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Abstract. Bush-type Butson Hadamard matrices are introduced. It

is shown that a nonextendable set of mutually unbiased Butson Hadamard
matrices is obtained by adding a specific Butson Hadamard matrix to a

set of mutually unbiased Bush-type Butson Hadamard matrices. A class

of symmetric Bush-type Butson Hadamard matrices over the group G of
n-th roots of unity is introduced that is also valid over any subgroup of G.

The case of Bush-type Butson Hadamard matrices of even order will be

discussed.

1. Introduction

A Hadamard matrix, sayH, is a square matrix of order n with entries from
the set {−1,+1} such thatHHt = nI. There is a great deal of interest in these
matrices owing to their growing number of applications in fields as diverse as
error-correcting codes (as used in the 1972 Mariner mission, for example) and
modern CDMA cellphones (the Walsh transform). The interested reader may
profitably consult sources such as Horadam [12] and Seberry [17], together
with the references cited therein, for further discussion of the applications of
these most useful objects.

In this paper, we will consider Hadamard matrices whose entries are taken
from a larger set of values, namely, the roots of unity residing along the unit
circle. Hadamard matrices whose entries are roots of unity are termed Butson
Hadamard. Additionally, we will require the matrices studied here to be of
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Bush-type, that is, they will have square order n2 and be divided into n2 blocks
of order n which are either all ones or have row and column sum equal to 0.
Butson Hadamard matrices were first studied by Butson [5,6] and Shrikhande
[18], while Bush-type Hadamard matrices were first introduced by Bush [3,4].
For these and related structural constraints on Hadamard matrices, the reader
may consult Colbourn and Dinitz [7], the standard reference of the field.

The remainder of this note is organized as follows. Sec. 2 recapitulates
the necessary definitions and elementary results needed for the main construc-
tions of this paper. Sec. 3 goes on to introduce the ω-circulant Bush-type
Butson Hadamard matrices, a generalization of the negacirculant Bush-type
Hadamard matrices first considered by Janko and Kharaghani [14].1 The
penultimate Sec. 4 of the main body of this work establishes the existence
of families of unbiased Butson Hadamard matrices which are maximal in the
sense that the set cannot be enlarged to a proper superset. Finally, the
concluding Sec. 5 explores the use of generalized Hadamard matrices in the
construction of symmetric Bush-type Hadamard matrices.

2. Preliminaries

A Butson Hadamard matrix is a square matrix, say H, of order n whose
entries are from the m-th complex roots of unity such that HH∗ = I. We
denote this as BH(n,m).

Evidently, there is a Butson Hadamard matrix of every order n upon
considering the matrix of the discrete Fourier transform, namely,
H = (exp(2πn−1

√
−1ij))n−1

i,j=0.

Example 2.1. Let ξ = (1+
√
−3)/2. Following the construction intimated

above, we obtain a BH(6, 6) given by

H6 =




1 1 1 1 1 1
1 ξ ξ2 ξ3 ξ4 ξ5

1 ξ2 ξ4 1 ξ2 ξ4

1 ξ3 1 ξ3 1 ξ3

1 ξ4 ξ2 1 ξ4 ξ2

1 ξ5 ξ4 ξ3 ξ2 ξ



.

A Bush-type (Butson) Hadamard matrix, say H, is a Butson Hadamard
matrix of order n2 over the m-th complex roots of unity which is subdivided
into n2 blocks H11, H12, . . . ,Hnn of order n such that JHij = HijJ = δijnJ .

1A structure similar to that of being negacirculant was also considered by Ionin and
Kharaghani [13] in the construction of doubly regular asymmetric digraphs.
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Example 2.2. Continuing to let ξ = (1 +
√
−3)/2, we have a Bush-type

BH(36, 6) given by




1 1 1 1 1 1 1 ξ ξ2 ξ3 ξ4 ξ5 1 ξ2 ξ4 1 ξ2 ξ4 1 ξ3 1 ξ3 1 ξ3 1 ξ4 ξ2 1 ξ4 ξ2 1 ξ5 ξ4 ξ3 ξ2 ξ

1 1 1 1 1 1 ξ5 1 ξ ξ2 ξ3 ξ4 ξ4 1 ξ2 ξ4 1 ξ2 ξ3 1 ξ3 1 ξ3 1 ξ2 1 ξ4 ξ2 1 ξ4 ξ 1 ξ5 ξ4 ξ3 ξ2

1 1 1 1 1 1 ξ4 ξ5 1 ξ ξ2 ξ3 ξ2 ξ4 1 ξ2 ξ4 1 1 ξ3 1 ξ3 1 ξ3 ξ4 ξ2 1 ξ4 ξ2 1 ξ2 ξ 1 ξ5 ξ4 ξ3

1 1 1 1 1 1 ξ3 ξ4 ξ5 1 ξ ξ2 1 ξ2 ξ4 1 ξ2 ξ4 ξ3 1 ξ3 1 ξ3 1 1 ξ4 ξ2 1 ξ4 ξ2 ξ3 ξ2 ξ 1 ξ5 ξ4

1 1 1 1 1 1 ξ2 ξ3 ξ4 ξ5 1 ξ ξ4 1 ξ2 ξ4 1 ξ2 1 ξ3 1 ξ3 1 ξ3 ξ2 1 ξ4 ξ2 1 ξ4 ξ4 ξ3 ξ2 ξ 1 ξ5

1 1 1 1 1 1 ξ ξ2 ξ3 ξ4 ξ5 1 ξ2 ξ4 1 ξ2 ξ4 1 ξ3 1 ξ3 1 ξ3 1 ξ4 ξ2 1 ξ4 ξ2 1 ξ5 ξ4 ξ3 ξ2 ξ 1

ξ 1 ξ5 ξ4 ξ3 ξ2 1 1 1 1 1 1 1 ξ ξ2 ξ3 ξ4 ξ5 1 ξ2 ξ4 1 ξ2 ξ4 1 ξ3 1 ξ3 1 ξ3 1 ξ4 ξ2 1 ξ4 ξ2

ξ2 ξ 1 ξ5 ξ4 ξ3 1 1 1 1 1 1 ξ5 1 ξ ξ2 ξ3 ξ4 ξ4 1 ξ2 ξ4 1 ξ2 ξ3 1 ξ3 1 ξ3 1 ξ2 1 ξ4 ξ2 1 ξ4

ξ3 ξ2 ξ 1 ξ5 ξ4 1 1 1 1 1 1 ξ4 ξ5 1 ξ ξ2 ξ3 ξ2 ξ4 1 ξ2 ξ4 1 1 ξ3 1 ξ3 1 ξ3 ξ4 ξ2 1 ξ4 ξ2 1

ξ4 ξ3 ξ2 ξ 1 ξ5 1 1 1 1 1 1 ξ3 ξ4 ξ5 1 ξ ξ2 1 ξ2 ξ4 1 ξ2 ξ4 ξ3 1 ξ3 1 ξ3 1 1 ξ4 ξ2 1 ξ4 ξ2

ξ5 ξ4 ξ3 ξ2 ξ 1 1 1 1 1 1 1 ξ2 ξ3 ξ4 ξ5 1 ξ ξ4 1 ξ2 ξ4 1 ξ2 1 ξ3 1 ξ3 1 ξ3 ξ2 1 ξ4 ξ2 1 ξ4

1 ξ5 ξ4 ξ3 ξ2 ξ 1 1 1 1 1 1 ξ ξ2 ξ3 ξ4 ξ5 1 ξ2 ξ4 1 ξ2 ξ4 1 ξ3 1 ξ3 1 ξ3 1 ξ4 ξ2 1 ξ4 ξ2 1

ξ ξ5 ξ3 ξ ξ5 ξ3 ξ 1 ξ5 ξ4 ξ3 ξ2 1 1 1 1 1 1 1 ξ ξ2 ξ3 ξ4 ξ5 1 ξ2 ξ4 1 ξ2 ξ4 1 ξ3 1 ξ3 1 ξ3

ξ3 ξ ξ5 ξ3 ξ ξ5 ξ2 ξ 1 ξ5 ξ4 ξ3 1 1 1 1 1 1 ξ5 1 ξ ξ2 ξ3 ξ4 ξ4 1 ξ2 ξ4 1 ξ2 ξ3 1 ξ3 1 ξ3 1

ξ5 ξ3 ξ ξ5 ξ3 ξ ξ3 ξ2 ξ 1 ξ5 ξ4 1 1 1 1 1 1 ξ4 ξ5 1 ξ ξ2 ξ3 ξ2 ξ4 1 ξ2 ξ4 1 1 ξ3 1 ξ3 1 ξ3

ξ ξ5 ξ3 ξ ξ5 ξ3 ξ4 ξ3 ξ2 ξ 1 ξ5 1 1 1 1 1 1 ξ3 ξ4 ξ5 1 ξ ξ2 1 ξ2 ξ4 1 ξ2 ξ4 ξ3 1 ξ3 1 ξ3 1

ξ3 ξ ξ5 ξ3 ξ ξ5 ξ5 ξ4 ξ3 ξ2 ξ 1 1 1 1 1 1 1 ξ2 ξ3 ξ4 ξ5 1 ξ ξ4 1 ξ2 ξ4 1 ξ2 1 ξ3 1 ξ3 1 ξ3

ξ5 ξ3 ξ ξ5 ξ3 ξ 1 ξ5 ξ4 ξ3 ξ2 ξ 1 1 1 1 1 1 ξ ξ2 ξ3 ξ4 ξ5 1 ξ2 ξ4 1 ξ2 ξ4 1 ξ3 1 ξ3 1 ξ3 1

ξ ξ4 ξ ξ4 ξ ξ4 ξ ξ5 ξ3 ξ ξ5 ξ3 ξ 1 ξ5 ξ4 ξ3 ξ2 1 1 1 1 1 1 1 ξ ξ2 ξ3 ξ4 ξ5 1 ξ2 ξ4 1 ξ2 ξ4

ξ4 ξ ξ4 ξ ξ4 ξ ξ3 ξ ξ5 ξ3 ξ ξ5 ξ2 ξ 1 ξ5 ξ4 ξ3 1 1 1 1 1 1 ξ5 1 ξ ξ2 ξ3 ξ4 ξ4 1 ξ2 ξ4 1 ξ2

ξ ξ4 ξ ξ4 ξ ξ4 ξ5 ξ3 ξ ξ5 ξ3 ξ ξ3 ξ2 ξ 1 ξ5 ξ4 1 1 1 1 1 1 ξ4 ξ5 1 ξ ξ2 ξ3 ξ2 ξ4 1 ξ2 ξ4 1

ξ4 ξ ξ4 ξ ξ4 ξ ξ ξ5 ξ3 ξ ξ5 ξ3 ξ4 ξ3 ξ2 ξ 1 ξ5 1 1 1 1 1 1 ξ3 ξ4 ξ5 1 ξ ξ2 1 ξ2 ξ4 1 ξ2 ξ4

ξ ξ4 ξ ξ4 ξ ξ4 ξ3 ξ ξ5 ξ3 ξ ξ5 ξ5 ξ4 ξ3 ξ2 ξ 1 1 1 1 1 1 1 ξ2 ξ3 ξ4 ξ5 1 ξ ξ4 1 ξ2 ξ4 1 ξ2

ξ4 ξ ξ4 ξ ξ4 ξ ξ5 ξ3 ξ ξ5 ξ3 ξ 1 ξ5 ξ4 ξ3 ξ2 ξ 1 1 1 1 1 1 ξ ξ2 ξ3 ξ4 ξ5 1 ξ2 ξ4 1 ξ2 ξ4 1

ξ ξ3 ξ5 ξ ξ3 ξ5 ξ ξ4 ξ ξ4 ξ ξ4 ξ ξ5 ξ3 ξ ξ5 ξ3 ξ 1 ξ5 ξ4 ξ3 ξ2 1 1 1 1 1 1 1 ξ ξ2 ξ3 ξ4 ξ5

ξ5 ξ ξ3 ξ5 ξ ξ3 ξ4 ξ ξ4 ξ ξ4 ξ ξ3 ξ ξ5 ξ3 ξ ξ5 ξ2 ξ 1 ξ5 ξ4 ξ3 1 1 1 1 1 1 ξ5 1 ξ ξ2 ξ3 ξ4

ξ3 ξ5 ξ ξ3 ξ5 ξ ξ ξ4 ξ ξ4 ξ ξ4 ξ5 ξ3 ξ ξ5 ξ3 ξ ξ3 ξ2 ξ 1 ξ5 ξ4 1 1 1 1 1 1 ξ4 ξ5 1 ξ ξ2 ξ3

ξ ξ3 ξ5 ξ ξ3 ξ5 ξ4 ξ ξ4 ξ ξ4 ξ ξ ξ5 ξ3 ξ ξ5 ξ3 ξ4 ξ3 ξ2 ξ 1 ξ5 1 1 1 1 1 1 ξ3 ξ4 ξ5 1 ξ ξ2

ξ5 ξ ξ3 ξ5 ξ ξ3 ξ ξ4 ξ ξ4 ξ ξ4 ξ3 ξ ξ5 ξ3 ξ ξ5 ξ5 ξ4 ξ3 ξ2 ξ 1 1 1 1 1 1 1 ξ2 ξ3 ξ4 ξ5 1 ξ

ξ3 ξ5 ξ ξ3 ξ5 ξ ξ4 ξ ξ4 ξ ξ4 ξ ξ5 ξ3 ξ ξ5 ξ3 ξ 1 ξ5 ξ4 ξ3 ξ2 ξ 1 1 1 1 1 1 ξ ξ2 ξ3 ξ4 ξ5 1

ξ ξ2 ξ3 ξ4 ξ5 1 ξ ξ3 ξ5 ξ ξ3 ξ5 ξ ξ4 ξ ξ4 ξ ξ4 ξ ξ5 ξ3 ξ ξ5 ξ3 ξ 1 ξ5 ξ4 ξ3 ξ2 1 1 1 1 1 1

1 ξ ξ2 ξ3 ξ4 ξ5 ξ5 ξ ξ3 ξ5 ξ ξ3 ξ4 ξ ξ4 ξ ξ4 ξ ξ3 ξ ξ5 ξ3 ξ ξ5 ξ2 ξ 1 ξ5 ξ4 ξ3 1 1 1 1 1 1

ξ5 1 ξ ξ2 ξ3 ξ4 ξ3 ξ5 ξ ξ3 ξ5 ξ ξ ξ4 ξ ξ4 ξ ξ4 ξ5 ξ3 ξ ξ5 ξ3 ξ ξ3 ξ2 ξ 1 ξ5 ξ4 1 1 1 1 1 1

ξ4 ξ5 1 ξ ξ2 ξ3 ξ ξ3 ξ5 ξ ξ3 ξ5 ξ4 ξ ξ4 ξ ξ4 ξ ξ ξ5 ξ3 ξ ξ5 ξ3 ξ4 ξ3 ξ2 ξ 1 ξ5 1 1 1 1 1 1

ξ3 ξ4 ξ5 1 ξ ξ2 ξ5 ξ ξ3 ξ5 ξ ξ3 ξ ξ4 ξ ξ4 ξ ξ4 ξ3 ξ ξ5 ξ3 ξ ξ5 ξ5 ξ4 ξ3 ξ2 ξ 1 1 1 1 1 1 1

ξ2 ξ3 ξ4 ξ5 1 ξ ξ3 ξ5 ξ ξ3 ξ5 ξ ξ4 ξ ξ4 ξ ξ4 ξ ξ5 ξ3 ξ ξ5 ξ3 ξ 1 ξ5 ξ4 ξ3 ξ2 ξ 1 1 1 1 1 1




.

The Bush-type Butson Hadamard matrix of the previous example has an
additional structure that we will attend to in the next section, namely, it is
block ω-circulant (in this case, ω = ξ).

Two BH(n2,m)s H1 and H2 are unbiased if n−1H1H
∗
2 is also a BH(n2,m).

A collection {H1, . . . ,Hs} of BH(n2,m)s is mutually unbiased in the event
that each pair {H1, H2} is unbiased.
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Example 2.3. It can be checked that the following is a pair of unbiased
Bush-type BH(16, 2)s.



1 1 1 1 1 1 −− 1 − 1 − 1 −− 1
1 1 1 1 1 1 −−− 1 − 1 − 1 1 −
1 1 1 1 −− 1 1 1 − 1 −− 1 1 −
1 1 1 1 −− 1 1 − 1 − 1 1 −− 1
1 1 −− 1 1 1 1 1 −− 1 1 − 1 −
1 1 −− 1 1 1 1 − 1 1 −− 1 − 1
−− 1 1 1 1 1 1 − 1 1 − 1 − 1 −
−− 1 1 1 1 1 1 1 −− 1 − 1 − 1
1 − 1 − 1 −− 1 1 1 1 1 1 1 −−
− 1 − 1 − 1 1 − 1 1 1 1 1 1 −−
1 − 1 −− 1 1 − 1 1 1 1 −− 1 1
− 1 − 1 1 −− 1 1 1 1 1 −− 1 1
1 −− 1 1 − 1 − 1 1 −− 1 1 1 1
− 1 1 −− 1 − 1 1 1 −− 1 1 1 1
− 1 1 − 1 − 1 −−− 1 1 1 1 1 1
1 −− 1 − 1 − 1 −− 1 1 1 1 1 1




,




1 1 1 1 1 − 1 − 1 −− 1 1 1 −−
1 1 1 1 − 1 − 1 − 1 1 − 1 1 −−
1 1 1 1 1 − 1 −− 1 1 −−− 1 1
1 1 1 1 − 1 − 1 1 −− 1 −− 1 1
1 − 1 − 1 1 1 1 1 1 −− 1 −− 1
− 1 − 1 1 1 1 1 1 1 −−− 1 1 −
1 − 1 − 1 1 1 1 −− 1 1 − 1 1 −
− 1 − 1 1 1 1 1 −− 1 1 1 −− 1
1 −− 1 1 1 −− 1 1 1 1 1 − 1 −
− 1 1 − 1 1 −− 1 1 1 1 − 1 − 1
− 1 1 −−− 1 1 1 1 1 1 1 − 1 −
1 −− 1 −− 1 1 1 1 1 1 − 1 − 1
1 1 −− 1 −− 1 1 − 1 − 1 1 1 1
1 1 −−− 1 1 −− 1 − 1 1 1 1 1
−− 1 1 − 1 1 − 1 − 1 − 1 1 1 1
−− 1 1 1 −− 1 − 1 − 1 1 1 1 1




.

Finally, a Butson Hadamard matrix is said to be normalized if the first
row and column consist entirely of ones.

3. ω-Circulant Bush-Type Matrices

The construction of real symmetric Bush-type Hadamard matrices was
initiated by Bush [10] when he constructed symmetric Bush-type Hadamard
matrices of order 4n2 from a projective plane of order 2n. The expectation was
to show, for example, there is no symmetric Bush-type Hadamard matrix of
order 100 and thus no projective plane of order 10. Wallis [20] used mutually
orthogonal latin squares in a circuitous route via design graphs, constructing
many symmetric Bush-type Hadamard matrices of order 16n2. Further, it
was shown there that if a Hadamard matrix of order n exists, then a Bush-
type Hadamard matrix of order n2 exists by an application of affine resolvable
designs.

Best and Kharaghani [1] and Holzmann et al. [11] simplified the construc-
tion of Bush-type Hadamard matrices considerably by using the auxiliary ma-
trices corresponding to a Hadamard matrix. Furthermore, appealing to the
so-called mutually suitable latin squares, one may construct sets of mutually
unbiased Hadamard matrices. We define these objects now.

Given a normalized BH(n,m), label the rows consecutively as r0, . . . , rn−1.
Then the auxiliary matrices of the matrix are the projection matrices ci = r∗i ri
(i = 0, . . . , n− 1) corresponding to each row. In [15] Kharaghani showed the
following result.

Lemma 3.1. The auxiliary matrices c0, . . . , cn−1 of a BH(n,m) satisfy

(1) c∗i = ci,
(2) cicj = δijnci, and
(3)

∑
i ci = nI.



BUSH-TYPE BUTSON HADAMARD MATRICES 251

Recall that a latin square of side n is an n × n matrix whose rows and
columns are permutations of an n-set. Clearly, if there is a symmetric latin
square of side n with constant diagonal over the auxiliary matrices of a
BH(n,m), then there is a Hermitian Bush-type BH(n2,m). We can, in fact,
impose additional structure on the matrix.

Theorem 3.2. Let c0, . . . , cn−1 be the auxiliary matrices of a BH(n,m),
and let L be any latin square of side n. Then (ξijcLij

)n−1
i,j=0, where ξij is any

complex m′-th root of unity, is a Butson Hadamard matrix of order n2 over
the M -th roots of unity with M = lcm(m,m′).

Proof of Theorem 3.2. Let R0, . . . , Rn−1 be the block rows of the
constructed matrix. Then, for i ̸= j, we have RiR

∗
j =

∑
k ξikξ

−1
jk cLik

cLjk
= O

and

RiR
∗
i =

∑

k

ξikξ
−1
ik cLik

cLik
= n

∑

k

cik = n2I.

This concludes the proof.

Let A be a matrix over the complex m-th roots of unity, and let ω be a
primitive m-th root. If A has first row (a0, . . . , an−1), then A is ω-circulant in
the event that Aij = a(j−i) (mod n) if j ≧ i, and Aij = ωa(j−i) (mod n) if j < i.
A is block ω-circulant if each ai is a matrix (or block). Note that towards
simplicity, we will usually abstain from including the descriptor block. We
then have the following result.

Corollary 3.3. If there is a BH(n,m), then there is an ω-circulant
Bush-type BH(n2,m), where ω is a primitive m-th root of unity.

Proof of Corollary 3.3. L = circ(0, . . . , n− 1) is a latin square with
constant diagonal. Then (ξijcLij ), where c0, . . . , cn−1 are the auxiliary matri-
ces of the BH(n,m), and where ξij = 1 if j ≧ i and ξij = ω if j < i, is the
required matrix.

Two latin squares of the same side are orthogonal in the event that in
the superimposition of one square over the other, every ordered pair of the
alphabet appears precisely once. A collection of latin squares of the same side
is mutually orthogonal if every pair of squares is orthogonal.

Two latin squares of the same side are suitable in the event that the
superimposition of a row of one square over any row of the other contains
precisely one ordered pair in which the abscissa and ordinate coincide. A
collection of latin squares of the same side are mutually suitable if every pair
is suitable.

Evidently, orthogonality and suitability of latin squares are equivalent
concepts (see Holzmann et al. [11]).
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Proposition 3.4. Given a latin square L, form the matrix whose (k, j)-
th entry is i if and only if the (i, j)-th entry of L is k. This defines a bijection
between sets of mutually orthogonal and mutually suitable latin squares of the
same side.

Corollary 3.5. For every n > 2 with n ̸= 6, there exists a pair of
suitable latin squares.

Corollary 3.6. If q is a prime power, there is a complete set of mutually
suitable latin squares of side q consisting of q − 1 matrices.

It is a straightforward exercise to construct the squares of the previous
corollary directly. Indeed, take F = {x0 = 0, x1, . . . , xq−1} to be the Galois
field of q elements. For each s ̸= 0, define Lxs by Lxsij

= xs(xi − xj). Then

{Lxs
: s = 1, . . . , q − 1} is a collection of mutually suitable latin squares.

If L1 and L2 are two suitable latin squares, then we define their product
L1 ◦L2 by taking the (i, j)-th entry to be the point of agreement between the
i-th row of L1 and the j-th row of L2. Clearly, L1 ◦L2 is again a latin square.

Using Lemma 3.1 and Theorem 3.2, we have the following theorem.2

Theorem 3.7. For n > 2 with n ̸= 6, if there is a BH(n,m), then there
are at least two mutually unbiased Bush-type Hadamard matrices of order n2.
Furthermore, if n is a prime power, then there are n − 1 mutually unbiased
ω-circulant Bush-type Hadamard matrices.

Remark 3.8. In general, it is known that there are at most n mutually
unbiased Hadamard matrices of order n. The reader may consult the compre-
hensive reference Durt et al. [9] for this and closely related topics. Here we
have constructed a collection of unbiased Hadamard matrices of a particular
block form that can never meet this optimal bound.

4. New Sets of Unbiased Bush-Type Butson Hadamard Matrices

In the previous section, it was shown that given a BH(n,m), we can
construct families of mutually unbiased Bush-type Butson Hadamard matrices
using the mutually suitable latin squares. In the cases of 2-nd and 4-th roots
of unity, it is shown by Holzmann et al. [11] and Best and Kharaghani [1]
that we may add another matrix not of Bush-type which is unbiased with
each of the previous matrices. We can apply this result to the general Butson
matrices as follows.

Theorem 4.1. If there is a BH(n,m), and if there are ℓ mutually suitable
latin squares of side n, then there are ℓ+ 1 mutually unbiased BH(n2,m)s.

2Special versions of this theorem were given in the aforementioned articles. We include
it here in its full generality.
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Proof of Theorem 4.1. Let L1, . . . , Lℓ be the mutually suitable latin
squares over the auxiliary matrices of a BH(n,m). Then there are mutually
unbiased BH(n2,m)s.

If r0, . . . , rn−1 are the rows of the assumed BH(n,m), then form the ma-
trix K by Kij = r∗j ri. Since (r∗uru)(r

∗
j ri)

∗ = δuinr
∗
urj , it follows that K is

unbiased with each of L1, . . . , Lℓ.

We now show that the set of unbiased matrices constructed in the previous
theorem is maximal, in the sense that the set cannot be enlarged to a proper
superset, in the case that n = m is a prime power and ℓ = n − 1. Indeed,
let q = pn be any prime power, and let Q = {x ∈ C : xq = 1}. If S is
any multiset consisting of elements of Q, then the main theorem of Lam and
Leung [16] shows that

∑
α∈S α = 0 only if |S| ≡ 0 (mod p). Thus we have

the following result.

Lemma 4.2. If S and T are any multisets over elements of Q, then∑
α∈S α =

∑
β∈T β only if |S|2 ≡ |T |2 (mod p).

Proof of Lemma 4.2. Let s = |S| and t = |T |. Take R = s ·Q, that is,
R is the multiset containing s copies of every element of Q; then

∑
r∈R r = 0.

Now, remove from R the elements of S (taking into account multiplicities),
and add a further s copies of the elements of T . Call this new multiset R′.
Since

∑
α∈S α =

∑
β∈T β, it follows that

∑
r′∈R′ r′ = 0 so that |R′| ≡ 0

(mod p). However, we also have that |R′| = sq − s2 + st, whereupon s2 ≡ st
(mod p). Swapping S and T , we find that t2 ≡ st (mod p), and the result
follows.

For a given prime power, let L1, . . . , Lq−1, and K be the mutually unbi-
ased BH(q2, q)s obtained from Theorem 4.1 using the discrete Fourier trans-
form matrix of order q. Choose the first row from each matrix, and label them
ℓ1, . . . , ℓq−1, and k (note that k = 1).

We have that |⟨x, y⟩| = q, for any distinct x, y ∈ {ℓ1, . . . , ℓq−1, k}. Assume
that we can add a further vector v over Q such that |⟨x, v⟩| = q, for every
x ∈ {ℓ1, . . . , ℓq−1, k}. We write v = (r1, . . . , rq), where each ri = (yi1, . . . , yiq)
has length q. We can then assume the following situation corresponding to
the rows ℓ0, . . . , ℓq−1, and k

r1
1 . . . 1
1 . . . 1

...
1 . . . 1

r2
1 ∗ . . . ∗
1 ∗ . . . ∗

...
1 1 . . . 1

. . .

. . .

. . .

. . .

rq
1 ∗ . . . ∗
1 ∗ . . . ∗

...
1 1 . . . 1

where the bottom row corresponds to k and the first to v. First taking the
inner product of v with respect to each of ℓ1, . . . , ℓq−1, k, and then adding, we
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obtain qz1 + · · · qzq where each zi ∈ Q. Next, multiplying with respect to the
compartments and adding, we obtain qy11+ · · · qy1q + qy21+ qy31+ · · ·+ qyq1
where each yij ∈ Q. We then have that

y11 + · · · y1q + y21 + y31 + · · ·+ yq1 = z1 + · · ·+ zq.

The left summand contains 2q − 1 q-th roots of unity, while the right sum-
mand contains q q-th roots of unity. As (2q − 1)2 ̸≡ q2 (mod p), we have a
contradiction. Therefore the following result holds.

Theorem 4.3. For every prime power q there is a nonextendable set of
q mutually unbiased BH(q2, q)s.

5. Application of Generalized Hadamard Matrices

Inspired by a result of Verheiden [19], it will be shown that Bush-type
Butson Hadamard matrices are also constructible from generalized Hadamard
matrices. A generalized Hadamard matrix is a square matrix H = [Hij ] of
order n over an additive group G such that the multisets Sij = {Hik −Hjk :
0 ≦ k < n}, for 0 ≦ i < j < n, each contain λ copies of every group element
in G. We then write H is a GH(G,λ).3

Drake [8] showed that for a prime power q there is a symmetric GH(G, 1)
over any elementary abelian group G of order q. It is also known that from
a GH(G, 1) a group divisible design GDD(q2, q, q, q, 0, 1) is constructible by
simply representing the group elements by their linear permutation represen-
tation (see Beth et al. [2] for the necessary definitions). Such a GDD consists
of q2 disjoint permutation matrix blocks of size q. Moreover, continuing to
let H be our group matrix, one easily sees that

HHt = HtH = qIq2 − Iq ⊗ Jq + Jq ⊗ Jq.
For the prime power q, let ξ be a primitive q-th root of unity, and let

D = diag(Iq, ξIq, ξ
2Iq, · · · , ξq−1Iq),

be a block-diagonal matrix of order q2. We then have the following.

Theorem 5.1. Let H be a GH(G, 1) over an abelian group G of prime
power order q viewed as the (0, 1) incidence matrix of a GDD(q2, q, q, q, 0, 1).
Then K = HDHt + Iq ⊗ Jq is a symmetric Bush-type BH(q2, q).

Proof of Theorem 5.1. From HHt = HtH = qIq2 − Iq⊗Jq+Jq⊗Jq
it follows that

HD(HtH)D∗Ht = qIq2HH
t −H(Iq ⊗ Jq)Ht +HD(Jq ⊗ Jq)(HD)∗.

Noting that H(Iq ⊗ Jq)Ht = Jq ⊗ Jq and (HDHt)(J ⊗ J) = 0, it follows that

KK∗ = (HDHt + Iq ⊗ Jq)(HDHt + Iq ⊗ Jq)∗ = q2Iq2 .

3These matrices are also referred to as difference matrices in the literature.
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Since

(HDHt + Iq ⊗ Jq)t = HDHt + Iq ⊗ Jq,
K is symmetric. It can be seen that the off-diagonal blocks have zero row and
column sum.

Remark 5.2. For a prime p, Winterhof [21] has shown that a BH(n, p)
over a group G of the p-th roots of unity is also a GH(G, p). The BH(36, 6)
of Example 2 is not a GH(G, 6) over the group G of the 6-th roots of unity.

The construction method for Theorem 5.1 has the extra property that:

Corollary 5.3. Theorem 5.1 is valid for any subgroup of the group of
q-th roots of unity and the matrix K is a GH(G, q) over the group G of the
q-th roots of unity.

Example 5.4. Applying Theorem 5.1 to the group C4 of the 4-th roots
of unity, and for a normalized GH(C4, 1), we obtain a Bush-type GH(C4, 4)




1 1 1 1 1 − i j 1 i j − 1 j − i
1 1 1 1 − 1 j i i 1 − j j 1 i −
1 1 1 1 i j 1 − j − 1 i − i 1 j
1 1 1 1 j i − 1 − j i 1 i − j 1
1 − i j 1 1 1 1 1 j − i 1 i j −
− 1 j i 1 1 1 1 j 1 i − i 1 − j
i j 1 − 1 1 1 1 − i 1 j j − 1 i
j i − 1 1 1 1 1 i − j 1 − j i 1
1 i j − 1 j − i 1 1 1 1 1 − i j
i 1 − j j 1 i − 1 1 1 1 − 1 j i
j − 1 i − i 1 j 1 1 1 1 i j 1 −
− j i 1 i − j 1 1 1 1 1 j i − 1
1 j − i 1 i j − 1 − i j 1 1 1 1
j 1 i − i 1 − j − 1 j i 1 1 1 1
− i 1 j j − 1 i i j 1 − 1 1 1 1
i − j 1 − j i 1 j i − 1 1 1 1 1




.

For the subgroup {1,−1}, we obtain a Bush-type BH(16, 2)



1 1 1 1 1 1 −− 1 −− 1 1 − 1 −
1 1 1 1 1 1 −−− 1 1 −− 1 − 1
1 1 1 1 −− 1 1 − 1 1 − 1 − 1 −
1 1 1 1 −− 1 1 1 −− 1 − 1 − 1
1 1 −− 1 1 1 1 1 − 1 − 1 −− 1
1 1 −− 1 1 1 1 − 1 − 1 − 1 1 −
−− 1 1 1 1 1 1 1 − 1 −− 1 1 −
−− 1 1 1 1 1 1 − 1 − 1 1 −− 1
1 −− 1 1 − 1 − 1 1 1 1 1 1 −−
− 1 1 −− 1 − 1 1 1 1 1 1 1 −−
− 1 1 − 1 − 1 − 1 1 1 1 −− 1 1
1 −− 1 − 1 − 1 1 1 1 1 −− 1 1
1 − 1 − 1 −− 1 1 1 −− 1 1 1 1
− 1 − 1 − 1 1 − 1 1 −− 1 1 1 1
1 − 1 −− 1 1 −−− 1 1 1 1 1 1
− 1 − 1 1 −− 1 −− 1 1 1 1 1 1




.
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Corollary 5.5. Applying Theorem 5.1 to p = 2n and the subgroup
{1,−1}, implies the existence of a symmetric Bush-type Hadamard matrix
of order 4n2.

No symmetric Bush-type Hadamard matrix of order 4n2, n odd, is known.
We suspect that there is no symmetric Bush-type GH(4n2, 2n), n odd.
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