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Abstract. A design is called quasi-symmetric if it has only two block

intersection numbers. Using a method based on orbit matrices, we classify
quasi-symmetric 2-(28, 12, 11) designs with intersection numbers 4, 6, and

an automorphism of order 5. There are exactly 31 696 such designs up to

isomorphism.

1. Introduction

A 2-(v, k, λ) design is a set of v points together with a collection of
k-element subsets called blocks such that every pair of points is contained
in exactly λ blocks. The number of blocks through a single point r and the
total number of blocks b can be computed from v, k, and λ. A design is
quasi-symmetric if any two blocks intersect in either x or y points, for non-
negative integers x < y. The numbers x and y are called intersection numbers.
We refer to [29, 30] for definitions and results about quasi-symmetric designs
(QSDs), and to [1] for designs in general.

The first 2-(28, 12, 11) QSDs with x = 4 and y = 6 were constructed
as derived designs of symplectic symmetric 2-(64, 28, 12) designs [20]. The
symplectic group Sp(6, 2) of order 1 451 520 acts on these designs and they
have the symmetric difference property (SDP). This means that the symmetric
difference of any three blocks is either a block or the complement of a block.
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The parameters of symmetric SDP designs with k < v/2 are of the form

v = 22m, k = 2m−1(2m − 1), λ = 2m−1(2m−1 − 1).

A nonsymmetric SDP design [18] is a 2-design with v < b such that the
symmetric difference of any two blocks is either a block or the complement
of a block. Any such design is quasi-symmetric. The derived and residual
designs of symmetric SDP designs have this property [19]. Furthermore, the
derived and residual designs of nonisomorphic symmetric SDP designs are also
nonisomorphic [18, Theorem 2.5]. There are four symmetric 2-(64, 28, 12)
SDP desings and each of them yields one derived 2-(28, 12, 11) design up
to isomorphism. Full automorphism groups of these quasi-symmetric SDP
designs are of orders 1 451 520, 10 752, 1 920, and 672 [28].

In [25], the first examples of 2-(28, 12, 11) QSDs without the SDP property
were constructed. Then in [4], 2-(28, 12, 11) QSDs with an automorphism of
order 7 without fixed points and blocks were classified. There are exactly
246 such designs. The enumeration was performed with the help of orbit
matrices. In [23], the number of known 2-(28, 12, 11) QSDs was increased
to 58 891. Some of these designs were constructed using the Kramer-Mesner
method [21] adapted to QSDs. A direct construction based on Hadamard
matrices and mutually orthogonal Latin squares from [2,26] was used to find
more examples, some with trivial full automorphism groups. The distribution
of the known designs by order of full automorphism group is given in Table 1.

Table 1. Distribution of the known 2-(28, 12, 11) QSDs by
order of full automorphism group.

|Aut| # |Aut| # |Aut| # |Aut| # |Aut| #

1451520 1 512 14 144 12 42 3 12 12908
10752 1 384 102 128 4745 40 2 10 28
4608 3 360 1 120 17 36 33 7 47
1920 4 320 4 96 26039 32 1299 3 172
1536 13 288 10 84 15 28 12 2 62
1344 4 256 258 80 372 24 360 1 9554
768 18 224 8 72 11 21 95
672 8 192 652 64 110 20 26
640 1 168 2 60 8 18 7
576 12 160 564 48 1224 14 50

Table 1 shows that no 2-(28, 12, 11) QSDs with full automorphism group
of order 5 are known. The purpose of this paper is to perform a complete
classification of 2-(28, 12, 11) QSDs with automorphisms of order 5. This is
the next open case, designs with automorphisms of order 7 and larger prime
orders having already been classified.
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The layout of the paper is as follows. In Section 2 we describe the con-
struction method based on orbit matrices. In Section 3 we study the number
of points and blocks fixed by an automorphism of order 5. Results of the
classification and details of the computation are described in Section 4.

2. Orbit matrices and indexing

Let V1, . . . ,Vm be the point orbits and B1, . . . ,Bn the block orbits of a
2-(v, k, λ) design with respect to an automorphism group G. Denote the orbit
sizes by νi = |Vi| and βi = |Bi|. Then,

∑m
i=1 νi = v and

∑n
j=1 βj = b. Let

aij = |{P ∈ Vi | P ∈ B}|, for some B ∈ Bj . This number does not depend on
the choice of B because the orbits form a tactical decomposition. The matrix
A = [aij ] has the following properties:

1.
m∑
i=1

aij = k,

2.
n∑
j=1

βj

νi
aij = r,

3.
n∑
j=1

βj

νi′
aijai′j =

{
λνi, for i ̸= i′,
λ(νi − 1) + r, for i = i′.

A matrix with these properties is called an orbit matrix for 2-(v, k, λ) and G.
Furthermore, for a QSD with intersection numbers x and y, the matrix A has
the additional properties

4.
m∑
i=1

βj

νi
aijaij′ =

{
sx+ (βj − s)y, for j ̸= j′, 0 ≤ s ≤ βj ,
sx+ (βj − 1− s)y + k, for j = j′, 0 ≤ s ≤ βj .

An orbit matrix satisfying these equations is called good. The construction of
designs based on orbit matrices proceeds in two steps.

1. Find all (good) orbit matrices A up to rearrangements of rows and
columns.

2. Refine each matrix A in all possible ways to an incidence matrix of a
design. Each refinement step replaces an entry aij with a 0-1 matrix
Nij of size νi×βj invariant under the action of the group G, such that
the column sum of Nij is aij . This is called indexing.

In the early 1980s Z. Janko and T.V. Tran used orbit matrices in their
investigations of hypothetical projective planes of order 12 and other non
prime power orders; see e.g. [11–13]. In the mid 1980s they proved existence of
a number of symmetric designs by this method [14–17]. Janko continued using
orbit matrices throughout the 1990s in constructions of symmetric designs [5–
8] and some other designs [9,10]. The method became affectionately known as
“Janko’s method” among his Croatian collaborators, although orbit matrices
had already been used by Dembowski [3]. The method was applied to quasi-
symmetric designs in [4, 24] and will be our main tool in Section 4. We first
study fixed elements of an automorphism of order 5.
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3. The number of fixed points and blocks

In the sequel, let α be an automorphism of order 5 of a 2-(28, 12, 11) QSD
with intersection numbers x = 4 and y = 6. We prove a succession of lemmas
to determine the number of fixed points and blocks of α.

Lemma 3.1. If a block contains five fixed points, then it is fixed.

Proof. LetB be a non-fixed block containing five fixed points F1, . . . , F5.
There can be at most one other fixed point on B, because otherwise it would
intersect its images Bα in more than six points. If there is a sixth fixed point
on B, then the remaining points on B belong to different orbits of α, for the
same reason. Thus, there would be at least six orbits of length 5, which is
not possible because there are only 28 points. A similar argument shows that
exactly five fixed points on B are also not possible. The block B could contain
at most two points from two orbits of length 5 and one point from each of
three other orbits. Then there would be at least five orbits of length 5, which
together with F1, . . . , F5 is more than 28.

Lemma 3.2. No block is fixed pointwise.

Proof. Let B be a block with all of its points fixed. A divisibility argu-
ment shows that there must be at least one fixed point F not belonging to B.
The r = 27 blocks through F intersect B in at least x = 4 points and are
therefore fixed by Lemma 3.1. Again, this leads to a contradiction with there
being only 28 points.

Lemma 3.3. The intersection of two fixed blocks contains exactly one fixed
point.

Proof. Let B1 and B2 be two fixed blocks with fixed points F1 and F2 in
their intersection. The set of λ = 11 blocks through F1 and F2 is mapped onto
itself by α, hence there are at least four other fixed blocks B3, . . . , B6 among
them. Each of these fixed blocks contains an orbit of length 5 by Lemma 3.2,
contradicting v = 28.

Lemma 3.4. For any two fixed points there is exactly one fixed block con-
taining them.

Proof. This follows directly from the previous lemma.

Theorem 3.5. The automorphism α has three fixed points and three fixed
blocks.

Proof. By the lemmas, the set of all fixed points and fixed blocks of α
has the following properties. There are exactly two points on each block, any
two blocks intersect in one point, and there is one block through any pair of
points. This can only be a triangle.
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4. Classification of quasi-symmetric 2-(28, 12, 11) designs

By Theorem 3.5, the orbit size distribution of the automorphism α is
ν = (1, 1, 1, 5, 5, 5, 5, 5) and β = (1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5). The
orbit matrix can be put in one of the following two forms by rearranging rows
and columns:

A1 =




1 1 0 1 1 1 1 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 1 1 1 0 0 0 0
0 1 1
5 5 5
5 0 0
0 5 0 ?
0 0 5
0 0 0




,

A2 =




1 1 0 1 1 1 1 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 1 1 1 0 0 0 0
0 1 1
5 5 0
5 0 5
0 5 5 ?
0 0 0
0 0 0




.

We did a complete classification of such matrices by an orderly Read-
Faradžev type algorithm described in [22], using a computer. The number
of orbit matrices of type A1 is 62 370, but only 198 of these matrices are
good, i.e. have property 4. from Section 2. The number of orbit matrices of
type A2 is 55 573, but only 241 of them are good. Since we are looking for
quasi-symmetric designs, we can discard matrices that are not good. This
leads to a significant reduction of computation time in the second step of the
classification, indexing.

For every good orbit matrix, we try to refine it in all possible ways to
an incidence matrix of a 2-(28, 12, 11) QSD. The replacement of entries aij
by 0-1 matices Nij is done column-by-column, using a backtracking program
checking the dot products along the way. Dot products of the columns cor-
respond to block intersection sizes and must be x = 4 or y = 6. At the end
we check if the constructed incidence matrices correspond to 2-designs and
eliminate isomorphic copies using nauty [27]. This way of indexing proved
more efficient than the usual row-by-row approach used e.g. in [22]. A similar
conclusion was reached in [24] for a different computational method; instead
of solving the Kramer-Mesner system, we found it was more efficient to search
for cliques in the compatibility graph.
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In total we found 3 449 nonisomorphic QSDs from orbit matrices of type
A1 and 28 247 nonisomorphic QSDs from orbit matrices of type A2. Using
nauty [27], we checked that designs coming from orbit matrices of different
type are not isomorphic. This proves our main result.

Theorem 4.1. There are exactly 31 696 quasi-symmetric 2-(28, 12, 11)
designs with intersection numbers x = 4, y = 6, and an automorphism of
order 5.

The distribution of the constructed designs by order of full automorphism
group is given in Table 2. There are exactly 878 such designs with full auto-
morphism group of order 5.

Table 2. The distribution of 2-(28, 12, 11) QSDs with an au-
tomorphism of order 5 by order of full automorphism group.

|Aut| # |Aut| # |Aut| # |Aut| #

1451520 1 320 4 60 8 5 878
1920 4 160 564 40 2
640 1 120 17 20 26
360 1 80 372 10 29818

By summarizing the previously known designs from [4, 23, 25] and the
designs from Theorem 4.1, we can give a new lower bound on the number of
quasi-symmetric 2-(28, 12, 11) designs.

Theorem 4.2. There are at least 89 559 nonisomorphic quasi-symmetric
2-(28, 12, 11) designs with intersection numbers x = 4 and y = 6.
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