesirable outputs. Jahani Sayyad Noveiri and Kordrostami [18] analyzed the multi-period
sustainability performance of processes with discrete and bounded measures. Ghobadi [10]
estimated performance measures with inter-temporal dependence. Ghobadi et al. [11] also
provided inverse dynamic DEA models with fuzzy measures to assess inputs. Foladi et al. [8]
assessed some faculties and changes in inputs and outputs using inverse dynamic DEA mod-
els. Furthermore, using inverse network dynamic DEA approaches, the sustainability of supply
chains was addressed in some studies [22, 23]. Nevertheless, a limited number of studies have
estimated multi-period efficiencies and input changes while relaxing the convexity property.
Wei et al. [39] presented an inverse DEA model to assess performance measures. Lertworasirikul
et al. [29] considered the inverse DEA approach under the variable returns to scale assumption
for a resource allocation problem, contemplating the expansion of some outputs and reduction
of others. Ghiyasi and Zhu [9] presented an inverse semi-oriented DEA approach for the cases
with negative measures. Hassanzadeh et al. [14] evaluated the sustainability of countries using
their inverse DEA models, including input-oriented and output-oriented inverse semi-oriented
radial measures [21, 3]. Asadi et al. [1] proposed inverse FDH models from two perspectives:
optimistic and pessimistic. The performance measures were also addressed in some inverse DEA
studies [19], presenting non-discretionary measures.
Despite the attempts for estimating the performance and the changes of performance measures,
no study has assessed the multi-period efficiency of systems with undesirable outputs to manage
the changes of inputs in several periods of time while the convexity principle is violated.
Therefore, this study introduces a multi-period FDH model with undesirable outputs to measure
the overall and period efficiency of DMUs in the absence of the convexity assumption. Fur-
thermore, its inverse multi-period problem is rendered to estimate inputs for the modification
of outputs in multiple periods. The overall equipment effectiveness (OEE) in each period and
as a whole is also computed. To illustrate, the role of maintenance in modern manufacturing
systems has become more important for companies that take maintenance as a vital element in
their business [20]. OEE is a quantitative measure that has been increasingly considered and
accepted in production processes to observe and control the efficiency of production equipment.
Process improvement in the production environment stems from three factors: availability,
productivity, and product quality. OEE was first developed by Nakajima (1988) as a tool to
evaluate the improvement through development initiatives and as a proposed repair solution
[34]. This approach also reduces operating costs [2]. Simple DEA models are generally applied
in the topics addressing OEE to measure efficiency. In this work, however, FDH-based methods
are applied as they are more justified [20, 26, 37]. A real dataset of the automotive industry is
also used to illustrate the developed approaches.
Overall, the contribution of this research can be described in four aspects:

• Introducing a multi-period FDH model with undesirable outputs to measure the overall
and period efficiency of the DMUs,

• Computing the OEE in each period and as a whole by considering the FDH approach,

• Estimating multi-period inputs for the perturbation of outputs in multiple periods by
applying the proposed inverse multi-period FDH technique, and

• Clarifying the developed approaches using a real dataset of the automotive industry.
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The rest of this paper is organized as follows: prerequisites are described in Section 2. Section
3 is devoted to introducing a multi-period FDH model with undesirable outputs to assess the
multi-period efficiency under non-convex technology. After dealing with period and overall
OEEs, an inverse multi-period FDH approach is provided for estimating inputs. A real case
study of the automotive industry is presented in Section 4 for further clarification. Finally, the
conclusions and recommendations are presented in Section 5.

2. Preliminaries

In this section, the essential prerequisites and models, containing FDH, multi-period DEA, and
inverse DEA are reviewed.

2.1. Free disposal hull

The production possibility set (PPS) in DEA is constructed using several principles, one of
which is convexity. According to this principle, a convex combination of DMUs also belongs to
the PPS. This principle is not, however, satisfied in many real-world situations, so it is ignored.
An alternative PPS is, thus, created by relaxing this principle. Deprins et al. presented the
FDH model that does not include the convexity assumption [6]. This model was then extended
by Lovell et al. [32]. An appealing characteristic of the FDH model is that it submits only one
of the existing efficient DMUs as a reference unit for each inefficient DMU. Consequently, the
FDH reference set is more compatible with many practical applications. By considering the
observations (Xj , Yj) j = 1, 2, ..., n, the PPS of the FDH model under constant returns to scale
(CRS) is as follows [25]:

T =
{
(X,Y ) :

n∑
j=1

λjωXj ≤ X,

n∑
j=1

λjωYj ≥ Y, ω ∈ R+, λj ∈ {0, 1},
n∑

j=1

λj = 1
}

where Xj ∈ Rm
+ are inputs, Yj ∈ Rs

+ present outputs for DMUj and ω denotes a non-negative
real variable that shows a scaling factor allowing for a particular scaling of observations span-
ning the frontier [4]. Moreover, λj , (j = 1, ..., n) are intensity variables. By considering the
technology T , the input-oriented FDH model can be expressed by:

min θ (1)

s.t.

n∑
j=1

λjωxij ≤ θxio, i = 1, 2, ...,m,

n∑
j=1

λjωyrj ≥ yro, r = 1, 2, ..., s,

λj ∈ {0, 1}, j = 1, 2, ...., n,
n∑

j=1

λj = 1,

ω ≥ 0.
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Problem (1) is a mixed-integer nonlinear programming problem that can be transformed into
the following mixed-integer linear programming problem using the big-M method [36]:

min θ (2)

s.t.

n∑
j=1

Λjxij ≤ θxio, i = 1, 2, ...,m,

n∑
j=1

Λjyrj ≥ yro, r = 1, 2, ..., s,

0 ≤ Λj ≤ Mλj , j = 1, 2, ...., n,
n∑

j=1

λj = 1,

λj ∈ {0, 1}, j = 1, 2, ...., n,

where M is a sufficiently large number and λjω = Λj .

2.2. Multi-period DEA

This subsection discusses multi-period DEA models. Suppose we have n DMUs, DMUj (j =
1, 2..., n), each with m inputs xt

ij (i = 1, 2, ...,m, j = 1, 2, ..., n, t = 1, 2, ..., T ) and s outputs ytrj
(r = 1, 2, ..., s, j = 1, 2, ..., n, t = 1, 2, ..., T ). We also have information about these units in T
different periods (t = 1, 2, ..., T ). One strategy is to separately calculate the efficiency in each
period, another strategy involves considering each period an independent unit and determine
the efficiency in all periods, thus, the number of units will be nT . An alternative strategy is to
combine the inputs and outputs of different periods into one DMU and measure the efficiency
of these new DMUs. This study applies an approach presented by Jablonsky [16] which takes
DMUs with all their periods as a unit encompassing different periods as follows:

Max

∑T
t=1 θ

t
o

T
(3)

s.t.

n∑
j=1

λt
jx

t
ij ≤ xt

io, i = 1, 2, ...,m, t = 1, 2, ..., T,

n∑
j=1

λt
jy

t
rj ≥ θtoy

t
ro, r = 1, 2, ..., s, t = 1, 2, ..., T,

λt
j ≥ 0, j = 1, 2, ..., n, t = 1, 2, ..., T.

The overall efficiency is identified as the mean of the period efficiencies. The multi-period

process o is called overall efficient if and only if

∑T
t=1 θ

∗t
o

T
= 1. This means that it is efficient in

each period. The optimal value of θ∗to shows the efficiency of DMUo in period t that θ∗to ≥ 1.
If θ∗to = 1, DMUo is efficient in period t. Otherwise, it is called period inefficient.

2.3. Inverse DEA

Unlike traditional optimization problems, which calculate optimal decisions concerning goals
and constraints, inverse optimization takes decisions as inputs and sets goals and/or constraints
that optimise those decisions optimally or precisely. Inverse DEA is a branch of inverse opti-
mization in which changes are made to inputs (outputs) and appropriate outputs (inputs) are
sought for those changes.
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In this stage, the inverse DEA approach presented by Wei et al. [39] is briefly reviewed. Con-
sider the CCR (Charnes, Cooper and Rhodes) model (4) originally initiated by Charnes et al.
[5]:

min θ (4)

s.t.

n∑
j=1

λjxij ≤ θxio, i = 1, 2, ...,m,

n∑
j=1

λjyrj ≥ yro, r = 1, 2, ..., s,

λj ≥ 0, j = 1, 2, ..., n,

in which xij (i = 1, 2, ...,m, j = 1, 2, ..., n) shows the i-th input related to the j-th DMU, and
yrj (r = 1, 2, ..., S, j = 1, 2, ..., n) is the r-th output of the j-th unit. Suppose that the optimal
value of model (4) is shown by θ∗ and the values are added to Yo (βo = Yo+∆Y ). The purpose
is to estimate the new input values α that are greater than Xo so that (α, β) has the same
efficiency as θ∗. Thus, the following model can be computed:

min (α1o, α2o, ..., αmo) (5)

s.t.

n∑
j=1

λjxij ≤ θ∗αio, i = 1, 2, ...,m,

n∑
j=1

λjyrj ≥ βro, r = 1, 2, ..., s,

xio ≤ αio, i = 1, 2, ...,m,

λj ≥ 0, j = 1, 2, ...., n.

The weighted sum method can be applied to solve problem (5) [33]. An important point in
the inverse DEA model is that the efficiency of the other DMUs remains constant after adding
the new DMU. In other words, these new DMUs do not alter the efficiency frontier, and the
efficiency of these new DMUs is the same as that of the previous DMUs.
In the next section, the discussed models are extended and integrated to analyze the multi-
period performance and input changes where the convexity principle is not held.

3. Inverse multi-period FDH model

In this section, the approach presented in [16] is extended to analyze the performance of multi-
period processes in the absence of the convexity property, whereas there are undesirable outputs.
Suppose there is no connection between periods; also each period has independent inputs and
outputs. xt

ij (j = 1, 2, ..., n, i = 1, 2, ...,m) are the inputs of DMU j for the period t, ytkj
(j = 1, 2, ..., n, k = 1, 2, ...,K) are the desirable outputs of DMU j related to the period t
and ut

sj (j = 1, 2, ..., n, s = 1, 2, ..., S) show the undesirable outputs of DMU j for the period
t. Moreover, it is assumed that the efficiency of DMUs with undesirable outputs should be
addressed in T periods, t = 1, 2, ..., T . Thus, the following multi-period FDH model can be
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provided to analyze the performance of multi-period systems under nonconvexity:

Max

∑T
t=1 θ

t
o

T
(6)

s.t.

n∑
j=1

ωtλt
jx

t
ij ≤ xt

io, i = 1, 2, ...,m, t = 1, 2, ..., T,

n∑
j=1

ωtλt
jy

t
kj ≥ θtoy

t
ko, k = 1, 2, ...,K, t = 1, 2, ..., T,

n∑
j=1

ωtλt
ju

t
sj ≤ ut

so, s = 1, 2, ..., S, t = 1, 2, ..., T,

n∑
j=1

λt
j = 1, t = 1, 2, ..., T,

λt
j ∈ {0, 1},

ωt ≥ 0.

Based on [28, 7], the strong disposability property is used to incorporate undesirable outputs.
Here, ωt ≥ 0 is because the CRS has been considered and it makes every coefficient of a unit
belonging to the PPS. The CRS is contemplated as the scale size of the entity does not affect
the efficiency.
Model (6) is a nonlinear programming problem that includes integers. This model can be
converted to a mixed integer linear technique with a change in the variables. Therefore, as long
as Λt

j = ωtλt
j , model (6) can be substituted by model (7):

OE∗ = Max

∑T
t=1 θ

t
o

T
(7)

s.t.

n∑
j=1

Λt
jx

t
ij ≤ xt

io, i = 1, 2, ...,m, t = 1, 2, ..., T,

n∑
j=1

Λt
jy

t
kj ≥ θtoy

t
ko, k = 1, 2, ...,K, t = 1, 2, ..., T,

n∑
j=1

Λt
ju

t
sj ≤ ut

so, s = 1, 2, ..., S, t = 1, 2, ..., T,

n∑
j=1

λt
j = 1, t = 1, 2, ..., T,

0 ≤ Λt
j ≤ Mλt

j ,

λt
j ∈ {0, 1},

Definition 1. The unit under consideration, DMUo, is called overall FDH-efficient if and only if
OE∗ = 1. In model (7), that means it is FDH efficient in each period. Also, it is FDH-efficient
in period t if and only if the optimal value θ∗to is equal to one. Otherwise, it is FDH-inefficient
in period t.
The overall OEE coefficient is then obtained using the following equation:

OEEo =

T∑
t=1

1

θto
×Qt

o ×Avato, (8)
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in which
1

θto
is the efficiency of DMUo in period t, Qt

o denotes the quality of DMUo in period

t and Avato shows the availability of DMUo in period t. Also, the period OEE coefficient can
be estimated using the following expression:

OEEt
o =

1

θto
×Qt

o ×Avato, (9)

In this stage, an inverse multi-period FDH model is proposed to estimate inputs of multiple
periods for the changes in outputs related to several periods when the overall and period ef-
ficiency values achieved using model (7) are preserved. Assume βt

ko are the permuted data of
ytko (βt

ko = ytko + δtko, and δtko ≥ 0) and αt
io are input projections for the period t. In this way,

the following multi-objective problem is proposed:

Min (α1
1o, α

1
2o, ..., α

1
mo, ..., α

T
1o, α

T
2o, ..., α

T
mo) (10)

s.t.

n∑
j=1

Λt
jx

t
ij ≤ αt

io, i = 1, 2, ...,m, t = 1, 2, ..., T,

n∑
j=1

Λt
jy

t
kj ≥ θ∗to βt

ko, k = 1, 2, ...,K, t = 1, 2, ..., T,

n∑
j=1

Λt
ju

t
sj ≤ ut

so, s = 1, 2, ..., S, t = 1, 2, ..., T,

n∑
j=1

λt
j = 1, t = 1, 2, ..., T,

λt
j ∈ {0, 1},

αt
io ≥ xt

io,

0 ≤ Λt
j ≤ Mλt

j ,

θ∗to can be obtained by computing model (7). The weighted sum method was employed to solve
the above multi-objective programming problem. For further illustration, by solving model
(10), the minimum multi-period inputs no less than the current levels are found for the changes
of multi-period outputs where the multi-period efficiency levels are preserved.
In the following section, the proposed models are demonstrated using a real application in the
automotive industry.

4. A case study of the automotive industry

Regarding its strong ties with other enterprises, the automotive industry has a critical impor-
tance for nations. Moreover, the automotive industry of Iran is one of the most active industries.
Consequently, the efficacy analysis of this sector is significant for policy makers and managers
of to make appropriate decisions. Therefore, a case study of Iran’s automotive industry is
provided in this section, and the suggested models in this research are applied to address the
performance and changes of multi-period inputs. The dataset is related to a pump company
with a strategic position in the parts manufacturing industry. Actually, a pump company plays
a crucial role in the parts manufacturing industry, especially in the automotive sector. Pump
companies are responsible for designing, manufacturing, and supplying various types of pumps.
The company, which includes 33 machines, has set its main mission to produce and supply
various types of automotive engine parts to supply the domestic market and automotive parts.
Inputs, desirable outputs, and undesirable outputs are taken as follows:
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Inputs
Total stop time (x1): Total stop time refers to the time that the manufacturing process was
intended to be running but was not due to unplanned (e.g. breakdowns) or planned (e.g.
changeovers) stops.
Total maintenance time (x2): Total maintenance time is defined as the time devoted to the
maintenance of machines or equipment. It includes all maintenance activities, such as inspec-
tions, repairs, replacements, and preventive measures that are performed throughout a specific
period.
Average time between failures (x3): It describes the expected time between failures and stop-
pages.
Average time between repairs and recovery (x4): The average time spent to repair a system or
piece of equipment and restore it to full functionality after a breakdown.
Desirable outputs
Total time available per month (y1): The time that a machine is available for production or
operation within a given month.
Operating time (y2): Operating time is defined as the total time that the equipment has been
operating since its first commissioning.
Product quality (y3): Quality considers defects (including parts that need rework). A quality
score of 100% implies no defects (only good parts are being produced).
Total number of production parts (y4): All products are produced.
Planned production quantity (y5):Planned production quantity is the number scheduled to be
produced.
Machine life (y6): The number of years a device can operate.
Availability (y7): Availability refers to the percentage of time that the machine is capable of
operating, without being affected by any downtime or unplanned interruptions. An availability
score of 100% means that the process is always running during planned production time.
Percentage of healthy parts (y8): Percentage of healthy parts is the ratio of healthy parts to
total parts.
Undesirable outputs
Number of machine breakdowns (u1): The total number of breakdowns in machines.
Total number of defective parts (u2): The total number of defective parts produced.
The dataset is related to 33 machines as DMUs with four inputs, eight desirable outputs,
and two undesirable outputs that are examined in 6 months (periods) of 2021. Multi-period
efficiency is achieved when a DMU can produce the desired level of outputs considering the
minimum amount of inputs and undesirable outputs. By incorporating these inputs into the
DEA analysis, the performance of machines is evaluated on the basis of their ability to min-
imize stop time and maintenance time, as well as their track record in terms of average time
between failures and repairs. Desirable outputs refer to the desired or intended results or pro-
duced goods by a DMU. The listed desirable outputs are relevant in evaluating the performance
of machines in the automotive industry, indicating productivity and use. However, DEA also
considers the concept of undesirable outputs, which are the outputs that a firm wants to min-
imize. Including these undesirable outputs in the evaluation can help identify machines that
produce fewer breakdowns and defective parts, which is desirable in the automotive industry.
The DEA is aimed at evaluating the relative efficiency of different DMUs by comparing their
inputs to outputs. The ideal scenario is to achieve a high level of efficiency, where DMUs utilize
their inputs effectively to maximize desirable outputs while minimizing undesirable ones. By
identifying inefficient DMUs, DEA provides insights to improve resource allocation, decision-
making processes, and overall performance within an organization. The related statistical data
can be found in Table 1. For a better understanding of the data and their relationships, the
correlations between the inputs and outputs are listed in Table 2.
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Period Statistical Index Inputs Desirable outputs Undesirable outputs
x1 x2 x3 x4 y1 y2 y3 y4 y5 y6 y7 y8 u1 u2

1 Mean 277.30 268.79 5586.64 97.79 14970.91 9190.61 99.48 3805.27 3803.03 10.00 61.09 99.47 279.12 242.42
Var 25551.22 89705.48 6007476.68 3504.61 2757627.27 3599788.68 4.01 4694015.45 4733896.78 0 59.48 4.00 45765.05 45010.56
Min 24.00 1.00 1284.00 17.00 12960.00 6290.00 88.70 550.00 500.00 10.00 48.53 88.70 1.00 1.00
Max 900.00 1234.00 10684.00 230.00 19440.00 14560.00 100.00 9175.00 9200.00 10.00 78.70 100.00 615.00 586.00

2 Mean 1548.27 1690.82 17557.97 270.42 29847.27 20478.06 99.55 8868.06 8766.67 10.00 68.47 98.35 118.03 87.67
Var 1091463.89 933861.40 138222082.47 19204.13 36582545.45 23547861.93 1.01 23234766.93 24249010.42 0 54.01 51.66 13047.53 8377.17
Min 153.00 176.00 41.00 49.00 25920.00 12960.00 95.48 969.00 950.00 10.00 50.00 58.70 1.00 1.00
Max 4147.00 3430.00 35816.00 558.00 38880.00 31650.00 100.00 21736.00 21700.00 10.00 81.40 100.00 298.00 272.00

3 Mean 1740.00 1366.70 11233.67 218.21 21403.64 14218.85 99.13 8160.03 8154.55 10.00 252.31 99.13 334.48 259.73
Var 5726609.00 2940063.47 75501144.29 14096.05 9145636.36 7327936.88 8.40 17455590.16 17413650.57 0 1140068.19 8.44 102032.20 69826.14
Min 17.00 53.00 70.00 26.00 19440.00 11520.00 83.54 1160.00 1200.00 10.00 57.27 83.50 2.00 1.00
Max 8833.00 6632.00 32218.00 497.00 25920.00 19452.00 100.00 18142.00 18100.00 10.00 6200.00 100.00 916.00 789.00

4 Mean 878.12 815.36 13642.82 110.06 25920.00 18739.09 99.09 9399.52 9237.88 10.00 72.30 99.08 271.58 301.15
Var 914513.67 1004636.86 76976027.78 7039.68 0 1291038.21 3.77 27249982.38 22790160.98 0 19.22 3.78 61561.06 71930.07
Min 26.00 3.00 803.00 21.00 25920.00 15920.00 92.61 2121.00 2100.00 10.00 61.42 92.60 2.00 1.00
Max 4860.00 5503.00 28567.00 502.00 25920.00 20440.00 100.00 26086.00 21700.00 10.00 78.86 100.00 740.00 694.00

5 Mean 715.36 720.48 2297.39 789.67 21403.64 14452.42 98.74 7325.30 7209.09 10.00 67.30 98.74 345.61 420.33
Var 327607.93 321847.76 5354161.37 4202628.85 9145636.36 7502589.00 10.41 16219413.59 14188977.27 0 40.72 10.39 148419.93 155308.42
Min 4.00 27.00 324.00 33.00 19440.00 9040.00 84.56 1201.00 1200.00 10.00 46.50 84.60 2.00 1.00
Max 1918.00 1908.00 9659.00 9972.00 25920.00 19320.00 100.00 17938.00 18000.00 10.00 79.84 100.00 1159.00 1130.00

6 Mean 346.70 429.91 11088.55 187.36 21403.64 15057.15 99.54 6714.76 6710.61 10.00 70.30 99.54 192.85 138.27
Var 59752.53 87781.21 35076425.57 13443.11 9145636.36 6215331.51 1.45 11683751.13 11651212.12 0 30.82 1.47 18019.82 18186.77
Min 41.00 24.00 136.00 1.00 19440.00 12000.00 93.94 1257.00 1250.00 10.00 61.73 93.90 10.00 1.00
Max 869.00 1123.00 22598.00 414.00 25920.00 20130.00 100.00 15563.00 15500.00 10.00 80.04 100.00 387.00 387.00

Table 1: Descriptive statistics of data

X1 X2 X3 X4 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 U1 U2

X1 1.0000 0.7917 -0.0984 0.2315 0.1674 0.1039 -0.1302 0.1972 0.1853 0.0353 -0.2110 -0.1085 0.1142 -0.0326
X2 0.7917 1.0000 -0.0064 0.4364 0.0183 -0.0442 -0.0759 0.1389 0.1258 -0.0357 -0.3008 -0.0572 0.0320 -0.0355
X3 -0.0984 -0.0064 1.0000 0.2523 -0.2211 -0.1897 0.2687 -0.2624 -0.2548 -0.0848 -0.0681 0.2536 -0.1146 0.1662
X4 0.2315 0.4364 0.2523 1.0000 -0.2550 -0.3475 0.1969 0.1102 0.1014 -0.1419 -0.3670 0.1731 0.0340 0.1154
Y1 0.1674 0.0183 -0.2211 -0.2550 1.0000 0.7280 -0.3892 0.0149 0.0142 0.0436 0.1160 -0.3615 0.0108 -0.2321
Y1 0.1039 -0.0442 -0.1897 -0.3475 0.7280 1.0000 -0.3693 -0.0263 -0.0104 0.0484 0.5614 -0.3582 0.0269 -0.3780
Y1 -0.1302 -0.0759 0.2687 0.1969 -0.3892 -0.3693 1.0000 0.0752 0.0766 -0.0287 -0.0915 0.8500 -0.3116 0.3510
Y2 0.1972 0.1389 -0.2624 0.1102 0.0149 -0.0263 0.0752 1.0000 0.9947 -0.0437 -0.0850 0.0861 -0.0029 0.0002
Y3 0.1853 0.1258 -0.2548 0.1014 0.0142 -0.0104 0.0766 0.9947 1.0000 -0.0448 -0.0570 0.1045 -0.0105 -0.0036
Y4 0.0353 -0.0357 -0.0848 -0.1419 0.0436 0.0484 -0.0287 -0.0437 -0.0448 1.0000 0.0012 -0.0311 0.0114 -0.0955
Y5 -0.2110 -0.3008 -0.0681 -0.3670 0.1160 0.5614 -0.0915 -0.0850 -0.0570 0.0012 1.0000 -0.0863 -0.0057 -0.1336
Y6 -0.1085 -0.0572 0.2536 0.1731 -0.3615 -0.3582 0.8500 0.0861 0.1045 -0.0311 -0.0863 1.0000 -0.2612 0.3428
U1 0.1142 0.0320 -0.1146 0.0340 0.0108 0.0269 -0.3116 -0.0029 -0.0105 0.0114 -0.0057 -0.2612 1.0000 0.0317
U2 -0.0326 -0.0355 0.1662 0.1154 -0.2321 -0.3780 0.3510 0.0002 -0.0036 -0.0955 -0.1336 0.3428 0.0317 1.0000

Table 2: Correlation between data.
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Notice that non-convex DEA models, including FDH, offer a more flexible and accurate
approach for efficiency analysis, accommodating the complexities and relationships in real-world
production systems. As convex combinations of observations may not exist in the technology,
FDH-based approaches have been applied. Accordingly, model (7) is used to measure the
relative efficiency of multi-period systems. The outcomes are given in Table 3. The efficiency
of each period is expressed separately, and the overall efficiency is shown in column 8. As
the model is output-oriented, the inverse values of optimal objective are expressed as overall
and period efficiencies. As seen, only DMU 18 is inefficient in period 1. For periods 2-6,
approximately 24%, 18%, 9%, 12%, and 27% of DMUs are inefficient. Furthermore, 15 DMUs
are totally efficient with the score of one. DMU 29 with an efficiency score of 0.53 is the most
inefficient unit, generally. Furthermore, it is determined to be inefficient in periods 2, 3, 4, and
6. Policymakers of inefficient units should revisit their performance and make more attempts
to improve efficiency by taking appropriate decisions.
Table 3 also presents the multi-period efficiency of the CCR model for comparison with the
efficiency of the multi-period FDH model. The Malmquist index (MI) was also determined for
different periods under examination, and their average is presented in the last column of Table 3.
Despite the widespread use of the Malmquist DEA index [38], this approach suffers from some
drawbacks. Specifically, an aggregated efficiency value of multiple periods is not considered in
this approach [35]. As can be seen, the efficiency scores achieved from the proposed approach
are different from the multi-period CCR and the Malmquist DEA index in some DMUs.
For a more accurate assessment of DMUs, overall and period OEEs are measured using the
statements (8) and (9) as presented in Table 4. The product quality of the machines in different
periods and the availability time are also provided in Appendix A.
The obtained OEE coefficients are shown in Table 4.

DMU Efficiency
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Total Multi-period CCR MI average

1 1 1 1 1 1 1 1 1 1.23
2 1 0.55 1 1 1 1 0.88 0.80 0.97
3 1 1 1 0.68 1 1 0.93 0.93 0.91
4 1 0.86 1 1 1 0.43 0.80 0.75 0.95
5 1 1 1 1 1 1 1 1 0.94
6 1 1 1 1 1 1 1 1 1.19
7 1 1 1 1 1 1 1 0.93 1.01
8 1 1 1 1 1 1 1 1 1.20
9 1 1 0.38 1 1 1 0.79 0.79 0.82
10 1 1 0.30 1 1 1 0.72 0.69 0.73
11 1 1 1 1 1 1 1 1 1.01
12 1 1 1 1 1 1 1 0.95 0.96
13 1 1 1 1 1 1 1 0.89 1.09
14 1 1 1 1 1 1 1 1 1.13
15 1 0.98 1 1 1 1 1 1 1.15
16 1 1 0.37 1 1 1 0.78 0.63 0.81
17 1 1 1 1 1 1 1 1 1.30
18 0.95 1 1 0.86 1 0.85 0.94 0.94 0.89
19 1 0.72 1 1 1 1 0.94 0.90 0.98
20 1 0.60 0.67 1 0.77 1 0.80 0.78 0.82
21 1 1 1 1 1 1 1 0.98 1.03
22 1 1 1 1 1 0.72 0.94 0.94 1.08
23 1 1 1 1 1 0.96 0.99 0.95 1.04
24 1 1 1 1 1 1 1 1 1.09
25 1 1 1 1 1 1 1 1 1.12
26 1 1 1 1 1 0.66 0.92 0.78 0.92
27 1 1 1 1 0.86 1 0.97 0.92 0.91
28 1 1 0.47 1 0.90 0.51 0.73 0.63 0.78
29 1 0.66 0.49 0.35 1 0.35 0.53 0.42 0.53
30 1 1 1 1 0.58 1 0.89 0.85 0.81
31 1 0.71 1 1 1 0.91 0.92 0.92 1.02
32 1 0.98 1 1 1 0.65 0.92 0.80 0.91
33 1 1 1 1 1 1 1 1 1.30

Table 3: Efficiency scores.
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DMU OEE
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Total

1 5760.00 7301.83 6173.00 7315.00 6420.00 7387.00 40356.83
2 5493.00 2747.25 6420.00 7315.00 6411.65 7469.00 35855.91
3 7360.00 7285.86 7202.00 4178.23 7984.00 6461.00 40471.09
4 5867.00 5507.76 8092.21 7639.00 6298.61 3059.83 36464.41
5 7485.51 6637.03 7285.10 6814.35 6294.29 7199.99 41716.27
6 6452.04 7206.19 7197.54 7072.77 5908.21 6565.47 40402.22
7 7139.33 6270.69 6215.00 7080.30 6602.81 6630.34 39938.47
8 5937.42 6624.72 7351.53 7075.45 7148.68 7308.97 41446.76
9 5280.00 7315.00 3153.26 6743.33 6173.00 6420.00 35084.58
10 6667.00 7701.00 2501.52 7701.00 6420.00 7418.00 38408.52
11 7865.28 6508.28 5727.00 6634.86 5975.22 6945.08 39655.71
12 5787.00 6350.37 5627.25 6985.44 6739.00 7482.84 38971.90
13 4840.38 6734.23 6359.63 7546.13 6889.58 6743.63 39113.59
14 5707.43 8096.86 6998.87 6495.67 7339.95 7733.38 42372.16
15 5493.00 6990.20 5918.30 7060.00 6402.67 6173.00 38037.16
16 7253.00 6504.84 2647.79 7884.42 4648.14 6173.00 35111.19
17 6636.00 7073.00 5806.00 6620.00 6890.00 6427.00 39452.00
18 5231.43 6929.00 6155.72 5481.03 6173.00 6383.76 36353.94
19 5760.00 4263.31 6170.53 7099.00 6924.40 7490.00 37707.24
20 5120.00 3012.05 3950.67 7701.00 4938.46 6173.00 30895.18
21 6343.60 7182.13 7389.91 7616.14 7235.62 6751.10 42518.50
22 5120.00 7511.24 6173.00 6233.52 6934.00 4473.19 36444.95
23 6280.00 7315.00 6156.95 7315.00 7508.50 7181.73 41757.18
24 5120.00 7309.88 6173.00 7515.00 6934.00 6955.00 40006.88
25 5567.00 7701.00 6164.98 7506.73 6420.00 7984.00 41343.71
26 5763.00 6494.40 5926.00 7562.00 7536.11 4687.42 37968.93
27 6133.00 7315.00 6168.06 7785.00 5410.34 7572.00 40383.41
28 5520.00 6998.29 3307.48 7840.00 6413.51 3613.71 33692.99
29 5867.00 4026.49 3264.04 2559.51 7160.00 2386.11 25263.15
30 6480.00 7711.03 6185.74 7125.01 3732.99 7510.00 38744.76
31 6347.00 4071.63 6173.00 7315.00 6955.00 5836.36 36697.99
32 6347.00 6353.92 6173.00 6739.28 6955.00 4034.64 36602.84
33 6133.00 7083.00 6165.59 7330.00 5662.53 8004.00 40378.12

Table 4: OEE coefficients.

According to Table 4, generally, DMU 29 has the worst situation while DMU 21 has the best
situation. Interestingly, the quality of DMU 21 is worse than DMU 29 in all periods. However,
because OEE is made of several factors, it makes DMU 21 better than DMU 29. Another
attractive issue is the situation of DMU 29, which has been determined as the most overall
inefficient unit based on model (7) and has the least overall productivity level utilizing the
expression (8). Moreover, considering the period OEE level of DMUs as the productivity
measure in periods, DMU 11, DMU 14, DMU 4, DMU 16, DMU 3, and DMU 33 have the best
conditions in comparison with other DMUs in periods 1-6, respectively. DMUs 13, 2, 10, 29,
30, and 29 also had the worst situations in these periods. Thus, more attention should be paid
by the managers of these DMUs.
After efficacy assessment using the multi-period FDH model and examination of the OEEs,
model (10) is computed to estimate inputs in several periods. To solve the inverse multi-period
FDH in model (10), the weighted sum method is used assuming equal weights. We add 10
percent to the desirable output values and then measure the input changes employing model
(10). As can be seen, there are four inputs in each period, resulting in 24 new inputs. Input
changes related to the first period are given in Table 5, and those of other periods are presented
in Appendix B. Accordingly, the multi-period inputs increased or remained unchanged for this
increase of outputs. Considering DMU 28, 10% increase of desirable outputs led to the increment
of only the second input i.e. total maintenance time with change of 29.87 in period 1. Also,
in periods 2 and 5, all inputs of DMU 28 expanded, while no input change can be seen in the
period 3. The fourth (average time between repairs) and the first (total stop time) inputs of
DMU 28 increased in periods 4 and 6, respectively. Similarly, the multi-period input changes
of other DMUs can be investigated.
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DMU α1
1o − x1

1o α1
2o − x1

2o α1
3o − x1

3o α1
4o − x1

4o

1 221.54 43.73 0 48.35
2 27 1.90 654.90 10
3 30.50 18.90 427.80 2
4 2.97 99.87 0 0
5 55.70 77.60 291.20 11
6 90 90.70 128.40 8.20
7 48.40 18.90 232.30 8
8 23.10 36 390.40 6.80
9 49.10 23.90 480.40 1.70
10 14.43 112.98 0 6.90
11 3 14.20 1019.90 2.90
12 11.90 34.50 335.50 11.70
13 23.10 123.40 514 23
14 26.50 17.50 150.40 5.20
15 0 23.87 0 0
16 44.80 92.90 137.40 20.70
17 144.95 79.27 58.37 10.35
18 0 25 0 197
19 0 93.82 0 4.80
20 254 529 684 217
21 15 11.30 419.90 7.40
22 0 122.87 0 1.21
23 0 142.87 0 9.21
24 229.54 87.73 0 0
25 0 128.87 0 5.21
26 35.38 0 0 44.20
27 18 39.70 920 17.90
28 0 29.87 0 0
29 0 55.87 0 13.21
30 327.54 0 0 61.35
31 81.03 28.70 0 55.41
32 0 62.18 0 7
33 159.62 55.26 0 0

Table 5: Input changes related to period 1.

5. Conclusion

A multi-period FDH model with undesirable outputs was presented in this study to analyze the
multi-period efficiency of processes while violating the convexity assumption. Along with the
product of availability, performance (efficiency), and quality for different periods, the overall
and period OEE coefficients were also appraised. Then, the inverse multi-period FDH model
was proposed to assess multi-period inputs for the modifications of desirable outputs over sev-
eral periods of time. The introduced approaches were utilized in a case study of the automotive
industry. The results showed that the applicability of the models for analyzing the multi-period
efficiency of systems and the multi-period input changes while the convexity assumption is not
held. The methods were presented in such a way that there is no connection between periods.
The extension of the proposed models dealing with interconnections of periods and in the pres-
ence of imprecise measures could be an interesting topic for further analyses. Furthermore,
inverse dynamic network FDH models can be developed to assess inputs (outputs) in dynamic
network processes while the convexity assumption is violated. It should be mentioned that this
is a primary study to estimate the input measures of multiple periods with an inverse multi-
period FDH model with undesirable outputs. Further investigations are recommended to more
discriminate the performance of periods.

6. Appendix

Appendix materials are available at: 10.6084/m9.figshare.24850746.

https://www.doi.org/10.6084/m9.figshare.24850746
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