BUSH-TYPE BUTSON HADAMARD MATRICES

Hadi Kharaghani, Thomas Pender, Caleb Van’t Land and Vlad Zaitsev
University of Lethbridge, Canada and University of Simon Fraser, Canada
This paper is dedicated to the memory of Professor Zvonimir Janko

Abstract

Bush-type Butson Hadamard matrices are introduced. It is shown that a nonextendable set of mutually unbiased Butson Hadamard matrices is obtained by adding a specific Butson Hadamard matrix to a set of mutually unbiased Bush-type Butson Hadamard matrices. A class of symmetric Bush-type Butson Hadamard matrices over the group G of n-th roots of unity is introduced that is also valid over any subgroup of G. The case of Bush-type Butson Hadamard matrices of even order will be discussed.

1. Introduction

A Hadamard matrix, say H, is a square matrix of order n with entries from the set $\{-1,+1\}$ such that $H H^{t}=n I$. There is a great deal of interest in these matrices owing to their growing number of applications in fields as diverse as error-correcting codes (as used in the 1972 Mariner mission, for example) and modern CDMA cellphones (the Walsh transform). The interested reader may profitably consult sources such as Horadam [12] and Seberry [17], together with the references cited therein, for further discussion of the applications of these most useful objects.

In this paper, we will consider Hadamard matrices whose entries are taken from a larger set of values, namely, the roots of unity residing along the unit circle. Hadamard matrices whose entries are roots of unity are termed Butson Hadamard. Additionally, we will require the matrices studied here to be of

[^0]Bush-type, that is, they will have square order n^{2} and be divided into n^{2} blocks of order n which are either all ones or have row and column sum equal to 0 . Butson Hadamard matrices were first studied by Butson $[5,6]$ and Shrikhande [18], while Bush-type Hadamard matrices were first introduced by Bush [3,4]. For these and related structural constraints on Hadamard matrices, the reader may consult Colbourn and Dinitz [7], the standard reference of the field.

The remainder of this note is organized as follows. Sec. 2 recapitulates the necessary definitions and elementary results needed for the main constructions of this paper. Sec. 3 goes on to introduce the ω-circulant Bush-type Butson Hadamard matrices, a generalization of the negacirculant Bush-type Hadamard matrices first considered by Janko and Kharaghani [14]. ${ }^{1}$ The penultimate Sec. 4 of the main body of this work establishes the existence of families of unbiased Butson Hadamard matrices which are maximal in the sense that the set cannot be enlarged to a proper superset. Finally, the concluding Sec. 5 explores the use of generalized Hadamard matrices in the construction of symmetric Bush-type Hadamard matrices.

2. Preliminaries

A Butson Hadamard matrix is a square matrix, say H, of order n whose entries are from the m-th complex roots of unity such that $H H^{*}=I$. We denote this as $\mathrm{BH}(n, m)$.

Evidently, there is a Butson Hadamard matrix of every order n upon considering the matrix of the discrete Fourier transform, namely, $H=\left(\exp \left(2 \pi n^{-1} \sqrt{-1} i j\right)\right)_{i, j=0}^{n-1}$.

Example 2.1. Let $\xi=(1+\sqrt{-3}) / 2$. Following the construction intimated above, we obtain a $\operatorname{BH}(6,6)$ given by

$$
H_{6}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & \xi & \xi^{2} & \xi^{3} & \xi^{4} & \xi^{5} \\
1 & \xi^{2} & \xi^{4} & 1 & \xi^{2} & \xi^{4} \\
1 & \xi^{3} & 1 & \xi^{3} & 1 & \xi^{3} \\
1 & \xi^{4} & \xi^{2} & 1 & \xi^{4} & \xi^{2} \\
1 & \xi^{5} & \xi^{4} & \xi^{3} & \xi^{2} & \xi
\end{array}\right)
$$

A Bush-type (Butson) Hadamard matrix, say H, is a Butson Hadamard matrix of order n^{2} over the m-th complex roots of unity which is subdivided into n^{2} blocks $H_{11}, H_{12}, \ldots, H_{n n}$ of order n such that $J H_{i j}=H_{i j} J=\delta_{i j} n J$.

[^1]Example 2.2. Continuing to let $\xi=(1+\sqrt{-3}) / 2$, we have a Bush-type $\mathrm{BH}(36,6)$ given by

The Bush-type Butson Hadamard matrix of the previous example has an additional structure that we will attend to in the next section, namely, it is block ω-circulant (in this case, $\omega=\xi$).

Two $\mathrm{BH}\left(n^{2}, m\right)$ s H_{1} and H_{2} are unbiased if $n^{-1} H_{1} H_{2}^{*}$ is also a $\mathrm{BH}\left(n^{2}, m\right)$. A collection $\left\{H_{1}, \ldots, H_{s}\right\}$ of $\mathrm{BH}\left(n^{2}, m\right)$ s is mutually unbiased in the event that each pair $\left\{H_{1}, H_{2}\right\}$ is unbiased.

Example 2.3. It can be checked that the following is a pair of unbiased Bush-type $\mathrm{BH}(16,2)$ s.

Finally, a Butson Hadamard matrix is said to be normalized if the first row and column consist entirely of ones.

3. ω-Circulant Bush-Type Matrices

The construction of real symmetric Bush-type Hadamard matrices was initiated by Bush [10] when he constructed symmetric Bush-type Hadamard matrices of order $4 n^{2}$ from a projective plane of order $2 n$. The expectation was to show, for example, there is no symmetric Bush-type Hadamard matrix of order 100 and thus no projective plane of order 10 . Wallis [20] used mutually orthogonal latin squares in a circuitous route via design graphs, constructing many symmetric Bush-type Hadamard matrices of order $16 n^{2}$. Further, it was shown there that if a Hadamard matrix of order n exists, then a Bushtype Hadamard matrix of order n^{2} exists by an application of affine resolvable designs.

Best and Kharaghani [1] and Holzmann et al. [11] simplified the construction of Bush-type Hadamard matrices considerably by using the auxiliary matrices corresponding to a Hadamard matrix. Furthermore, appealing to the so-called mutually suitable latin squares, one may construct sets of mutually unbiased Hadamard matrices. We define these objects now.

Given a normalized $\mathrm{BH}(n, m)$, label the rows consecutively as r_{0}, \ldots, r_{n-1}. Then the auxiliary matrices of the matrix are the projection matrices $c_{i}=r_{i}^{*} r_{i}$ $(i=0, \ldots, n-1)$ corresponding to each row. In [15] Kharaghani showed the following result.

Lemma 3.1. The auxiliary matrices c_{0}, \ldots, c_{n-1} of a $B H(n, m)$ satisfy
(1) $c_{i}^{*}=c_{i}$,
(2) $c_{i} c_{j}=\delta_{i j} n c_{i}$, and
(3) $\sum_{i} c_{i}=n I$.

Recall that a latin square of side n is an $n \times n$ matrix whose rows and columns are permutations of an n-set. Clearly, if there is a symmetric latin square of side n with constant diagonal over the auxiliary matrices of a $\mathrm{BH}(n, m)$, then there is a Hermitian Bush-type $\mathrm{BH}\left(n^{2}, m\right)$. We can, in fact, impose additional structure on the matrix.

ThEOREM 3.2. Let c_{0}, \ldots, c_{n-1} be the auxiliary matrices of a $B H(n, m)$, and let L be any latin square of side n. Then $\left(\xi_{i j} c_{L_{i j}}\right)_{i, j=0}^{n-1}$, where $\xi_{i j}$ is any complex m^{\prime}-th root of unity, is a Butson Hadamard matrix of order n^{2} over the M-th roots of unity with $M=\operatorname{lcm}\left(m, m^{\prime}\right)$.

Proof of Theorem 3.2. Let R_{0}, \ldots, R_{n-1} be the block rows of the constructed matrix. Then, for $i \neq j$, we have $R_{i} R_{j}^{*}=\sum_{k} \xi_{i k} \xi_{j k}^{-1} c_{L_{i k}} c_{L_{j k}}=O$ and

$$
R_{i} R_{i}^{*}=\sum_{k} \xi_{i k} \xi_{i k}^{-1} c_{L_{i k}} c_{L_{i k}}=n \sum_{k} c_{i k}=n^{2} I
$$

This concludes the proof.
Let A be a matrix over the complex m-th roots of unity, and let ω be a primitive m-th root. If A has first row $\left(a_{0}, \ldots, a_{n-1}\right)$, then A is ω-circulant in the event that $A_{i j}=a_{(j-i)(\bmod n)}$ if $j \geqq i$, and $A_{i j}=\omega a_{(j-i)(\bmod n)}$ if $j<i$. A is block ω-circulant if each a_{i} is a matrix (or block). Note that towards simplicity, we will usually abstain from including the descriptor block. We then have the following result.

Corollary 3.3. If there is a $B H(n, m)$, then there is an ω-circulant Bush-type $B H\left(n^{2}, m\right)$, where ω is a primitive m-th root of unity.

Proof of Corollary 3.3. $L=\operatorname{circ}(0, \ldots, n-1)$ is a latin square with constant diagonal. Then $\left(\xi_{i j} c_{L_{i j}}\right)$, where c_{0}, \ldots, c_{n-1} are the auxiliary matrices of the $\mathrm{BH}(n, m)$, and where $\xi_{i j}=1$ if $j \geqq i$ and $\xi_{i j}=\omega$ if $j<i$, is the required matrix.

Two latin squares of the same side are orthogonal in the event that in the superimposition of one square over the other, every ordered pair of the alphabet appears precisely once. A collection of latin squares of the same side is mutually orthogonal if every pair of squares is orthogonal.

Two latin squares of the same side are suitable in the event that the superimposition of a row of one square over any row of the other contains precisely one ordered pair in which the abscissa and ordinate coincide. A collection of latin squares of the same side are mutually suitable if every pair is suitable.

Evidently, orthogonality and suitability of latin squares are equivalent concepts (see Holzmann et al. [11]).

Proposition 3.4. Given a latin square L, form the matrix whose (k, j) th entry is i if and only if the (i, j)-th entry of L is k. This defines a bijection between sets of mutually orthogonal and mutually suitable latin squares of the same side.

Corollary 3.5. For every $n>2$ with $n \neq 6$, there exists a pair of suitable latin squares.

Corollary 3.6. If q is a prime power, there is a complete set of mutually suitable latin squares of side q consisting of $q-1$ matrices.

It is a straightforward exercise to construct the squares of the previous corollary directly. Indeed, take $\mathbf{F}=\left\{x_{0}=0, x_{1}, \ldots, x_{q-1}\right\}$ to be the Galois field of q elements. For each $s \neq 0$, define $L_{x_{s}}$ by $L_{x_{s_{i j}}}=x_{s}\left(x_{i}-x_{j}\right)$. Then $\left\{L_{x_{s}}: s=1, \ldots, q-1\right\}$ is a collection of mutually suitable latin squares.

If L_{1} and L_{2} are two suitable latin squares, then we define their product $L_{1} \circ L_{2}$ by taking the (i, j)-th entry to be the point of agreement between the i-th row of L_{1} and the j-th row of L_{2}. Clearly, $L_{1} \circ L_{2}$ is again a latin square.

Using Lemma 3.1 and Theorem 3.2, we have the following theorem. ${ }^{2}$
Theorem 3.7. For $n>2$ with $n \neq 6$, if there is a $B H(n, m)$, then there are at least two mutually unbiased Bush-type Hadamard matrices of order n^{2}. Furthermore, if n is a prime power, then there are $n-1$ mutually unbiased ω-circulant Bush-type Hadamard matrices.

REMARK 3.8. In general, it is known that there are at most n mutually unbiased Hadamard matrices of order n. The reader may consult the comprehensive reference Durt et al. [9] for this and closely related topics. Here we have constructed a collection of unbiased Hadamard matrices of a particular block form that can never meet this optimal bound.

4. New Sets of Unbiased Bush-Type Butson Hadamard Matrices

In the previous section, it was shown that given a $\mathrm{BH}(n, m)$, we can construct families of mutually unbiased Bush-type Butson Hadamard matrices using the mutually suitable latin squares. In the cases of 2-nd and 4-th roots of unity, it is shown by Holzmann et al. [11] and Best and Kharaghani [1] that we may add another matrix not of Bush-type which is unbiased with each of the previous matrices. We can apply this result to the general Butson matrices as follows.

THEOREM 4.1. If there is a $B H(n, m)$, and if there are ℓ mutually suitable latin squares of side n, then there are $\ell+1$ mutually unbiased $B H\left(n^{2}, m\right) s$.

[^2]Proof of Theorem 4.1. Let L_{1}, \ldots, L_{ℓ} be the mutually suitable latin squares over the auxiliary matrices of a $\mathrm{BH}(n, m)$. Then there are mutually unbiased $\mathrm{BH}\left(n^{2}, m\right) \mathrm{s}$.

If r_{0}, \ldots, r_{n-1} are the rows of the assumed $\mathrm{BH}(n, m)$, then form the matrix K by $K_{i j}=r_{j}^{*} r_{i}$. Since $\left(r_{u}^{*} r_{u}\right)\left(r_{j}^{*} r_{i}\right)^{*}=\delta_{u i} n r_{u}^{*} r_{j}$, it follows that K is unbiased with each of L_{1}, \ldots, L_{ℓ}.

We now show that the set of unbiased matrices constructed in the previous theorem is maximal, in the sense that the set cannot be enlarged to a proper superset, in the case that $n=m$ is a prime power and $\ell=n-1$. Indeed, let $q=p^{n}$ be any prime power, and let $Q=\left\{x \in \mathbf{C}: x^{q}=1\right\}$. If S is any multiset consisting of elements of Q, then the main theorem of Lam and Leung [16] shows that $\sum_{\alpha \in S} \alpha=0$ only if $|S| \equiv 0(\bmod p)$. Thus we have the following result.

Lemma 4.2. If S and T are any multisets over elements of Q, then $\sum_{\alpha \in S} \alpha=\sum_{\beta \in T} \beta$ only if $|S|^{2} \equiv|T|^{2}(\bmod p)$.

Proof of Lemma 4.2. Let $s=|S|$ and $t=|T|$. Take $R=s \cdot Q$, that is, R is the multiset containing s copies of every element of Q; then $\sum_{r \in R} r=0$. Now, remove from R the elements of S (taking into account multiplicities), and add a further s copies of the elements of T. Call this new multiset R^{\prime}. Since $\sum_{\alpha \in S} \alpha=\sum_{\beta \in T} \beta$, it follows that $\sum_{r^{\prime} \in R^{\prime}} r^{\prime}=0$ so that $\left|R^{\prime}\right| \equiv 0$ $(\bmod p)$. However, we also have that $\left|R^{\prime}\right|=s q-s^{2}+s t$, whereupon $s^{2} \equiv s t$ $(\bmod p)$. Swapping S and T, we find that $t^{2} \equiv s t(\bmod p)$, and the result follows.

For a given prime power, let L_{1}, \ldots, L_{q-1}, and K be the mutually unbiased $\mathrm{BH}\left(q^{2}, q\right)$ s obtained from Theorem 4.1 using the discrete Fourier transform matrix of order q. Choose the first row from each matrix, and label them $\ell_{1}, \ldots, \ell_{q-1}$, and k (note that $k=\mathbf{1}$).

We have that $|\langle x, y\rangle|=q$, for any distinct $x, y \in\left\{\ell_{1}, \ldots, \ell_{q-1}, k\right\}$. Assume that we can add a further vector v over Q such that $|\langle x, v\rangle|=q$, for every $x \in\left\{\ell_{1}, \ldots, \ell_{q-1}, k\right\}$. We write $v=\left(r_{1}, \ldots, r_{q}\right)$, where each $r_{i}=\left(y_{i 1}, \ldots, y_{i q}\right)$ has length q. We can then assume the following situation corresponding to the rows $\ell_{0}, \ldots, \ell_{q-1}$, and k

where the bottom row corresponds to k and the first to v. First taking the inner product of v with respect to each of $\ell_{1}, \ldots, \ell_{q-1}, k$, and then adding, we
obtain $q z_{1}+\cdots q z_{q}$ where each $z_{i} \in Q$. Next, multiplying with respect to the compartments and adding, we obtain $q y_{11}+\cdots q y_{1 q}+q y_{21}+q y_{31}+\cdots+q y_{q 1}$ where each $y_{i j} \in Q$. We then have that

$$
y_{11}+\cdots y_{1 q}+y_{21}+y_{31}+\cdots+y_{q 1}=z_{1}+\cdots+z_{q} .
$$

The left summand contains $2 q-1 q$-th roots of unity, while the right summand contains $q q$-th roots of unity. As $(2 q-1)^{2} \not \equiv q^{2}(\bmod p)$, we have a contradiction. Therefore the following result holds.

ThEOREM 4.3. For every prime power q there is a nonextendable set of q mutually unbiased $B H\left(q^{2}, q\right) s$.

5. Application of Generalized Hadamard Matrices

Inspired by a result of Verheiden [19], it will be shown that Bush-type Butson Hadamard matrices are also constructible from generalized Hadamard matrices. A generalized Hadamard matrix is a square matrix $H=\left[H_{i j}\right]$ of order n over an additive group G such that the multisets $S_{i j}=\left\{H_{i k}-H_{j k}\right.$: $0 \leqq k<n\}$, for $0 \leqq i<j<n$, each contain λ copies of every group element in G. We then write H is a $\operatorname{GH}(G, \lambda) .{ }^{3}$

Drake [8] showed that for a prime power q there is a symmetric $\operatorname{GH}(G, 1)$ over any elementary abelian group G of order q. It is also known that from a $\operatorname{GH}(G, 1)$ a group divisible design $\operatorname{GDD}\left(q^{2}, q, q, q, 0,1\right)$ is constructible by simply representing the group elements by their linear permutation representation (see Beth et al. [2] for the necessary definitions). Such a GDD consists of q^{2} disjoint permutation matrix blocks of size q. Moreover, continuing to let H be our group matrix, one easily sees that

$$
H H^{t}=H^{t} H=q I_{q^{2}}-I_{q} \otimes J_{q}+J_{q} \otimes J_{q}
$$

For the prime power q, let ξ be a primitive q-th root of unity, and let

$$
D=\operatorname{diag}\left(I_{q}, \xi I_{q}, \xi^{2} I_{q}, \cdots, \xi^{q-1} I_{q}\right),
$$

be a block-diagonal matrix of order q^{2}. We then have the following.
Theorem 5.1. Let H be a $G H(G, 1)$ over an abelian group G of prime power order q viewed as the $(0,1)$ incidence matrix of a $G D D\left(q^{2}, q, q, q, 0,1\right)$. Then $K=H D H^{t}+I_{q} \otimes J_{q}$ is a symmetric Bush-type $B H\left(q^{2}, q\right)$.

Proof of Theorem 5.1. From $H H^{t}=H^{t} H=q I_{q^{2}}-I_{q} \otimes J_{q}+J_{q} \otimes J_{q}$ it follows that

$$
H D\left(H^{t} H\right) D^{*} H^{t}=q I_{q^{2}} H H^{t}-H\left(I_{q} \otimes J_{q}\right) H^{t}+H D\left(J_{q} \otimes J_{q}\right)(H D)^{*}
$$

Noting that $H\left(I_{q} \otimes J_{q}\right) H^{t}=J_{q} \otimes J_{q}$ and $\left(H D H^{t}\right)(J \otimes J)=0$, it follows that

$$
K K^{*}=\left(H D H^{t}+I_{q} \otimes J_{q}\right)\left(H D H^{t}+I_{q} \otimes J_{q}\right)^{*}=q^{2} I_{q^{2}} .
$$

[^3]Since

$$
\left(H D H^{t}+I_{q} \otimes J_{q}\right)^{t}=H D H^{t}+I_{q} \otimes J_{q}
$$

K is symmetric. It can be seen that the off-diagonal blocks have zero row and column sum.

Remark 5.2. For a prime p, Winterhof [21] has shown that a $\mathrm{BH}(n, p)$ over a group G of the p-th roots of unity is also a $\operatorname{GH}(G, p)$. The $\mathrm{BH}(36,6)$ of Example 2 is not a $\operatorname{GH}(G, 6)$ over the group G of the 6 -th roots of unity.

The construction method for Theorem 5.1 has the extra property that:
Corollary 5.3. Theorem 5.1 is valid for any subgroup of the group of q-th roots of unity and the matrix K is a $\operatorname{GH}(G, q)$ over the group G of the q-th roots of unity.

Example 5.4. Applying Theorem 5.1 to the group C_{4} of the 4 -th roots of unity, and for a normalized $\operatorname{GH}\left(C_{4}, 1\right)$, we obtain a Bush-type $\operatorname{GH}\left(C_{4}, 4\right)$

$$
\left(\begin{array}{cccccccccccccccc}
1 & 1 & 1 & 1 & 1 & - & i & j & 1 & i & j & - & 1 & j & - & i \\
1 & 1 & 1 & 1 & - & 1 & j & i & i & 1 & - & j & j & 1 & i & - \\
1 & 1 & 1 & 1 & i & j & 1 & - & j & 1 & 1 & i & - & i & 1 & j \\
1 & 1 & 1 & 1 & j & i & - & 1 & - & j & i & 1 & i & - & j & 1 \\
1 & - & i & j & 1 & 1 & 1 & 1 & 1 & j & - & i & 1 & i & j & - \\
\hdashline & 1 & j & i & 1 & 1 & 1 & 1 & j & 1 & i & - & i & 1 & - & j \\
i & j & 1 & - & 1 & 1 & 1 & 1 & - & i & 1 & j & j & - & i & i \\
j & i & - & 1 & 1 & 1 & 1 & 1 & i & - & j & 1 & - & j & i & 1 \\
1 & i & j & 1 & j & - & i & 1 & 1 & 1 & 1 & 1 & - & i & j \\
i & 1 & - & j & j & 1 & i & - & 1 & 1 & 1 & 1 & - & 1 & j & i \\
j & - & i & i & i & 1 & j & 1 & 1 & 1 & 1 & i & j & 1 & - \\
-j & i & 1 & i & - & j & 1 & 1 & 1 & 1 & 1 & j & i & - & 1 \\
1 & j & - & i & 1 & i & j & - & 1 & - & i & j & 1 & 1 & 1 & 1 \\
j & 1 & i & i & i & - & j & 1 & j & i & 1 & 1 & 1 & 1 \\
-i & 1 & j & j & - & 1 & i & i & j & 1 & - & 1 & 1 & 1 & 1 \\
i & - & j & 1 & - & j & i & 1 & j & i & - & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

For the subgroup $\{1,-1\}$, we obtain a Bush-type $\operatorname{BH}(16,2)$

Corollary 5.5. Applying Theorem 5.1 to $p=2 n$ and the subgroup $\{1,-1\}$, implies the existence of a symmetric Bush-type Hadamard matrix of order $4 n^{2}$.

No symmetric Bush-type Hadamard matrix of order $4 n^{2}, n$ odd, is known. We suspect that there is no symmetric Bush-type GH $\left(4 n^{2}, 2 n\right)$, n odd.

Acknowledgements.

Thanks to the anonymous referee for the constructive comments. Hadi Kharaghani is supported by an NSERC Discovery Grant. Caleb Van't Land and Vlad Zaitsev were supported by Alberta Innovates' SRS Program.

References

[1] D. Best and H. Kharaghani, Unbiased complex Hadamard matrices and bases, Cryptogr. Commun. 2 (2010), 199-209.
[2] T. Beth, D. Jungnickel and H. Lenz, Design theory. Vols. I and II, Cambridge University Press, Cambridge, 1999.
[3] K. A. Bush, An inner orthogonality of Hadamard matrices, J. Austral. Math. Soc. 12 (1971), 242-248.
[4] K. A. Bush, Unbalanced Hadamard matrices and finite projective planes of even order, J. Combinatorial Theory Ser. A 11 (1971), 38-44.
[5] A. T. Butson, Generalized Hadamard matrices, Proc. Amer. Math. Soc. 13 (1962), 894-898.
[6] A. T. Butson, Relations among generalized Hadamard matrices, relative difference sets, and maximal length linear recurring sequences, Canadian J. Math. 15 (1963), 42-48.
[7] C. J. Colbourn and J. H. Dinitz, eds., Handbook of combinatorial designs, Chapman \& Hall/CRC, Boca Raton, 2007.
[8] D. A. Drake, Partial λ-geometries and generalized Hadamard matrices over groups, Canadian J. Math. 31 (1979), 617-627.
[9] T. Durt, B.-G. Englert, I. Bengtsson and K. Życzkowski, On mutually unbiased bases, International journal of quantum information 8 (2010), 535-640.
[10] R. Guy, H. Hanani, N. Sauer and J. Schönheim, eds., Combinatorial structures and their applications, Gordon and Breach, New York, 1970.
[11] W. H. Holzmann, H. Kharaghani and W. Orrick, On the real unbiased Hadamard matrices, in: Combinatorics and graphs, Amer. Math. Soc., Providence, 2010, 243250.
[12] K. J. Horadam, Hadamard matrices and their applications, Princeton University Press, Princeton, 2007.
[13] Y. J. Ionin and H. Kharaghani, Doubly regular digraphs and symmetric designs, J. Combin. Theory Ser. A 101 (2003), 35-48.
[14] Z. Janko and H. Kharaghani, A block negacyclic Bush-type Hadamard matrix and two strongly regular graphs, J. Combin. Theory Ser. A 98 (2002), 118-126.
[15] H. Kharaghani, New class of weighing matrices, Ars Combin. 19 (1985), 69-72.
[16] T. Y. Lam and K. H. Leung, On vanishing sums of roots of unity, J. Algebra 224 (2000) 91-109.
[17] J. Seberry, Orthogonal designs. Hadamard matrices, quadratic forms and algebras, Springer, Cham, 2017.
[18] S. S. Shrikhande, Generalized Hadamard matrices and orthogonal arrays of strength two, Canadian J. Math. 16 (1964), 736-740.
[19] E. Verheiden, Hadamard matrices and projective planes, J. Combin. Theory Ser. A 32 (1982), 126-131.
[20] W. D. Wallis, On a problem of K. A. Bush concerning Hadamard matrices, Bull. Austral. Math. Soc. 6 (1972), 321-326.
[21] A. Winterhof, On the non-existence of generalized Hadamard matrices, J. Statist. Plann. Inference 84 (2000), 337-342.
H. Kharaghani

Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge AB T1K 3M4
Canada
E-mail: kharaghani@uleth.ca
T. Pender

Department of Mathematics
University of Simon Fraser
Burnaby BC V5A 1S6
Canada
E-mail: tsp7@sfu.ca
C. Van't Land

Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge AB T1K 3M4
Canada
E-mail: caleb.vantland@uleth.ca
V. Zaitsev

Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge AB T1K 3M4
Canada
E-mail: vlad.zaitsev@uleth.ca
Received: 25.11.2022.
Revised: 7.6.2023.

[^0]: 2020 Mathematics Subject Classification. 05B20.
 Key words and phrases. Hadamard matrix, unbiased Hadamard matrix, Bush-type Hadamard matrix.

[^1]: ${ }^{1} \mathrm{~A}$ structure similar to that of being negacirculant was also considered by Ionin and Kharaghani [13] in the construction of doubly regular asymmetric digraphs.

[^2]: ${ }^{2}$ Special versions of this theorem were given in the aforementioned articles. We include it here in its full generality.

[^3]: ${ }^{3}$ These matrices are also referred to as difference matrices in the literature.

