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Abstract. The smallest open case for classifying Steiner triple sys-

tems is order 21. A Steiner triple system of order 21, an STS(21), can have
subsystems of orders 7 and 9, and it is known that there are 12,661,527,336

isomorphism classes of STS(21)s with sub-STS(9)s. Here, the classification

of STS(21)s with subsystems is completed by settling the case of STS(21)s
with sub-STS(7)s. There are 116,635,963,205,551 isomorphism classes of

such systems. An estimation of the number of isomorphism classes of

STS(21)s is given.

1. Introduction

A Steiner triple system (STS) is a pair (V,B), where V is a set of points
and B is a set of 3-subsets of points, called blocks, such that every 2-subset of
points occurs in exactly one block. The size of the point set is the order of
the STS, and an STS of order v is denoted by STS(v). It is well known that
an STS(v) exists iff

(1.1) v ≡ 1 or 3 (mod 6).

For more information about Steiner triple systems, see [4, 5].
An STS(v) is said to be isomorphic to another STS(v) if there exists a

bijection between the point sets that maps blocks onto blocks; such a bijection
is called an isomorphism. An isomorphism of a Steiner triple system onto itself
is an automorphism of the STS. The automorphisms of an STS form a group
under composition, the automorphism group of the Steiner triple system.
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Classification of combinatorial designs is about finding a transversal of
the isomorphism classes [11]. The Steiner triple systems have been classi-
fied up to order 19, and the numbers of isomorphism classes are 1, 1, 1, 2,
80, and 11,084,874,829 for orders 3, 7, 9, 13, 15, and 19, respectively. A
classification of the STS(19)s was published in 2004 with a remark that the
algorithm used would require hundreds of thousands of CPU years to classify
the STS(21)s [9]. As this seems to be currently out of reach, it is reasonable
to focus on subclasses of STS(21)s. Indeed, STS(21)s of various types have
been considered in this context, including STS(21)s with a nontrivial auto-
morphism group [8] (with earlier work in [3, 7, 18–20, 28, 29], also considering
other properties), anti-Pasch STS(21)s [16], and resolutions of STS(21)s—that
is, Kirkman triple systems—with subsystems [15].

A necessary condition for an STS(v) to have a nontrivial (w > 3) and
proper (w < v) subsystem of order w, i.e., a sub-STS(w), is that v ≥ 2w + 1;
see [5, Lemma 6.1]. Classification of Steiner triple systems with sub-STS(7)s
has been carried out for orders 15 and 19—see [21, Table 1.29] and [13],
respectively—and for those with sub-STS(9)s for order 19—see [27].

The only possible nontrivial proper subsystems of STS(21)s are STS(7)s
and STS(9)s. The STS(21)s with sub-STS(9)s are classified in [12]; there are
12,661,527,336 isomorphism classes of such designs. For STS(21)s with sub-
STS(7)s, the special case of Wilson-type systems is handled in [13]. Wilson-
type STS(21)s contain three sub-STS(7)s on disjoint point sets. In the current
paper the classification problem for STS(21)s with subsystems is settled by
completing the case of sub-STS(7)s.

Theorem 1.1. There are 116,635,963,205,551 isomorphism classes of
STS(21)s containing at least one sub-STS(7).

The paper is organized as follows. An algorithm for classifying STS(21)s
with sub-STS(7)s is described in Section 2, and the results are listed in Sec-
tion 3. The number of isomorphism classes of STS(21)s with sub-STS(7)s is
used in Section 4 to get an estimation of the total number of isomorphism
classes of STS(21)s.

2. Classification

In this section, we present a classification algorithm for STS(21)s con-
taining sub-STS(7)s. To facilitate reading, we give necessary definitions in
Section 2.1. The general approach is outlined in Section 2.2, details about
subtasks are given in Section 2.4, and some computational issues are consid-
ered in Section 2.5.

2.1. Definitions. A (vr, bk) configuration is an incidence structure with
v points and b blocks, such that each block contains k points, each point
occurs in r blocks, and two different blocks intersect in at most one point. If
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v = b and k = r, these are simply called vk configurations. The definitions of
isomorphism and automorphism of configurations are analogous to those for
Steiner triple systems.

A 1-factor in a graph, also called a perfect matching, is a 1-regular span-
ning subgraph and a 1-factorization is a partition of the edges of the graph
into 1-factors. A 1-factorization of a graph G = (V,E) is isomorphic to a
1-factorization of a graph G′ = (V ′, E′) if there is a bijection from V to V ′

that maps the 1-factors of the 1-factorization of G onto the 1-factors of the
1-factorization of G′.

2.2. General approach. On a general level, the current approach fol-
lows [12], in which all of Theorem 2.1 except the last statement already ap-
peared.

Theorem 2.1 ([12]). Let (V,B) be an STS(v) that has a sub-STS(w)
(W,B′). Then

1. B = B′ ∪F ∪D where F and D are the sets of blocks that intersect W
in 1 and 0 points, respectively,

2. F =
⋃
p∈W Bp where Bp is the set of blocks in F that contain p ∈W ,

3. B′p = {B \{p} : B ∈ Bp} is a 1-factor of a graph G with vertices V \W
and edges

⋃
p∈W B′p,

4. {B′p : p ∈W} is a 1-factorization of G,

5. G is w-regular and its complement G is (v − 2w − 1)-regular, and
6. G can be decomposed into a set of edge-disjoint 3-cycles—D being one

possible set—which forms a

((v − w)(v−2w−1)/2, ((v − w)(v − 2w − 1)/6)3)

configuration.

Using this theorem, any STS containing a sub-STS is decomposable into
B′∪F∪D. For the task of classifying all STS(v)s containing some sub-STS(w),
one has now two starting points: either a classification of the 1-factorizations
underlying F or a classification of the configurations corresponding to D.
Then, in both cases, one needs to combine this with a classification of B′ to
create an STS in all possible ways, taking symmetry into account.

The next sections illustrate the details for v = 21 and w = 7; the general
setting is also described in [12].

2.3. Application to STS(21)s containing sub-STS(7)s. Let (V,B) be an
STS(21) that has a sub-STS(7) (W,B′). Clearly W ⊆ V and B′ ⊆ B. Each
block in B \ B′ intersects W in either 0 or 1 points, and those two sets of
blocks are denoted by D and F , respectively:

D = {B ∈ B \ B′ : |B ∩W | = 0} and
F = {B ∈ B \ B′ : |B ∩W | = 1}.
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Fix a point p ∈ W and let Bp be the set of blocks in F that contain p.
Further let

(2.1) B′p = {B \ {p} : B ∈ Bp}.

As a pair of points with one point in W and the other in V \W must
occur in exactly one block of F , the sets in B′p partition V \W . The sets in
B′p have size 2, and we may view them as edges in a graph with vertex set
V \W . The sets in B′p form a 1-factor of that graph. With 7 possible values
of p, we have 7 disjoint 1-factors of a 7-regular graph of order 14.

To complete the Steiner triple system, given a 7-regular graph G of order
14, one may find all 1-factorizations of G and in the complement G find all
decompositions into 3-cycles (which is the graph analog of finding sets of
triples that cover all unordered pairs) and combine these in all possible ways.
Doing this for all possible choices of G gives all ways of extending the initial
STS(7). Finally, isomorph rejection needs to be carried out during the process
of combining parts. Specific details about using this approach in the current
work—where the order D → F → B′ for constructing the blocks B is actually
used—are presented in Section 2.4. See also [12].

There are 21,609,301 isomorphism classes of 7-regular graphs of order
14 [24]; see also [26, Table 4.25]. Only a small number of graphs G have the
property that the complement G can be decomposed into 3-cycles as described
in the last statement in Theorem 2.1. Indeed, the required 143 configurations
have already been classified.

There are 21,399 isomorphism classes of 143 configurations [2]. Checking
the isomorphism classes of graphs underlying the 143 configurations shows
that their number is 20,787. As this is about one thousandth of the number
of regular graphs, the 143 configurations provide appropriate building blocks
for our algorithm.

Example. There is a unique isomorphism class of an STS(21) that contains
at least one sub-STS(7) and that admits an automorphism group of order 108,
see Table 1. The incidence matrix of such a design visualizes the partitions of
points and blocks in the general approach (note that the ordering of rows and
columns within each subset does not necessarily coincide with the ordering
given by the algorithm) and is presented in Figure 1.

Let V = {0, 1, . . . , 20}. The design can be constructed by considering the
group of order 108 generated by

(0, 9, 19)(2, 10, 16)(3, 4, 20, 8, 7, 18)(5, 6, 15, 14, 11, 13) and

(0, 3, 4)(2, 5, 6)(7, 8, 9, 20, 18, 19)(10, 15, 13, 16, 11, 14)(12, 17)

and taking the 7 orbits under the action of this group with representatives

{0, 1, 2}, {0, 3, 6}, {0, 9, 19}, {0, 10, 17}, {1, 12, 17}, {2, 5, 6}, {2, 10, 16}.
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W

111 . . . . 1111111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 . . 11 . . . . . . . . . 1111111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 . . . . 11 . . . . . . . . . . . . . . 1111111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 1 . 1 . 1 . . . . . . . . . . . . . . . . . . . . . . 1111111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 1 . 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111111 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 11 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111111 . . . . . . . . . . . . . . . . . . . . .
. 1 . . 1 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111111 . . . . . . . . . . . . . .

V \W

. . . . . . . 1 . . . . . . 1 . . . . . . 1 . . . . . . 1 . . . . . . 1 . . . . . . 1 . . . . . . 1 . . . . . . 111 . . . . . . . . . . .

. . . . . . . . 1 . . . . . . 1 . . . . . 1 . . . . . . . 1 . . . . . . 1 . . . . . . 1 . . . . . . 1 . . . . . . . . 111 . . . . . . . .

. . . . . . . . . 1 . . . . . . 1 . . . . . 1 . . . . . . . 1 . . . . . . 1 . . . . . 1 . . . . . . . 1 . . . . 1 . . . . . 11 . . . . . .

. . . . . . . . . . 1 . . . . . 1 . . . . . . 1 . . . . . 1 . . . . . . . . 1 . . . . . 1 . . . . . . . 1 . . . . 1 . . . . . . 11 . . . .

. . . . . . . . 1 . . . . . 1 . . . . . . . . . 1 . . . . . . 1 . . . . . . . 1 . . . . . 1 . . . . . . . 1 . . . . . . . . 1 . 1 . 1 . . .

. . . . . . . . . . . 1 . . . . . 1 . . . . 1 . . . . . . . . . 1 . . . . . . . 1 . 1 . . . . . . . . . . . 1 . . . . 1 . . . . . 11 . . .

. . . . . . . . . . . . 1 . . . . . 1 . . . . . . 1 . . . . . . . 1 . . . . . . . 1 . . . . 1 . . . . . . . . 1 1 . . 1 . . . . 1 . . . . .

. . . . . . . 1 . . . . . . . 1 . . . . . . . . 1 . . . . . 1 . . . . . . . . . 1 . . . 1 . . . . . . . . . . 1 . . . . . . . . . . . 111

. . . . . . . . . . . . . 1 . . . . . 1 . . . . . 1 . . . . . . 1 . . . . 1 . . . . . . . 1 . . . . . . 1 . . . . . 1 . 1 . . . . . . 1 . .

. . . . . . . . . . . 1 . . . . . . . . 1 . . 1 . . . . . . . . . . 11 . . . . . . . . . . 1 . . . . . . 1 . . . . . . . 1 . 1 . . . 1 . .

. . . . . . . . . . 1 . . . . . . 1 . . . . . . . . 1 . . . . 1 . . . . . . . . . 1 . . . . . 1 . . 1 . . . . . . . 1 . . . . 1 . . . . 1 .

. . . . . . . . . . . . . 1 . . . . 1 . . . . . . . . 1 . . . . . . 1 . 1 . . . . . . . . . . . 1 . . . . . 1 . . 1 . . . . 1 . . . . . 1 .

. . . . . . . . . 1 . . . . . . . . . . 1 . . . . . 1 . . . . . . 1 . . . . . 1 . . . . . . . . 11 . . . . . . . . . . 1 . . . . 1 . . . 1

. . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . 11 . . . . . . . . . 1 . . . . . . . . 1 . . . 1 . . . . . . . . . 1 . . . . 1 . . 1
B0 B1 B2 B3 B4 B5 B6

B′ F D

Figure 1. Incidence matrix for the STS(21) in the example

2.4. Details of the approach. We shall now give more specific details
needed for implementing the general approach. Some of the computational
subproblems will be considered separately in Section 2.5.

The point set. When building up an STS(21) (V,B) containing a sub-
STS(7), we let V = {0, 1, . . . , 20} such that W = {14, 15, . . . , 20} is the point
set of the distinguished sub-STS(7) (W,B′), called S′.

The 143 configuration. The distribution of the orders of the automorphism
groups of the 21,399 143 configurations [2] is

120,3282916319491612718151271431632421281564481.

The unique 143 configuration with automorphism group order 56448=2·1682
consists of two disjoint STS(7)s and is the configuration of Wilson-type sys-
tems. Ignoring that configuration here, the groups to be considered have order
at most 128, so there is no need for sophisticated group algorithms.

After fixing a configuration (V \ W,D), we compute its automorphism
group A, the underlying graph G, and the complement G. Notice that the
group A is trivial in most of the cases.

The 1-factorization. For a given graph G, we first determine the set F
of 1-factors of G and then use the 1-factors in F to compute the set F ′

of all possible 1-factorizations of G. If the group A is nontrivial, isomorph
rejection is further carried out by accepting precisely those 1-factorizations in
F ′ that are lexicographically minimum under the action of A. For an accepted
1-factorization, the subgroup of A consisting of the elements that stabilize the
1-factorization is denoted by A′.

A 1-factor of G corresponds to a set B′p defined in (2.1), and a 1-factoriza-

tion of G gives a set of blocks F = ∪20p=14Bp up to permutation of the points
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in W = {14, 15, . . . , 20} (we pick an arbitrary one). The group A′ acts on
V \W . Blocks of F also have points in W , so we extend the action of A′

to get a group A′′ acting on V . The permutation of the points in W for an
element in A′′ is uniquely defined by how the original element in A′ maps the
1-factors.

The sub-STS(7). There is a unique STS(7), the Fano plane, which has an
automorphism group of order 168. Hence there are are 7!/168 = 30 distinct
labelled STS(7)s on 7 given points.

An isomorphism from one STS(21) with a sub-STS(7) to another maps
the distinguished sub-STS(7) to a sub-STS(7). Hence there are two general
situations: STS(21)s with exactly one sub-STS(7) and STS(21)s with more
than one sub-STS(7). In the latter case, there are further several possibilities
for how the point sets of two sub-STS(7)s may intersect. Such an intersection
must form a (possibly trivial) sub-STS, so possible intersection sizes are 0, 1,
and 3.

If the intersection size is 0, then there is necessarily a third sub-STS(7)
whose point set is disjoint from the point sets of the first two sub-STS(7)s,
that is, we have a Wilson-type system and the 143 configuration discussed
earlier. Wilson-type STS(21)s have exactly three sub-STS(7)s [13, Lemma 1].
As the mentioned 143 configuration is not considered here, this case will not
occur in the search.

Isomorph rejection when extending blocks D ∪ F with blocks B′ is anal-
ogous to the situation when extending blocks D with blocks F , considered
earlier. Now, out of the 30 possibilities, those sub-STS(7)s that are lexico-
graphically minimum under the action of A′′ are accepted. The subgroup
of A′′ consisting of the elements that stabilize the accepted sub-STS(7) is
denoted by A′′′.

The blocks B = D ∪ F ∪ B′ now form an STS(21) with a distinguished
sub-STS(7), and if those are the objects to classify we would be done. But in
the classification of STS(21)s with at least one sub-STS(7), there is still one
final step.

The final isomorph rejection. If there is exactly one sub-STS(7) in the
constructed design (V,B), then we accept the STS(21); its automorphism
group is the group A′′′ computed earlier. Otherwise, we proceed by finding
all sub-STS(7)s in V (as we have seen, these will intersect W in exactly 1 or 3
points; some precomputations for finding them can be done based on D and
F). We now determine whether the distinguished sub-STS(7) is a canonically
minimum sub-STS(7), to be discussed in Section 2.5, and accept it if that is
the case. The automorphism group of an accepted STS(21) is obtained as a
by-product of the computations.
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2.5. Computational subproblems. We shall here discuss some of the main
computational subproblems that are encountered when implementing the pre-
sented approach and that are not standard problems related to data structures
and algorithms.

Automorphism groups and canonical forms. Automorphism groups and
canonical forms are conveniently computed with nauty [22] after an appro-
priate transformation of the combinatorial structure to a graph.

To order the sub-STS(7)s of an STS(21) one may use the standard graph
encoding of the incidence matrix of the design, add one vertex for each sub-
STS(7), and let the 7 vertices corresponding to the points of the sub-STS(7)
form the neighborhood of an added vertex. Then the canonical order of
vertices given by nauty imposes an order on the sub-STS(7)s. More precisely,
nauty determines an order of the orbits of vertices under the action of the
automorphism group of the graph. Therefore we get an induced ordering of
the orbits of sub-STS(7)s under the action of the automorphism group of the
STS(21).

For small group orders, the abstract type of the automorphism groups
of the classified designs can be identified based on the multiset of orders of
elements. The abstract type can further be computed using AllSmallGroups

and StructureDescription in GAP [6]. In the current work, seven groups (of
orders 27, 54, 108, 294, and 1008) had to be treated manually and separately.

1-factors and 1-factorizations. We use a backtrack algorithm to compute
all 1-factors of general graphs. Given the set of 1-factors of a graph, the
problem of finding all 1-factorizations can be phrased in the framework of
exact cover [10], whereby the instances can be solved, for example, using the
libexact [14] software.

3. Results

The total number of isomorphism classes of STS(21)s containing at least
one sub-STS(7) is 116,635,963,205,551, which splits into 116,635,961,039,200
cases that are not of Wilson-type and 2,166,351 cases that are of Wilson-
type [13].

More detailed information can be found in Table 1 and Table 2. The
column headers in Table 1 are the order of the automorphism group (O), the
number of contained sub-STS(7)s (U), the number of unordered pairs of sub-
STS(7)s that intersect in 1 and 3 points (I1 and I3, respectively), the abstract
type of the automorphism group (A), and finally the number of isomorphism
classes of STS(21)s with these properties (#).

For completeness, Table 1b from [13] is included. For all Wilson-type
STS(21)s, we have U = 3, I1 = 0, and I3 = 0 by [13, Lemma 1].

The notation for the abstract types of groups is as follows: Cn is the cyclic
group of order n, Sn is the symmetric group of order n!, An is the alternating
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group of order n!/2, Dn is the dihedral group of order n, and PSL(v, q) is the
projective special linear group in Fvq . For two groups G and H, G×H is the
direct product of G and H, G ⋊H is a semidirect product of G and H, and
Gn is G×G× · · · ×G (n times).

A central open problem for specific STS(21)s is whether systems exist
that are doubly resolvable. The current work gives nothing new with respect
to this problem, because Kirkman triple systems of order 21 with sub-STS(7)s
have already been classified and tested [15].

The whole classification including the detection of the abstract group
types took about 1300 CPU days on the equivalent of one core of an Intel
Xeon E5-2665 @ 2.40GHz.

Verification. We perform two tests to validate results. Let S be a transver-
sal of the isomorphism classes of the STS(21)s with sub-STS(7)s that are not
of Wilson-type—this is the outcome of the current classification—and let C
be a transversal of the isomorphism classes of the 143 configurations exclud-
ing the configuration leading to Wilson-type STS(21)s. Further, let s7(S)
be the number of sub-STS(7)s in the system S, and let f(C) be the num-
ber of 1-factorizations with labelled 1-factors of the complement of the graph
underlying the configuration C.

In the first test, we count in two different ways all pairs of labelled
STS(21)s that are not of Wilson-type and their contained sub-STS(7)s. By
the Orbit–Stabilizer Theorem, we have

∑

S∈S

21!

|Aut(S)| · s7(S) =
∑

C∈C

21!

|Aut(C)|
7!

168
· f(C).(3.1)

The fact that Wilson-type STS(21)s have exactly three sub-STS(7)s [13]
and will not appear in the search is essential for the double counting to work.

In the second test, we extract the STS(21)s with sub-STS(7)s from the
STS(21)s with nontrivial automorphisms classified in [8] and compare the
numbers with those in Table 1a.

Both of these two tests were passed in the computations of the current
work. In particular, both sides of (3.1) gave a count of

5,988,986,139,804,614,556,727,954,636,800,000.

4. Estimating the number of STS(21)s

The classification of the STS(21)s with sub-STS(7)s gives a lower bound
on the number of isomorphism classes of STS(21)s but can also be used for
an estimation of that number. The authors are not aware of any published
estimations.

Quackenbush [25] conjectured that almost all Steiner triple systems have
no nontrivial subsystems. Later, however, Kwan [17] used a random model
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Table 1. Numbers of STS(21)s containing at least one sub-
STS(7)

(a) non-Wilson-type

OU I1 I3A #

1 1 0 0C1 116,051,875,827,936

1 2 1 0C1 31,778,146,776

1 2 0 1C1 550,238,290,596

1 3 1 2C1 593,663,600

1 3 3 0C1 60,352,088

1 3 0 3C1 1,385,739,943

1 4 1 5C1 6,391,040

1 4 2 4C1 198,304

1 4 3 3C1 1,607,028

1 4 0 6C1 157,886

1 5 1 9C1 576

1 5 2 8C1 50,192

1 5 3 7C1 30,024

1 5 4 6C1 1,704

1 6 312C1 1,790

1 6 411C1 688

1 7 516C1 124

2 1 0 0C2 19,270,679

2 2 1 0C2 84,080

2 2 0 1C2 814,880

2 3 1 2C2 18,912

2 3 3 0C2 43,062

2 3 0 3C2 132,334

2 4 1 5C2 9,088

2 4 2 4C2 64

2 4 3 3C2 2,448

2 5 2 8C2 224

2 5 3 7C2 2,092

2 5 4 6C2 16

2 6 312C2 140

2 6 411C2 32

2 7 516C2 188

2 9 927C2 2

3 1 0 0C3 177,205

3 2 1 0C3 3,152

3 2 0 1C3 5,508

OU I1 I3A #

3 3 3 0C3 655

3 3 0 3C3 4,152

3 4 3 3C3 132

3 4 0 6C3 6

3 5 4 6C3 16

3 6 312C3 18

4 1 0 0C2
2 6,268

4 1 0 0C4 628

4 3 3 0C2
2 260

4 3 0 3C2
2 870

4 5 3 7C2
2 136

4 7 516C2
2 24

4 9 927C2
2 3

6 1 0 0C6 849

6 1 0 0S3 192

6 3 3 0C6 146

6 3 3 0S3 39

6 3 0 3C6 91

6 3 0 3S3 31

6 4 3 3S3 16

6 6 312S3 4

6 9 927S3 2

7 1 0 0C7 27

8 1 0 0C4 × C2 8

8 1 0 0D8 164

9 3 3 0C2
3 1

9 3 0 3C2
3 3

12 3 3 0D12 4

12 3 0 3D12 10

12 9 927D12 3

14 1 0 0C14 14

16 1 0 0C2 ×D8 8

18 3 3 0C3 × S3 11

18 3 0 3C3 × S3 6

36 9 927S2
3 1

108 9 927(C2
3 ⋊ C6) ⋊ C2 1

(b) Wilson-type

OA #

1C1 2,156,186

2C2 8,914

3C3 685

4C2
2 253

4C4 18

6C6 94

6S3 103

8C3
2 22

8D8 19

9C2
3 3

12A4 2

12D12 4

16C2 ×D8 4

18C2
3 ⋊ C2 2

18C3 × S3 5

21C7 ⋊ C3 2

24C2 × A4 9

24C2
2 × S3 1

24S4 7

42C2 × (C7 ⋊ C3) 1

42C7 ⋊ C6 5

48C2 × S4 2

72(C3 × A4) ⋊ C2 1

72A4 × S3 4

126S3 × (C7 ⋊ C3) 1

144S3 × S4 1

294C2
7 ⋊ C6 1

882(C7 ⋊ C3)
2 ⋊ C2 1

1008PSL(3, 2) × S3 1

to find evidence for the number of sub-STS(7)s in an STS(v) to have expec-
tation Θ(1), referring to similar work in [23] on Latin squares. The models
used in [17] and [23] are random 3-uniform hypergraphs and random integer
matrices, respectively.
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Table 2. Aggregated numbers of STS(21)s containing at
least one sub-STS(7)

O #

1 116,635,942,616,481
2 20,387,155
3 191,529
4 8,460
6 1,567
7 27

O #

8 213
9 7

12 23
14 14
16 12
18 24

O #

21 2
24 17
36 1
42 6
48 2
72 5

O #

108 1
126 1
144 1
294 1
882 1
1008 1

An STS(v) has v(v − 1)/6 blocks out of v(v − 1)(v − 2)/6 3-subsets of a
v-set, that is, a ratio of p := 1/(v−2) of the 3-subsets are blocks. We may now
form a random 3-uniform hypergraph on v vertices by including blocks with
probability p (note that p := 1/v, which is used in [17], works when studying
asymptotics). We denote the number of labelled STS(w)s on w points by
N(w). We have seen earlier that N(7) = 30. The number of labelled STS(w)s
on v points, where v ≥ w, is M(v, w) := N(w)

(
v
w

)
. The probability for a

given STS(w) to occur in the random model is pw(w−1)/6.
The linearity of the expected value allows now to compute the expected

number of sub-STS(w)s

µ(v, w) :=
N(w)

(
v
w

)

(v − 2)w(w−1)/6

and, abbreviating µ(∞, w) = limv→∞ µ(v, w), we have µ(∞, 7) = 1/168 ≈
0.00595 and µ(∞, w) = 0 for w > 7.

Let S be the set of positive integers fulfilling (1.1). Analogously to the
conjecture in [23, p. 346], see also [17], we state the following.

Conjecture 4.1. The expectation of the number of sub-STS(w)s in an
STS(v) tends to 1/168 for w = 7 and to 0 for w > 7 as v ∈ S tends to
infinity.

Assuming Poisson distribution [17] for the number of sub-STS(7)s in an
STS(v), the proportion of STS(v)s containing at least one sub-STS(7) is ap-
proximately α = 1− e−1/168 ≈ 0.00593 for large v. Consequently, an estima-
tion of the total number of STS(v)s can be obtained by dividing the number
of STS(v)s with at least one sub-STS(7) by α.

As almost all Steiner triple systems have no nontrivial automorphisms [1],
an estimation for the number of isomorphism classes of STS(v)s can be ob-
tained by dividing the number of isomorphism classes of STS(v)s with at least
one sub-STS(7) by α.
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There are two orders for which we have data that can be compared with
such an estimation. There are only 80 isomorphism classes of STS(15)s, and
7 is the maximum possible order of a proper subsystem. The earlier comment
that almost all Steiner triple systems have no nontrivial automorphisms does
not hold in this case, but we can use [21, Table 1.29] to arrive at a proportion
of approximately 15α for labelled STS(15)s with sub-STS(7)s. There are
11,084,874,829 isomorphism classes of STS(19)s, and 86,701,547 of these have
sub-STS(7)s [13] giving a proportion of about 1.3α.

For the number of isomorphism classes of STS(21)s, using the classifica-
tion results of the current paper we calculate

116,635,963,205,551/α ≈ 1.965 · 1016,

which indicates that the number could be somewhat greater than 1016, per-
haps between 1 · 1016 and 2 · 1016.

In the estimation one might consider utilizing µ(21, 7) ≈ 0.00389 rather
than µ(∞, 7), but notice that µ(19, 7) ≈ 0.00368 underestimates the true value
by a factor greater than 2, and the situation here might be analogous to that
for sub-Latin squares considered in [23]. In that paper, it is conjectured that
the expected number of 3× 3 sub-Latin squares of a randomly chosen n× n
Latin square tends to 1/18 as n tends to infinity, and numerical data show that

the value given by the random model for a fixed parameter, f(n) = 12
(
n
3

)3
n−9,

underestimates the computed value for small parameters. For example, for
n = 10, the asymptotic value (≈ 0.0556) is closer to the exact value (≈ 0.0536)
than f(n) (≈ 0.0207).

It is not clear whether an STS with subsystems is more or less prone
to have resolutions. If the correlation is weak, then the fact that there are
12,520,021 isomorphism classes of Kirkman triple systems of order 21 with
sub-STS(7)s [15] could be used to calculate

12,520,021/α ≈ 2.111 · 109,

which would hint that there might be somewhat more than one billion iso-
morphism classes of Kirkman triple systems of order 21.

The estimations for the numbers of isomorphism classes of STS(21)s and
KTS(21)s will hopefully be useful in the estimation of computational resources
in future attempts to classify those structures and in other related studies.

Acknowledgements.
This work was supported in part by the Academy of Finland, grant num-

ber 331044. The authors are grateful to Petteri Kaski for providing the
STS(21)s with nontrivial automorphisms classified in [8] and to an anony-
mous referee for valuable comments.



244 D. HEINLEIN AND P.R. J. ÖSTERGÅRD
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[9] P. Kaski and P.R. J. Österg̊ard, The Steiner triple systems of order 19, Math. Comp.

73 (2004), 2075–2092.
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