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Abstract. A mixed dihedral group is a group H with two disjoint

subgroups X and Y , each elementary abelian of order 2n, such that H is

generated by X ∪ Y , and H/H′ ∼= X × Y . In this paper, for each n ≥ 2,
we construct a mixed dihedral 2-group H of nilpotency class 3 and order

2a where a = (n3 +n2 +4n)/2, and a corresponding graph Σ, which is the

clique graph of a Cayley graph of H. We prove that Σ is semisymmetric,
that is, Aut(Σ) acts transitively on the edges but intransitively on the

vertices of Σ. These graphs are the first known semisymmetric graphs

constructed from groups that are not 2-generated (indeed H requires 2n
generators). Additionally, we prove that Σ is locally 2-arc-transitive, and is

a normal cover of the ‘basic’ locally 2-arc-transitive graph K2n,2n . As such,
the construction of this family of graphs contributes to the investigation of

normal covers of prime-power order of basic locally 2-arc-transitive graphs

– the ‘local’ analogue of a question posed by C. H. Li.

1. Introduction

Many graphs with a lot of symmetry arise from constructions based on
groups. These include Cayley graphs, and more generally arc-transitive coset
graphs, all of which are vertex-transitive. More recently the Cayley graph con-
struction was extended to a theory of bi-Cayley graphs in [25] which led to the
construction of the first (to our knowledge) infinite family of semisymmetric
graphs based on finite 2-groups.
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Semisymmetric graphs. These are regular graphs (that is, each vertex
has the same valency) which are edge-transitive but not vertex-transitive.
They have been studied for more than 50 years. In 1967, in what is perhaps the
first paper published on the subject, Folkman gave a method for constructing
examples of semisymmetric graphs from abelian groups [5, Theorem 4] and
posed a number of questions, notably he asked for all values of v, k such that
there exists a semisymmetric graph on v vertices (that is, of order v) with
valency k. By 2006, all cubic (valency 3) semisymmetric graphs on up to 768
vertices had been enumerated, (by Ivanov [13] for orders up to 28 in 1987, and
the rest by Conder et. al. [2]). Ming Yao Xu alerted the third author that
the list contained no examples with 2-power order, and it turned out that the
theory of bi-Cayley graphs developed in [25] could be applied to construct, for
each n ≥ 2, a cubic semisymmetric graph of order 22n+7 which is a bi-Cayley
graph for a 2-group H of order 22n+6. The group H was 2-generated with
derived quotient H/H ′ ∼= C2n × C2n and |H ′| = 26. An additional family of
semisymmetric bi-Cayley graphs was given by Conder et. al. [3, Example 5.2
and Proposition 5.4] in 2020. This time the graphs had order 4n and valency
2k, with k odd, and were constructed as bi-Cayley graphs for a dihedral
group D2n of order 2n, with the requirement that some element of Z∗

n has
multiplicative order 2k. Thus although the valencies in this new family were
unbounded, the groups used in the construction were still 2-generated.

Our aim in this paper is to present a new infinite family of semisymmetric
graphs based on very different kinds of 2-groups. For each n ≥ 2 we construct
(see Definitions 1.1, 1.2 and Theorem 1.3) a semisymmetric graph of order

2n
2(n+1)/2+n+1 and valency 2n, based on a 2-group H with H/H ′ = C2n

2

(which implies that H requires 2n generators). The idea for our construction
came from our recent paper [10] where we studied a natural Cayley graph
Γ(H) for a group H (not necessarily a 2-group) with disjoint subgroups X,Y
such that X ∼= Y ∼= Cn2 , H = ⟨X,Y ⟩, and H/H ′ ∼= C2n

2 (Definition 1.1). It
turns out that, in the case where Γ(H) is edge-transitive, its clique graph has
many desirable properties [10, Theorem 1.6]. Here we apply this theory to
an explicit family of such groups H with nilpotency class 3 and show that
the associated clique graphs of the Cayley graphs Γ(H) are semisymmetric
(Theorem 1.3).

Locally 2-arc-transitive graphs. In making this construction we had an
additional objective in mind. Our construction produces semisymmetric
graphs which are locally 2-arc-transitive (Theorem 1.3). The 2-arcs in a graph
Σ are vertex-triples (u, v, w) such that {u, v} and {v, w} are edges and u ̸= w,
and Σ is said to be locally (G, 2)-arc-transitive if G ≤ Aut(Γ) and for each
vertex u, the stabiliser Gu is transitive on the 2-arcs (u, v, w) starting at u.

For a finite connected locally (G, 2)-arc-transitive graph Σ, the group G
is edge-transitive, and either G is vertex-transitive or Σ is bipartite and the
two parts of the vertex-bipartition are the G vertex-orbits. Such graphs had



SEMISYMMETRIC, LOCALLY 2-ARC-TRANSITIVE GRAPHS 261

been extensively studied since the seminal work of Tutte [24] in the 1940s,
and more recently the second author (in 1993 [20, Theorem 4.1] for G-vertex-
transitive graphs, and in 2004 with Giudici and Li [7, Theorems 1.2 and
1.3] for G-vertex-intransitive graphs) identified a sub-family of ‘basic’ locally
(G, 2)-arc-transitive graphs such that each finite connected locally (G, 2)-arc-
transitive graph is a normal cover of a basic example (see Section 2.1 for
a discussion of these concepts). This new approach allows effective use of
modern permutation group theory and the finite simple group classification to
study these graphs. We note that, if a locally (G, 2)-arc-transitive, G-vertex-
intransitive graph Σ is a normal cover of a basic graph Σ0 relative to some
subgroup N ◁G, then Σ0 may have additional symmetry not inherited from
G; in particular Σ0 may be vertex-transitive. Moreover Σ may have additional

symmetry, say a larger group Ĝ of automorphisms properly containing G, and

not normalising N , such that Ĝ does not induce a group of automorphisms of
Σ0. Thus in studying these properties we need to consider the graph group
pair (Σ, G).

The family of ‘basic’ graphs that are covered by the graphs in our con-
struction are the complete bipartite graphsK2n,2n , which of course are vertex-
transitive. They form one of a small number of families of basic locally
(G, 2)-arc-transitive, G-vertex-transitive graphs of prime power order clas-
sified in [14], sharpening the classification arising from [12, 20, 21] for prime
power orders (see Subsection 2.1). They also arise, as we prove in Theo-
rem 1.3, as basic graphs covered by G-vertex-intransitive, locally (G, 2)-arc-
transitive graphs of 2-power order. It would be good to have an extension
of Li’s classification (of the vertex-transitive examples) to all basic regular
locally (G, 2)-arc-transitive graphs of prime power order. We note that there
are some examples of vertex-intransitive, basic locally (G, 2)-arc-transitive
graphs of prime power order that are not regular graphs, for example the
stars K1,pa−1 with G = Spa−1, but any regular graphs with these properties
will have order a 2-power.

Problem 1.1. Classify the basic, regular, locally (G, 2)-arc-transitive
graphs of prime power order. In particular, are there any additional bipartite
examples which are not already in Li’s classification [14, Theorem 1.1]?

Li [14, pp. 130–131] was “inclined to think that non-basic 2-arc-transitive
graphs of prime power order would be rare and hard to construct”, and posed
the problem [14, Problem] of constructing and characterising the normal cov-
ers of prime power order of the basic graphs in his classification. We would
like to expand this problem to include covers of all basic graphs arising from
Problem 1.1. Here, as in [10], we focus on covers of the graphs K2n,2n .

1.1. The main result. The general family of groups and graph construc-
tions we will study are specified in Definition 1.1. One of the graphs is a
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Cayley graph Cay(G,S) for a group G with respect to an inverse-closed sub-
set S ⊆ G \ {1} (that is, s−1 ∈ S for all s ∈ S): it is the graph with vertex
set G and edge set {{g, sg} : g ∈ G, s ∈ S}.

Definition 1.1. Let n be an integer, n ≥ 2.

(a) If H is a finite group with subgroups X,Y such that X ∼= Y ∼= Cn2 ,
H = ⟨X,Y ⟩ and H/H ′ ∼= C2n

2 , where H ′ is the derived subgroup of H,
then we say that H is an n-dimensional mixed dihedral group relative
to X and Y .

(b) For H,X, Y as in part (a), the graphs C(H,X, Y ) and Σ(H,X, Y ) are
defined as follows:

(1.1) C(H,X, Y ) = Cay(H,S(X,Y )), with S(X,Y ) = (X ∪ Y ) \ {1};
and Σ = Σ(H,X, Y ) is the graph with vertex-set and edge-set given by:

(1.2)
V (Σ) = {Xh, Y h : h ∈ H},
E(Σ) = {{Xh, Y g} : h, g ∈ H and Xh ∩ Y g ̸= ∅}.

While this construction was used in [10, Theorem 1.8] to obtain an infinite
family of (vertex-transitive) 2-arc-transitive normal covers of K2n,2n of order
a 2-power, our interest here is semisymmetric examples. This is a much more
delicate problem, and requires us to analyse a new infinite family of mixed-
dihedral 2-groups H(n), which we now define.

Definition 1.2. Let n ≥ 2 be an integer and let X0 = {x1, . . . , xn},
Y0 = {y1, . . . , yn}, and consider the group

H(n) = ⟨X0 ∪ Y0 | R⟩
where R is the following set of relations: for x, x′ ∈ X0, y, y

′ ∈ Y0, and
z, z′, z′′, z′′′ ∈ X0 ∪ Y0,

z2 = 1, [x, x′] = [y, y′] = 1, [x, y]2 = 1, [[y, x], y′] = 1,

[[x, y], z]2 = 1, [[[z, z′], z′′], z′′′] = 1.

It turns out that, for these groups, the graph Σ(H(n), X, Y ) is semisym-
metric and is a locally 2-arc-transitive normal cover of K2n,2n .

Theorem 1.3. For n ≥ 2, the group H(n) in Definition 1.2 is an n-

dimensional mixed dihedral group of order 2n(n
2+n+4)/2 relative to X = ⟨X0⟩

and Y = ⟨Y0⟩, and the graph Σ(H(n), X, Y ) as in (1.2) is semisymmetric

and locally 2-arc-transitive, of valency 2n and order 2n
2(n+1)/2+n+1, and is a

normal cover of K2n,2n .

Remark 1.4. The smallest case in Theorem 1.3 is that of n = 2. Here
|H(2)| = 210, and Σ = Σ(H(2), X, Y ) has order |V (Σ)| = 29 and valency 4. A
computation in GAP [6] shows that |Aut(Σ)| = 215 · 35, considerably larger
than the subgroup A := H(2) · A(H(2), X, Y ) = H(2) · (GL2(2)×GL2(2)) of
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Figure 1. Distance diagrams at the vertices X (upper) and
Y (lower) for the smallest graph Σ = Σ(H(2), X, Y ) in The-
orem 1.3. It has 512 vertices and valency 4. Here each node
represents an orbit of the stabiliser of the relevant vertex (X
or Y ) in the full automorphism group of Σ. Computations
performed in GAP [6].

order 212 ·32 used in the proof of Theorem 1.3 (see also Lemma 2.3 and Theo-
rem 4.5 (5)). To give some insight into the structure of Σ we computed, again
using GAP, the distance diagrams for Σ from the vertices X and Y . These
are shown in Figure 1, and demonstrate that Σ is locally 3-distance-transitive.
The two diagrams exhibit strikingly different structure from distance 4 on-
wards. In fact, the stabilisers Aut(Σ)X and Aut(Σ)Y of the vertices X and
Y are non-isomorphic subgroups of order 27 · 35. Further computations, per-
formed in GAP and Magma [1], show that

1. O2(Aut(Σ)) = H(2)′.Y ∼= C8
2 , lies in H(2), is faithful and regular

on the Aut(Σ)-orbit containing the vertex X, and has four orbits of
length 64 on the Aut(Σ)-orbit containing Y . The normal quotient of
Σ modulo O2(Aut(Σ)) is the ‘star’ K1,4.

2. Also A is self-normalising in Aut(Σ), and there are exactly 896 sub-
groups of Aut(Σ) of order 256 that act semiregularly on V (Σ) with
orbits the two parts of the bipartition. Hence, at least in the case
n = 2, the graph Σ is a bi-Cayley graph of some 2-group.

This paper is organised as follows. In Section 2, we outline the notation
used in the paper and give several preliminary results, including Lemma 2.3
which summarises several properties of the graphs C(H,X, Y ) and Σ(H,X, Y )
which we will need, and which were proved in [10]. In Section 3, we investigate
the structure of the group H(n), and in Section 4 we prove Theorem 1.3.

2. Notation and preliminary results for graphs

All graphs we consider are finite, connected, simple and undirected. Let
Γ be a graph. Denote by V (Γ), E(Γ) and Aut(Γ) the vertex set, edge set, and
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full automorphism group of Γ, respectively. For v ∈ V (Γ), let Γ(v) denote the
set of vertices adjacent to v. A graph Γ is said to be regular if there exists an
integer k such that |Γ(v)| = k for all vertices v ∈ V (Γ). A graph Γ is bipartite
if E(Γ) ̸= ∅ and V (Γ) is of the form ∆ ∪∆′ such that each edge consists of
one vertex from ∆ and one vertex from ∆′. If Γ is connected then this vertex
partition is uniquely determined and the two parts ∆,∆′ are often called the
biparts of Γ.

For a graph Γ, let G ≤ Aut(Γ). For v ∈ V (Γ), let Gv = {g ∈ G :
vg = v}, the stabiliser of v in G. We say that Γ is G-vertex-transitive or
G-edge-transitive if G is transitive on V (Γ) or E(Γ), respectively, and that Γ
is G-semisymmetric if Γ is regular and G-edge-transitive but not G-vertex-
transitive. When G = Aut(Γ), a G-vertex-transitive, G-edge-transitive or
G-semisymmetric graph Γ is simply called vertex-transitive, edge-transitive
or semisymmetric, respectively. The 2-arcs in a graph Γ are vertex-triples
(u, v, w) such that {u, v}, {v, w} ∈ E(Γ) and u ̸= w. A graph Γ is said to
be locally (G, 2)-arc-transitive if G ≤ Aut(Γ) and, for each u ∈ V (Γ), Gu is
transitive on the 2-arcs (u, v, w) starting at u, or equivalently, see [7, Lemma
3.2], Gu is 2-transitive on the set Γ(u). Similarly, when G = Aut(Γ), a locally
(G, 2)-arc-transitive graph Γ is simply called locally 2-arc-transitive. There
is a considerable body of literature on locally 2-arc-transitive graphs, see for
example [4, 7, 15,17,20].

2.1. Normal quotients and normal covers of graphs. The normal quotient
method for investigating vertex- or edge-transitive graphs proceeds as follows.
Assume that G ≤ Aut(Γ) is such that Γ is G-vertex-transitive or G-edge-
transitive. Let N be a normal subgroup of G such that N is intransitive on
V (Γ). The N -normal quotient graph of Γ is defined as the graph ΓN with
vertices the N -orbits in V (Γ) and with two distinct N -orbits adjacent if there
exists an edge in Γ consisting of one vertex from each of these orbits. If Γ
is regular, and if ΓN and Γ have the same valency, then we say that Γ is an
N -normal cover of ΓN .

If Γ is connected and is a regular, locally (G, 2)-arc-transitive graph, and
if N is intransitive on each G-vertex-orbit, then (by [20, Theorem 4.1] and [7,
Lemma 5.1]) also ΓN is a connected, regular locally (G/N, 2)-arc-transitive
graph, Γ is an N -normal cover of ΓN , and N is semiregular on V (Γ), that is,
each N -orbit has size |N |. Such a graph Γ is said to be basic (or sometimes G-
basic, to emphasise dependence on G) if there is no suitable normal subgroup
N to make such a reduction; that is, if each nontrivial normal subgroupN of G
is transitive on at least one G-orbit, forcing the quotient ΓN to be degenerate,
namely either K1 or a star K1,k for some k ≥ 1. In some cases the G-basic
graphs can be determined: Li’s classification in [14] shows that the G-basic
graphs of prime power order, in the case where G is vertex-transitive are
one of: K2n,2n (the complete bipartite graph), Kpm (the complete graph),
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K2n,2n − 2nK2 (the graph obtained by deleting a 1-factor from K2n,2n) or a
primitive or biprimitive ‘affine graph’ (by which, see [14, p.130], Li meant the
graphs in the classification by Ivanov and the second author in [12, Table 1]).

2.2. Cliques, clique graphs and line graphs. A clique of a graph Γ is a
subset U ⊆ V (Γ) such that every pair of vertices in U forms an edge of Γ. A
clique U is maximal if no subset of V (Γ) properly containing U is a clique.
The clique graph of Γ is defined as the graph Σ(Γ) with vertices the maximal
cliques of Γ such that two distinct maximal cliques are adjacent in Σ(Γ) if
and only if their intersection is non-empty. Similarly the line graph of Γ is
defined as the graph L(Γ) with vertex set E(Γ) such that two distinct edges
e, e′ ∈ E(Γ) are adjacent in L(Γ) if and only if e ∩ e′ ̸= ∅.

2.3. Cayley graphs and bi-Cayley graphs. A group G of permutations of a
set V (Γ) is called regular if it is transitive, and some (and hence all) stabilisers
Gv are trivial iIt is unfortunate that this conflicts with the usage of ‘regular’
as defined above for graphs of ‘constant valency’). More generally G is called
semiregular if the stabiliser Gv = 1 for all v ∈ V (Γ). So G is regular if and
only if it is semiregular and transitive.

Let Γ = Cay(G,S) be a Cayley graph on G with respect to S, and note
that Γ is connected if and only if S generates G. For any g ∈ G define

R(g) : x 7→ xg for x ∈ G and set R(G) = {R(g) : g ∈ G}.
Then R(G) is a regular permutation group on V (Γ) (see, for example [22,
Lemma 3.7]) and is a subgroup of Aut(Cay(G,S)) (as R(g) maps each edge
{x, sx} to an edge {xg, sxg}). For briefness, we shall identify R(G) with G in
the following. Let

Aut(G,S) = {α ∈ Aut(G) : Sα = S}.
It was proved by Godsil [8] that the normaliser of G in Aut(Cay(G,S)) is
G : Aut(G,S). Now Aut(G,S) is the stabiliser in G : Aut(G,S) of the
vertex 1G, and in the case where Γ = Cay(G,S) is connected, Aut(G,S) acts
faithfully on S = Γ(1G).

Cayley graphs are precisely those graphs Γ for which Aut(Γ) has a sub-
group that is regular on V (Γ). For this reason we say that a graph Γ is a
bi-Cayley graph if Aut(Γ) has a subgroup H which is semiregular on V (Γ)
with two orbits. The following result from [10] will be useful.

Lemma 2.1 ([10, Lemma 2.6]). Let Γ be a connected (G, 2)-arc-transitive
graph, and let u ∈ V (Γ). Suppose that Γ is an N -normal cover of K2n,2n , for
some normal 2-subgroup N of G. Then Γ is bipartite, and one of the following
holds:

(1) Γ is a normal Cayley graph of a 2-group;
(2) Γ is a bi-Cayley graph of a 2-group H such that G ≤ NAut(Γ)(H);
(3) N ⊴Aut(Γ).
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Moreover if the stabiliser Gu acts unfaithfully on Γ(u), then part (3) holds.

The next result is developed from [16, Theorem 1.1] for the case of lo-
cally primitive bipartite graphs Γ. For G ≤ Aut(Γ), we denote by G+, the
subgroup of G (of index at most 2) that fixes both biparts of V (Γ) setwise.
The proof uses the following concept: a permutation group G ≤ Sym(V ) is
biquasiprimitive if each nontrivial normal subgroup has at most two orbits in
V , and there exists such a subgroup having two orbits.

Lemma 2.2. Let Γ be a connected bipartite graph of order 2m and valency
2n with m > n. Assume that Γ is vertex-transitive and locally primitive,
and that Aut(Γ)u is not faithful on Γ(u), for some u ∈ V (Γ). Then n ≥ 2,
and there exists N ⊴ Aut(Γ) such that N is a 2-group, N ≤ Aut(Γ)+ and is
semiregular on V (Γ), Γ is an N -normal cover of ΓN , and ΓN ∼= K2n,2n .

Proof. Let X = Aut(Γ), and note that n ≥ 2, since if n = 1 then Γ is
a cycle and Xu

∼= C2 is faithful on Γ(u). Let N ⊴X be maximal subject to
the condition that N has at least three orbits on V (Γ) (possibly N = 1), let
X = X/N , and let X+ be the normal subgroup of index 2 in X which fixes
both parts of the bipartition of Γ. By [19, Lemma 1.6], or see [18, Theorem
1.3], N is semiregular on V (Γ), and hence N is a 2-group since |V (Γ)| = 2m.
Also, by [18, Lemma 3.1], the quotient ΓN is bipartite and N ≤ X+, so X+/N
is an index 2 normal subgroup of X with orbits in V (GN ) the two biparts of
ΓN . Moreover, by the maximality of N , each nontrivial normal subgroup of X
has at most two orbits in V (ΓN ), and hence X is bi-quasiprimitive on V (ΓN ).
By [18, Theorem 1.3], ΓN is X-locally primitive and Γ is an N -normal cover
of ΓN . Thus ΓN also has valency 2n, and ΓN has order 2k = |V (Γ)|/|N | for
some k > n ≥ 2. If ΓN ∼= K2n,2n then the result holds, so we may assume
that ΓN ≇ K2n,2n .

Then by the third paragraph in the proof of [16, Theorem 1.1] (and using
[16, Lemmas 3.3 and 4.2]), X has a subgroup G satisfying N < G ≤ X+ such
that G is faithful and regular on each of the biparts of V (Γ), and moreover Γ
is a bi-Cayley graph of G of the form Γ = Υ ×K2 (the direct product of Υ
and K2), where Υ = Cay(G,S) is a Cayley graph of G with respect to some
subset S of G. Further, ΓN and X satisfy [16, Lemma 3.3(ii) or (iii)]. If [16,
Lemma 3.3(ii)] holds then by the second last paragraph in the proof of [16,
Theorem 1.1], Γ is a normal Cayley graph of G×C2, say Γ = Cay(G×C2, S

′).
However in this case Aut(Γ) = (G×C2) : Aut(G×C2, S

′) and as noted above
Aut(G× C2, S

′) is the stabiliser in Aut(Γ) of the vertex u = 1G×C2
and acts

faithfully on Γ(u). Hence Xu is faithful on Γ(u), and this is a contradiction.
Thus [16, Lemma 3.3(iii)] holds, and then the last paragraph in the proof

of [16, Theorem 1.1] shows (since |V (Γ)| = 2m) that the quotient ΥN = K×ℓ
2r

(a direct product of ℓ copies of K2r ) of valency (2r − 1)ℓ. However in this
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case, the three graphs Γ, Υ and ΥN have the same valency 2n ≥ 4, which is
a contradiction.

2.4. Mixed dihedrants and their clique graphs. We record the properties
we will need of the graphs from Definition 1.1.

Lemma 2.3 ([10, Lemmas 4.1-4.2]). Let H be an n-dimensional mixed di-
hedral group relative to X and Y with |X| = |Y | = 2n ≥ 4, and let C(H,X, Y )
and Σ(H,X, Y ) be the graphs defined in Definition 1.1. let Σ = Σ(H,X, Y ),
and G = H : A(H,X, Y ), where A(H,X, Y ) is the setwise stabiliser in
Aut(H) of X ∪ Y . Then the following hold.

(1) Σ(H,X, Y ) is the clique graph of C(H,X, Y ).
(2) The map φ : z → {Xz, Y z}, for z ∈ H, is a bijection φ : H →

E(Σ(H,X, Y )), and induces a graph isomorphism from C(H,X, Y ) to
the line graph L(Σ(H,X, Y )) of Σ(H,X, Y ).

(3) Aut(C(H,X, Y )) = Aut(Σ(H,X, Y )) = Aut(L(Σ(H,X, Y ))).
(4) The group G acts as a subgroup of automorphisms on Σ as follows, for

h, z ∈ H,σ ∈ A(H,X, Y ), and φ : H → E(Σ) as in part (2):

Vertex action: h : Xz → Xzh, Y z → Y zh σ : Xz → Xσzσ, Y z → Y σzσ

Edge action: h : φ(z)→ φ(zh) σ : φ(z)→ φ(zσ)

The subgroup H acts regularly on E(Σ) and has two orbits on V (Σ).
In particular, this G-action is edge-transitive.

(5) The H ′-normal quotient graph ΣH′ of Σ is isomorphic to K2n,2n and
admits G/H ′ as an edge-transitive group of automorphisms. Moreover,
Σ is an H ′-normal cover of K2n,2n .

(6) A(H,X, Y )) ∼= A(H,X, Y )X∪Y ≤ (Aut(X) × Aut(Y )) : C2, which is
isomorphic to (GL(n, 2) × GL(n, 2)) : C2, where the C2 interchanges
Aut(X) and Aut(Y ) (acting by conjugation) and interchanges X and
Y (in its actions on C(H,X, Y ) and Σ).

3. Notation and preliminary results for groups

For a positive integer n, Cn denotes a cyclic group of order n, and D2n

denotes a dihedral group of order 2n. For a group G, we denote by 1, Z(G),
Φ(G), G′, soc(G) and Aut(G), the identity element, the centre, the Frattini
subgroup, the derived subgroup, the socle and the automorphism group of G,
respectively. For a subgroup H of a group G, denote by CG(H) the centraliser
of H in G and by NG(H) the normaliser of H in G. For elements a, b of G, the
commutator of a, b is defined as [a, b] = a−1b−1ab. If X,Y ⊆ G, then [X,Y ]
denotes the subgroup generated by all the commutators [x, y] with x ∈ X and
y ∈ Y . We will need the following result concerning p-groups.

Lemma 3.1 ([23, 5.3.2]). Let G be a finite p-group, for some prime p, and
let pr = |G : Φ(G)|. Then, Φ(G) = G′Gp, where Gp = ⟨gp | g ∈ G⟩. Moreover,
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every generating set for G has an r-element subset which also generates G,
and in particular, G/Φ(G) ∼= Crp .

3.1. Some results on commutators in arbitrary groups. We first cite the
so-called Witt-Hall formula.

Lemma 3.2 ([9, 10.2.1.4] or [23, 5.1.5(iv)]). Let x, y, z be elements of a
group G. Then

[[x, y−1], z]y · [[y, z−1], x]z · [[z, x−1], y]x = 1.

Using the Witt-Hall formula above, we obtain the following lemma.

Lemma 3.3. Let a, b, c be elements of a group G such that G′ is abelian.
Then

[[a, b], c] · [[b, c], a] · [[c, a], b] = 1.

Proof. By [23, 5.1.5(iii)], [b, a−1]a = [b, a]−1 = [a, b], and so we have
[[b, a−1], c]a = [[b, a−1]a, ca] = [[a, b], c[c, a]], which by [23, 5.1.5(ii)]) equals
[[a, b], [c, a]] · [[a, b], c][c,a]. Since G′ is abelian, this becomes [[a, b], c[c, a]] =
[[a, b], c]. Thus [[b, a−1], c]a = [[a, b], c]. Similarly [[a, c−1], b]c = [[c, a], b] and
[[c, b−1], a]b = [[b, c], a]. The assertion now follows from Lemma 3.2.

3.2. Basic commutators in free groups. In this section, we recall some
theory for commutators of a free group, following Marshall Hall’s [9, Charpter
11].

3.2.1. Formal commutators in free groups. Let F be the free group on
the ordered alphabet A = {a1, a2, . . . , ar}, where r ≥ 1. For j ≥ 1, the formal
commutator cj of F , and its weight w(cj), are defined by the rules:

(1) For j = 1, 2, . . . , r, cj = aj , and these are the commutators of weight
1; i.e., w(aj) = 1.

(2) If ci and cj are (formal) commutators, then [ci, cj ] is a (formal) com-
mutator, say ck, and w(ck) = w(ci) + w(cj).

3.2.2. Basic commutators of weight ℓ in free groups. Let F be the free
group on the ordered alphabet A = {a1, a2, . . . , ar}, where r ≥ 1. For each
positive integer ℓ, we define as follows the set BCℓ of basic commutators of F
of weight ℓ, together with a total ordering on ∪u≥1BCu:

(1) BC1 = {a1, . . . , ar}, and we choose the ordering a1 < a2 < · · · < ar.
Let ℓ > 1, and assume inductively that ∪1≤u<ℓBCu has been

defined and ordered.
(2) Then the set BCℓ consists of all the commutators [ci, cj ] that satisfy

the following three conditions:
(a) ci, cj ∈ ∪1≤u<ℓBCu with ℓ = w(ci) + w(cj);
(b) cj < ci;
(c) If ci = [cs, ct], where cs, ct ∈ ∪1≤u<ℓBCu, then ct ≤ cj .
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(3) The ordering on ∪1≤u<ℓBCu is extended to ∪1≤u≤ℓBCu as follows:
we choose an arbitrary order on the set BCℓ, and if ci ∈ BCℓ and
cj ∈ ∪1≤u<ℓBCu, we define cj < ci.

We next record the nature and sizes of the two sets BC2 and BC3, using the
following arithmetic facts.

Lemma 3.4. Let n ∈ N with n ≥ 2. Then

(a) |{(i, j) : 1 ≤ j < i ≤ n}| = n(n−1)
2 ;

(b) |{(i, j, k) : 1 ≤ j < i ≤ n, and j < k ≤ n}| = n(n−1)(2n−1)
6 =

n3

3 − n2

2 + n
6 ;

(c) |{(i, j, k) : 1 ≤ j < i ≤ n, and j < k ≤ n, k ̸= i}| = n(n−1)(n−2)
3 =

n3

3 − n2 + 2n
3 ;

(d) |{(i, j, k) : 1 ≤ j < i ≤ n, and j ≤ k ≤ n}| = n3−n
3 .

Proof. (a) For a fixed j, the number of i is n − j, and ∑n−1
j=1 (n − j) =∑n−1

ℓ=1 ℓ =
n(n−1)

2 .

(b) For a fixed j, the number of i, k is (n − j)2; and ∑n−1
j=1 (n − j)2 =

(n−1)n(2n−1)
6 .

(c) The number of these triples is equal to the number of triples in part

(b) minus the number of triples (i, j, i) with 1 ≤ j < i ≤ n, which is n(n−1)
2

by part (a).
(d) The number of these triples is equal to the number of triples in part

(b) plus the number of triples (i, j, j) with 1 ≤ j < i ≤ n, which is n(n−1)
2 by

part (a).

Lemma 3.5. Let r ≥ 1 and F be the free group on the ordered alphabet
A = {a1, a2, . . . , ar}. Then

BC2 = {[ai, aj ] : 1 ≤ j < i ≤ r}, with |BC2| =
r(r − 1)

2
,

BC3 = {[[ai, aj ], ak] : 1 ≤ j < i ≤ r, and j ≤ k ≤ r}, with |BC3| =
r3 − r

3
.

Proof. The set BC2 is as claimed (by conditions (2)(a) and (2)(b) in

the definition of BCℓ with ℓ = 2), and |BC2| = r(r−1)
2 as it is in bijection with

the 2-subsets of {1, . . . , r}. Next, each element of BC3 has the form [ct, cu]
with w(ct) = 2, w(cu) = 1 (since cu < ct), and so cu = ak for some k ∈ [1, r]
(by condition 1) and ct = [ai, aj ] with 1 ≤ j < i ≤ r (as we have just seen)
and j ≤ k (by condition 2(c)). Thus BC3 is as claimed. By Lemma 3.4(c),
the number of elements [[ai, aj ], ak] ∈ BC3 with 1 ≤ j < i ≤ r, and j ≤ k ≤ r
is r3−r

3 = |BC3|.
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The following result is known as the Basis Theorem where, following [9],
for each k we denote the k-th term of the lower central series of a free group
F by Fk. Note in particular that F2 = F ′, the derived subgroup of F .

Theorem 3.6 ([9, Theorem 11.2.4]). Let F be the free group on the or-
dered alphabet A = {a1, a2, . . . , ar}, where r ≥ 1, let ℓ ≥ 1, and suppose that
∪1≤u≤ℓBCu = {c1, . . . , ct} with c1 < c2 < · · · < ct. Then each f ∈ F has a
unique representation

f = cs11 c
s2
2 . . . cstt mod Fℓ+1,

for some integers si and, modulo Fℓ+1, BCℓ forms a basis for the free Abelian
group Fℓ/Fℓ+1.

We complete this section with three results about the quotient F/F4.

Lemma 3.7. Let F , Fℓ and BCℓ be as in Theorem 3.6. Then

(1) F ′ = F2 = ⟨BC2, F3⟩;
(2) F3 = ⟨BC3, F4⟩ and F3/F4 ≤ Z(F/F4);
(3) (F/F4)

′ = F ′/F4 is abelian.

Proof. Recall that F2 is the derived subgroup F ′. By Theorem 3.6,
BC2F3 = {cF3 | c ∈ BC2} is a basis for the free abelian group F ′/F3, and
BC3F4 = {cF4 | c ∈ BC3} is a basis for the free abelian group F3/F4. It
follows that F3 = ⟨BC3, F4⟩, F ′ = ⟨BC2, F3⟩ = ⟨BC2,BC3, F4⟩ and F ′/F4 =
⟨BC2F4,BC3F4⟩. In particular, part (1) is proved.

Let c = [[ai, aj ], ak] ∈ BC3. Then, for each a ∈ F , the commutator
[c, a] ∈ F4, and hence cF4 ∈ Z(F/F4). Since F3 = ⟨BC3, F4⟩ this implies that
F3/F4 ≤ Z(F/F4), proving part (2).

Since F4 < F ′, we have (F/F4)
′ = F ′/F4. We have shown that F ′/F4 =

⟨BC2F4,BC3F4⟩, and by part (2) each element of BC3F4 commutes with
each element of BC2F4 and BC3F4. Thus to prove part (3) it remains to
prove that each pair of elements of BC2F4 commute. So let [ai, aj ], c ∈ BC2.
Then

([ai, aj ]F4)
cF4 = [aci , a

c
j ]F4 = [c−1aic, c

−1ajc]F4

= [c−1cai[ai, c], c
−1caj [aj , c]]F4 = [ai[ai, c], aj [aj , c]]F4.

For all k ≤ r, [c, ak] ∈ F3 by the definition of F3, and hence [ak, c] ∈ F3.
Therefore, by part (2), [ai, c]F4 and [aj , c]F4 are contained in Z(F/F4). It
follows that ([ai, aj ]F4)

cF4 = [ai, aj ]F4. Thus [ai, aj ]F4 and cF4 commute,
and part (3) is proved.

Lemma 3.8. Let F,A, Fℓ be as in Theorem 3.6. Then, for any ai, aj , ak ∈
A,

(1) (a2iF4)
ajF4 = a2i · [[ai, aj ], ai] · [ai, aj ]2F4,

(2) ([ai, aj ]
2F4)

akF4 = [ai, aj ]
2 · [[ai, aj ], ak]2F4,
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(3) [ai, aj ] = [aj , ai]
−1,

(4) [[aj , ai], ak]F4 = [[ai, aj ]
−1, ak]F4 = ([[ai, aj ], ak]F4)

−1,
(5) [[ai, aj ], ak]F4 = ([[aj , ak], ai]F4)

−1 · [[ai, ak], aj ]F4.

Proof. (1), (2) By Lemma 3.7 (2), [[ai, aj ], ai]F4 ∈ Z(F/F4). We use
this fact for the last equalities of the following two computations in F/F4,
which prove parts (1) and (2).

(a2iF4)
ajF4 = a−1

j a2i ajF4 = a−1
j aiajai[ai, aj ]F4

= a−1
j ajai[ai, aj ]ai[ai, aj ]F4 = a2i [ai, aj ][[ai, aj ], ai][ai, aj ]F4

= a2i [[ai, aj ], ai][ai, aj ]
2F4.

([ai, aj ]
2F4)

akF4 = a−1
k [ai, aj ]

2akF4 = a−1
k [ai, aj ]ak[ai, aj ][[ai, aj ], ak]F4

= a−1
k ak[ai, aj ][[ai, aj ], ak][ai, aj ][[ai, aj ], ak]F4

= [ai, aj ]
2[[ai, aj ], ak]

2F4.

(3) This follows directly from: [aj , ai] = (a−1
j a−1

i ajai)
−1 = a−1

i a−1
j aiaj =

[ai, aj ].
(4) By part (3), we have [[aj , ai], ak] = [[ai, aj ]

−1, ak]. Then, by a direct

computation or [23, 5.1.5(iii)], we have [[ai, aj ]
−1, ak] = ([[ai, aj ], ak]

[aj ,ai])−1.
Lemma 3.7 (3) then implies that

[[ai, aj ]
−1, ak]F4 = ([[ai, aj ], ak]F4)

−1,

proving part (4).
(5) By Lemma 3.7 (3), F ′/F4 is abelian and hence, by Lemma 3.3, we

have

[[ai, aj ], ak] · [[aj , ak], ai] · [[ak, ai], aj ]F4 = F4.

Since, by part (4), ([[ak, ai], aj ]F4)
−1 = [[ai, ak], aj ]F4, it follows, again using

the fact F ′/F4 is abelian, that

[[ai, aj ], ak]F4 = ([[aj , ak], ai]F4)
−1 · [[ai, ak], aj ]F4.

This proves part (5), completing the proof.

We end this section by considering a certain subgroup K of F containing
F4.

Lemma 3.9. Let F,A, Fℓ be as in Theorem 3.6, and let

K = ⟨F4, a
2
i , [ai, aj ]

2, [[ai, aj ], ak]
2, [[ai, aj ], ai] : i, j, k ∈ [1, r]⟩.

Then the following hold.

(1) K ⊴ F , and K is also generated by F4 ∪BK , where BK is the set:

{a2i , [ai, aj ]2, [[ai, aj ], ak]2, [[ai, aj ], aℓ]
: 1 ≤ j < i ≤ r, j < k ≤ r, k ̸= i, ℓ ∈ {i, j}};
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(2) F ′K/K ∼= C
r(r−1)(2r−1)/6
2 and {cK : c ∈ BC2 ∪ DK} is a basis for

F ′K/K, where DK = {[[ai, aj ], ak] : 1 ≤ j < i ≤ r, j < k ≤ r, k ̸= i},
and BC2 is as in Lemma 3.5;

(3) F/F ′K ∼= Cr2 .

Proof. (1) Since F = ⟨A⟩, to prove that K⊴F it is enough to show that
ba ∈ K (or equivalently that (bF4)

aF4 ∈ K/F4), for any a ∈ A and any element
b in the given generating set for K. Let a ∈ A. By Lemma 3.8 (1) and (2) we
have (a2iF4)

aF4 , ([ai, aj ]
2F4)

aF4 ∈ K/F4 for all i, j. The remaining generators,
of the form [[ai, aj ], ak]

2, [[ai, aj ], ai], all lie in F3, and by Lemma 3.7 (2),
F3/F4 ≤ Z(F/F4). It follows that (bF4)

aF4 = bF4 ∈ K/F4 for each of these
generators also. Thus K ⊴ F .

To prove the second assertion of (1) let K0 := ⟨F4, BK⟩. We show that
each of the given generators for K lies in K0. Each of the generators a2i lies
in BK ⊂ K0. By Lemma 3.8 (3), [ai, aj ] = [aj , ai]

−1, and hence each of the
generators [ai, aj ]

2 lies inK0. For a generator x = [[ai, aj ], ai] with i, j ∈ [1, r],
if j = i then x = 1 ∈ K0, if j < i then x ∈ BK ⊂ K0, while if j > i then
x ∈ [[aj , ai], ai]

−1F4 ⊂ K0 (by Lemma 3.8(4)). It remains to consider the
generators of the form x = [[ai, aj ], ak]

2. If i = j then x = 1 ∈ K0 so we may
assume that i ̸= j. If k = i then we have just shown that [[ai, aj ], ak] ∈ K0

so x ∈ K0 and we may assume also that k ̸= i. If k = j then, by Lemma 3.8
(4), [[ai, aj ], aj ] ∈ [[aj , ai], aj ]

−1F4 which we have shown lies in K0 so again
x ∈ K0. Thus we may assume that i, j, k are pairwise distinct. Let m =
min{i, j, k}. If m = j then x ∈ BK ⊂ K0; if m = i then by Lemma 3.8 (4),
x ∈ [[aj , ai], ak]

−2F4 ⊂ K0; and if m = k then by Lemma 3.8 (4), modulo F4,
x = [[aj , ak], ai]

−2 · [[ai, ak], aj ]2, and each factor lies on K0 so x ∈ K0. Thus
all generators lie in K0 and hence K0 = K. This completes the proof of part
(1).

(2) Now F ′K/K ∼= F ′/(F ′ ∩ K) ∼= (F ′/F4)/((F
′ ∩ K)/F4) (note that

F4 ≤ K ∩F ′). By Lemma 3.7 (3), F ′/F4 is abelian, and hence F ′/(F ′ ∩K) is
abelian. Moreover, by [11, Hilfsatz 1.11], F ′ is generated by [ai, aj ]

g for i, j ∈
[1, r] and g ∈ F . Then since each [ai, aj ]

2 ∈ K, it follows that F ′K/K ∼= Cm2 ,
for some m, and we need to find m.

Note that, by Lemma 3.5 and the definition of DK , BC3 is the disjoint
union BC3 = DK ∪ S where S = {[[ai, aj ], aℓ] : 1 ≤ j < i ≤ r, ℓ ∈ {i, j}}
(and note that S ⊂ BK ⊂ K). By Lemma 3.7, F ′ = ⟨BC2,BC3, F4⟩ =
⟨BC2, DK , S, F4⟩, and since K contains F4 ∪ S, it follows that {xK : x ∈
BC2 ∪DK} is a generating set for F ′K/K ∼= Cm2 . We will show that it is in
fact a basis using Theorem 3.6. It is helpful to consider the following subgroup
H such that F4 < H < K,

H = ⟨F4, [ai, aj ]
2, [[ai, aj ], ak]

2, [[ai, aj ], aℓ]

: 1 ≤ j < i ≤ r, j < k ≤ r, k ̸= i, ℓ ∈ {i, j}⟩.
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By part (1) we have K = ⟨H, a2i : i ∈ [1, r]⟩, and it follows from Lemma 3.8 (1)
that each a2iH belongs to Z(F/H), so K/H is abelian. Also H/F4 ≤ F ′/F4,
and F ′/F4 is abelian by Lemma 3.7 (3), so also H/F4 is abelian. For con-
venience, we let BC2 = {c1, . . . , cs} and DK = {d1, . . . , dt}. Suppose that

gK = K, for some g = ce11 · · · cess df11 · · · dftt with e1, . . . , es, f1, . . . , ft ∈ {0, 1}.
Then g ∈ K, so gH lies in the abelian group K/H = ⟨a2iH : 1 ≤ i ≤ r⟩,
and hence g = (a21)

ℓ1(a22)
ℓ2 · · · (a2r)ℓrh for some integers ℓ1, ℓ2, . . . , ℓr and

some h ∈ H. Also hF4 lies in the abelian group H/F4, and hence h =

c2i11 · · · c2iss d2j11 · · · d2jtt h′, where ik, jk are integers and h′ ∈ ⟨F4, [[ai, aj ], aℓ] :
1 ≤ j < i ≤ r, ℓ ∈ {i, j}⟩. Thus

ce11 · · · cess df11 · · · dftt F4 = gF4

= (a21)
ℓ1(a22)

ℓ2 · · · ((a2r)ℓr )c2i11 · · · c2iss d2j11 · · · d2jtt h′F4.

However, by Theorem 3.6, gF4 has a unique representation of the form

gF4 = d′
s′1
1 d

′s′2
2 · · · d′

s′t′
t′ F4,

where d′1, d
′
2, . . . , d

′
t′ ∈ ∪3u=1BCu = {ai, [ai, aj ], [[ai, aj ], ak] : 1 ≤ j < i ≤

r, j ≤ k ≤ r} and the s′i are integers. It follows that ℓi = 0 (1 ≤ i ≤ r),
ek = 2ik (1 ≤ k ≤ s), fk = 2jk (1 ≤ k ≤ t) and h′ ∈ F4. Since ek, fk ∈ {0, 1},
this implies that e1 = e2 = · · · = es = f1 = f2 = · · · = ft = 0. Thus
c1K, . . . , csK, d1K . . . , dtK is a basis for F ′K/K ∼= Cm2 , as asserted, and
m = |BC2 ∪DK |.

Finally we determine this cardinality. By Lemma 3.5, |BC2| = r(r−1)/2,
and |DK | = r3

3 − r2 + 2r
3 , so

m =
r(r − 1)

2
+

(
r3

3
− r2 + 2r

3

)
=
r3

3
− r2

2
+
r

6
=
r(r − 1)(2r − 1)

6
.

This completes the proof of part (2).
(3) Since F ′ ≤ F ′K < F , it follows that F/F ′K is a quotient of the

abelian group F/F ′ and hence F/F ′K is abelian, generated by {aiF ′K : i ∈
[1, r]}. Moreover since each a2i ∈ K ≤ F ′K, the group F/F ′K ∼= Cm2 for some
m ≤ r. Suppose that

ae11 a
e2
2 · · · aerr F ′K = F ′K,

where e1, . . . , er ∈ {0, 1}. Then ae11 a
e2
2 · · · aerr F ′ = kF ′ for some k ∈ K,

and it follows from part (1) that kF ′ = a2f11 a2f22 · · · a2frr F ′ for some in-

tegers f1, . . . , fr. Thus ae11 a
e2
2 · · · aerr F ′ = a2f11 a2f22 · · · a2frr F ′. By Theo-

rem 3.6, a1F
′, a2F ′, . . . , arF ′ form a basis for the free abelian group F/F ′,

and this implies that ei = 2fi for each i. Since each ei = 0 or 1, we have
e1 = e2 = · · · = er = 0. Therefore, a1F

′K, a2F ′K, . . . , arF ′K form a basis
for F/F ′K, and F/F ′K ∼= Cr2 .
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4. Structure of H(n)
The goal of this section is to investigate the order, the subgroups and the

automorphisms of the group H(n) in Definition 1.2. First we obtain a lower
bound for the order of H(n).

Proposition 4.1. Let F,A, Fℓ be as in Theorem 3.6, with r = 2n ≥ 4,
and write A = A0 ∪ B0, where A0 = {ai : 1 ≤ i ≤ n} and B0 = {an+i : 1 ≤
i ≤ n}. Also let K be the subgroup defined in Lemma 3.9, and let H(n) be the
group defined in Definition 1.2. Define

I = ⟨K, [a, a′], [b, b′], [[a, a′], c], [[b, b′], c], [[b, a], b′]
: a, a′ ∈ A0, b, b

′ ∈ B0, c ∈ A ⟩,
Then the following hold.

(1) K < I ≤ F ′I = F ′K, I ⊴ F , and (F/I)/(F/I)′ ∼= F/F ′I ∼= C2n
2 .

(2) I is also generated by K ∪DI , where DI is the set

{[ai, aj ], [an+i, an+j ], [[ai, aj ], ak], [[ai, aj ], an+ℓ],
[[an+i, an+j ], an+k], [[an+i, an+j ], aℓ], [[an+i′ , aℓ], an+j′ ]

: 1 ≤ j < i ≤ n, j < k ≤ n, 1 ≤ j′ < i′ ≤ n, 1 ≤ ℓ ≤ n, k ̸= i}.
(3) I/K ∼= Cv2 with v = (13n3 − 15n2 + 2n)/6, and F ′I/I ∼= Cu2 with

u = (n3+n2)/2; moreover F/I is nilpotent of class 3 and order |F/I| =
2(n

3+n2+4n)/2.
(4) The map ϕ(xi) = aiI and ϕ(yi) = an+iI, for each i = 1, . . . , n,

defines an epimorphism ϕ : H(n) → F/I. In particular, |H(n)| ≥
2(n

3+n2+4n)/2.

Proof. (1) By definition, K < I, and F ′K contains each of the given
generators for I, so I ≤ F ′K. This implies that F ′I ≤ F ′K, and on the other
hand F ′K ≤ F ′I, so F ′I = F ′K. Next we prove that I⊴F . Since F4 ≤ K < I
and F3/F4 ≤ Z(F/F4) (by Lemma 3.7(2)) and K⊴F (Lemma 3.9), it follows
that, for each x ∈ F3 ∩ I, y ∈ K, and z ∈ F , the conjugates xz ∈ xF4 ⊆ I
and yz ∈ K < I. Thus to prove that I ⊴ F , it is sufficient to prove that, for
each a, a′ ∈ A0, b, b

′ ∈ B0 and c ∈ A, the conjugates [a, a′]c, [b, b′]c both lie
in I. Now [a, a′]c = [a, a′][[a, a′], c] and both factors lie in I, so [a, a′]c ∈ I.
Similarly [b, b′]c ∈ I, and hence I ⊴ F . Finally (F/I)′ = F ′I/I, and hence
(F/I)/(F/I)′ ∼= F/F ′I = F/F ′K which, by Lemma 3.9(3), is isomorphic to
C2n

2 . Thus part (1) is proved.
(2) Let I0 = ⟨K,DI⟩, with DI as in (2). Then I0 ≤ I and we show that

equality holds by proving that each of the given generators for I lies in I0.
First K lies in the subset so F4 < K ≤ I0, and it follows from Lemma 3.8(3)
that each [a, a′] and [b, b′] lies in I0. Next we consider x := [[a, a′], c]. If a = a′

then x = 1 ∈ I0, while if c ∈ {a, a′}, then x ∈ K (using Lemma 3.9 and
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Lemma 3.8(4)), and again x ∈ I0. Otherwise a, a′, c are pairwise distinct; if
c ∈ B0 then, by Lemma 3.8(4), x±1F4 contains an element of DI of the form
[[ai, aj ], an+ℓ] and hence x ∈ I0, while if c ∈ A0 then x is of the form x =
[[ai, aj ], ak] with i, j, k ≤ n and pairwise distinct. In this case, if min{i, j, k} ≠
k then either x ∈ DI or x−1F4 contains [[aj , ai], ak] ∈ DI , by Lemma 3.8(4),
and if min{i, j, k} = k then by Lemma 3.8(5), xF4 contains a product of two
elements of DI . In all cases x ∈ I0. An analogous argument shows that
each [[b, b′], c] ∈ I0. Finally consider x := [[b, a], b′]. If b′ = b then x ∈ K
so take b′ = an+j′ ̸= b = an+i′ and a = aℓ. If i′ > j′ then x ∈ DI ⊂ I0,
so we may assume that i′ < j′. By Lemma 3.8(4) and (5), modulo F4,
x = [[an+i′ , aℓ], an+j′ ] satisfies

x ≡ [[an+j′ , aℓ], an+i′ ] · [[an+i′ , an+j′ ], aℓ]
≡ [[an+j′ , aℓ], an+i′ ] · [[an+j′ , an+i′ ], aℓ]−1,

and each of these factors lies in I0, so x ∈ I0. We conclude that I0 = I.
(3) Note that F ′I/I ∼= F ′/(F ′ ∩ I), and F ′ ∩ I contains F ′ ∩ K since

F4 < K < I. Hence F ′/(F ′ ∩ I) is a quotient of F ′/(F ′ ∩ K), and by

Lemma 3.9(2), F ′/(F ′ ∩ K) ∼= F ′K/K ∼= C
r(r−1)(2r−1)/6
2 = C

(8n3−6n2+n)/3
2

(as |A| = r = 2n), with basis {c(F ′ ∩ K) : c ∈ BC2 ∪ DK} where DK =
{[[ai, aj ], ak] : 1 ≤ j < i ≤ 2n, j < k ≤ 2n, k ̸= i}, and BC2 is as in
Lemma 3.5. Since F ′K = F ′I, we deduce that F ′I/I ∼= Cu2 and I/K ∼= Cv2 ,
for some u, v such that u+ v = (8n3 − 6n2 + n)/3.

Let B2 = {[b, a] : a ∈ A0, b ∈ B0}. Then |B2| = n2, |BC2| = n(2n− 1)
(Lemma 3.5), and BC2 is the disjoint union BC2 = (BC2 ∩DI) ∪ B2 with
|BC2 ∩ DI | = n2 − n. We obtain a similar partition of DK . Suppose that
z ∈ DK and z ̸∈ I. Then z = [[c, c′], c′′] for certain c, c′, c′′ ∈ A. First we show
that c′, c′′ ∈ A0 and c ∈ B0. If c′ ∈ B0, then by the definition of DK also
c, c′′ ∈ B0 and z is an element of DI of the form [[an+i, an+j ], an+k], which
is a contradiction, so c′ ∈ A0. Next, if also c, c′′ ∈ A0 then z would be an
element of DI of the form [[ai, aj ], ak], which is a contradiction, so at least
one of c, c′′ lies in B0. If c ∈ A0 then we must have c′′ ∈ B0 and then z is
an element of DI of the form [[ai, aj ], an+ℓ], which is a contradiction. Thus
c ∈ B0. If also c

′′ ∈ B0, then z is one of the given generators for I of the form
[[b, a], b′], which is again a contradiction. Hence c′′ ∈ A0, and our assertions
are proved. Thus such elements z have the form z = [[an+i, aj ], ak], for some
i, j, k ∈ [1, n]; and as z ∈ DK we have j < k. Let

B3 := {[[an+i, aj ], ak] : 1 ≤ j < k ≤ n, 1 ≤ i ≤ n}.

Then by Lemma 3.4, |B3| = n · n(n − 1)/2 = (n3 − n2)/2, and DK is the

disjoint union DK = B′
3 ∪ B3 with B′

3 ⊂ I. Now |DK | = 8n3

3 − 4n2 + 4n
3

(Lemma 3.9), so |B′
3| = |DK | − |B3| = (13n3 − 21n2 + 8n)/6.
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An analogous argument to that in the proof of Lemma 3.9(2) shows that
{cI : c ∈ B2∪B3} forms a basis for F ′I/I ∼= Cu2 and hence u = |B2|+ |B3| =
n2 + (n3 − n2)/2 = (n3 + n2)/2. Thus by part (1), |F/I| = 22n+u and
2n + u = (n3 + n2 + 4n)/2. Also I/K ∼= Cv2 with v = |BC2 ∩ I| + |B′

3| =
(n2 − n) + (13n3 − 21n2 + 8n)/6 = (13n3 − 15n2 + 2n)/6.

To see that F/I is nilpotent of class 3, we note first that its derived
subgroup is (F/I)′ = F ′I/I ∼= C2n

2 . The second term in the lower central
series is F3I/I. It follows from Lemma 3.7(1) that F ′I = ⟨BC2, F3, I⟩, and
hence F ′I/F3I is generated by {cF3I : c ∈ BC2, c ̸∈ I}. We showed above
that BC2 \ I = B2 has size n2, and hence F ′I/F3I = Cu2

2 with u2 ≤ n2 < u.
The third term in the lower central series is F4I/I, which is trivial since
F4 < I. Thus F/I is nilpotent of class 3, as asserted. This completes the
proof of part (3).

(4) Setting ϕ(xi) = aiI and ϕ(yi) = an+iI, for each i = 1, . . . , n, we
have a map from the generating set for H(n) in Definition 1.2 to the set
{aI : a ∈ A} of generators for F/I. Moreover, extending ϕ to a map on
words in these generators of H(n), for each relator w ∈ R in Definition 1.2,
ϕ(w) = w′I such that either w′ ∈ K or w′ is one of the given generators for
I. Thus the images ϕ(xi), ϕ(yi) (1 ≤ i ≤ n) satisfy all the given relations
of H(n), and hence, by von Dyck’s Theorem (see [23, Theorem 2.2.1], the
extension of ϕ to H(n) → F/I is an epimorphism. This completes the proof
of the proposition.

Our next task is to prove that the epimorphism ϕ in Proposition 4.1(4)
is in fact an isomorphism. We need the following information about certain
commutators in H(n).

Lemma 4.2. Let H(n) = ⟨X0 ∪ Y0 | R⟩ be the group defined in Defini-
tion 1.2, where n ≥ 2. Then,

(1) for all z, z′ ∈ X0 ∪ Y0, [[z, z′], z] = [[z, z′], z′] = 1;
(2) for z, z′, z′′ ∈ X0 ∪ Y0, we have [[z, z′], z′′] ∈ Z(H(n)), [z, z′] = [z′, z],

and [z, z′]2 = [[z, z′], z′′]2 = 1;
(3) the third term H(n)4 of the lower central series for H(n) is trivial, so
H(n) is nilpotent of class at most 3.

Proof. (1) We use the first few relations in R. Firstly, z2 = (z′)2 = 1,
so (zz′)2 = [z, z′]. If both z, z′ lie in X0 or both lie in Y0, then we have the
relation [z, z′] = 1, and hence [[z, z′], z] = [[z, z′], z′] = 1. So we may assume
that z ∈ X0, say, and z

′ ∈ Y0. Then we have (zz′)4 = [z, z′]2 = 1, and hence
⟨z, z′⟩ = D8 or C2

2 . In either case [z, z′] = (zz′)2 is centralised by z and z′,
and this implies that [[z, z′], z] = [[z, z′], z′] = 1. This proves part (1).

(2) Let u = [[z, z′], z′′]. Then for all z′′′ ∈ X0 ∪ Y0, [u, z′′′] ∈ R and hence

[u, z′′′] = 1. Since [u, z′′′] = u−1uz
′′′
, this implies that u = uz

′′′
, and hence

u ∈ Z(H(n)). If both z, z′ lie in X0 or both lie in Y0, then [z, z′] = [z′, z] = 1
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and the other assertions follow. If z ∈ X0 and z′ ∈ Y0, then [z, z′]2 ∈ R
and hence [z, z′]2 = 1, and this implies that [z, z′]−1 = [z, z′]. However
[z, z′]−1 = [z′, z], and hence [z, z′] = [z′, z]. Also u2 ∈ R in this case and so
u2 = 1. Finally, if z ∈ Y0 and z′ ∈ X0, then [z′, z]2 ∈ R, and the argument
just given shows that [z, z′] = [z′, z] and [z, z′]2 = 1. This implies that
u2 = [[z, z′], z′′]2 = [[z′, z], z′′]2, which lies in R and hence is trivial.

(3) By part (2), for all z, z′, z′′, z′′′ ∈ X0 ∪ Y0, we have [[z, z′], z′′] ∈
Z(H(n)) and hence [[[z, z′], z′′], z′′′] = 1. On the other hand, by [11, Hilfsatz
1.11(a)], H(n)4 is generated by the set of all conjugates [[[z, z′], z′′], z′′′]h of
such commutators by elements h ∈ H(n), and hence H(n)4 is trivial. Thus
H(n) is nilpotent of class at most 3.

Proposition 4.3. Let H(n) = ⟨X0∪Y0 | R⟩ be the group defined in Defi-
nition 1.2, where n ≥ 2, and let F,A = A0∪B0, I,K be as in Proposition 4.1.
Then the map ψ : AI/I → X0 ∪ Y0 such that ψ(aiI) = xi and ψ(an+iI) = yi,
for i = 1, . . . , n, defines an epimorphism ψ : F/I → H(n), such that ψ is the
inverse of the map ϕ in Proposition 4.1(4). In particular H(n) ∼= F/I and

|H(n)| = 2(n
3+n2+4n)/2.

Remark 4.4. It follows from Proposition 4.1(1) that F/I is isomorphic
to the group with presentation F = ⟨A0 ∪B0 | F4 ∪BK ∪DI⟩, where BK , DI

are as in Lemma 3.9 and Proposition 4.1(2). In the proof we will work with
the group F .

Proof. Interpreting F/I as the group F := ⟨A0∪B0 | F4∪BK∪DI⟩, the
map ψ becomes a bijection ψ : A0∩B0 → X0∪Y0 given by ψ : ai → xi, an+i →
yi, for i = 1, . . . , n. Consider the extension of ψ to a map on words in these
generators of F , so that for each element (relator) w ∈ F4 ∩BK ∪DI , ψ(w) is
the same word in X0∪Y0. We check that ψ(w) is equal to the identity of H(n)
for each w and then apply von Dyck’s Theorem [23, Theorem 2.2.1]. If w ∈ F4

then ψ(w) = 1 since H(n) has nilpotency class at most 3 by Lemma 4.2(2).
Next we consider the elements w of BK as in Lemma 3.9(1). If w = a2

for a ∈ A0 ∪ B0, then ψ(w) ∈ R and so ψ(w) = 1. If w = [a, a′]2 or
w = [[a, a′], a′′]2, for a, a′, a′′ ∈ A0 ∪ B0, then ψ(w) = 1 by Lemma 4.2(3).
Finally suppose that w = [[a, a′], a′′], for a, a′ ∈ A0 ∪ B0 with a′′ ∈ {a, a′}.
Then it follows from Lemma 4.2(1), that ψ(w) = 1.

Finally we consider the elements w of DI as in Proposition 4.1(2). If
w = [a, a′] for a, a′ ∈ A0 or a, a′ ∈ B0, then ψ(w) ∈ R and so ψ(w) = 1. If
w = [[a, a′], a′′], for a, a′, a′′ ∈ A0∪B0 such that either a, a′ ∈ A0 or a, a

′ ∈ B0,
then again ψ(w) = 1 since in these cases ψ([a, a′]) ∈ R. Finally we consider
elements w = [[a, a′], a′′], for a, a′′ ∈ B0 and a′ ∈ A0. For these elements,
ψ(w) ∈ R and so ψ(w) = 1.

It now follows from von Dyck’s Theorem [23, Theorem 2.2.1] that this
map ψ defines an epimorphism F → H(n). By the definitions, ψ is the
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inverse of the map ϕ in Proposition 4.1(4), and hence H(n) ∼= F/I. The order
|H(n)| = |F/I| follows from Proposition 4.1(3).

4.1. Subgroups and automorphisms of H(n). The main purpose of this
subsection is to prove the following theorem.

Theorem 4.5. Let H(n) be as in Definition 1.2 and let H(n)3 be the third
term in the lower centre series of H(n). Then the following hold.

(1) For arbitrary x, x′ ∈ X0, y ∈ Y0, we have [[x, y], x′] = [[x′, y], x].
(2) H(n)/(H(n)′) ∼= C2n

2 , and H(n) is an n-dimensional mixed dihedral
group relative to X := ⟨X0⟩ and Y := ⟨Y0⟩.

(3) H(n)′ =W ×H(n)3 ∼= C
n2(n+1)/2
2 , where

(a) W = ⟨[xi, yj ] : 1 ≤ i, j ≤ n⟩ ∼= Cn
2

2 , and

(b) H(n)3 = ⟨[[xi, yj ], xk] : 1 ≤ i, j ≤ n, i < k ≤ n⟩ ∼= C
n2(n−1)/2
2 ;

and moreover H(n)3 ≤ Z(H(n)).
(4) For any a ∈ H(n) and b, b′ ∈ Y we have [[b, a], b′] = 1 and [[a, b], b′] =

1.
(5) For any g ∈ Aut(X)×Aut(Y ), g induces an automorphism of H(n).
(6) Let c ∈ X and let d ∈ Y so that c = xi1xi2 . . . xik and d = yj1yj2 . . . yjℓ

for some xi1 , xi2 , . . . , xik ∈ X0 and yj1 , yj2 , . . . , yjℓ ∈ Y0, with these
expressions chosen so that k, ℓ are minimal. Then

[c, d]H(n)3 =
∏

1≤u≤k,1≤v≤ℓ
[xiu , yjv ]H(n)3.

Proof. (1) Let x, x′ ∈ X0 and y ∈ Y0. By Lemma 4.2 (2), any weight 3
commutator involving x, x′, y is in the center of H(n). Thus, by Lemma 3.2,
we have

[[x, y−1], x′] · [[y, (x′)−1], x] · [[x′, x−1], y] = 1.

Since x2 = (x′)2 = y2 = 1 and [x, x′] = 1 the above equation becomes
[[x, y], x′] · [[y, x′], x] = 1, and hence [[x, y], x′] = [[y, x′], x]−1. Using the rela-
tions [[x′, y], x]2 = 1 and [x′, y]2 = 1 (which implies that [x′, y] = [y, x′]) we
have [[y, x′], x]−1 = [[x′, y], x]−1 = [[x′, y], x], and part (1) holds.

(2) It follows from Proposition 4.3 that H(n) ∼= F/I, and from Propo-
sition 4.1 (1) that H(n)/H(n)′ ∼= F/F ′I ∼= C2n

2 . Also, H(n) = ⟨X,Y ⟩,
X = ⟨X0⟩ ∼= Cn2 and Y = ⟨Y0⟩ ∼= Cn2 , by Definition 1.2, and hence, by Def-
inition 1.1(a), H(n) is an n-dimensional mixed dihedral group relative to X
and Y .

(3) By Propositions 4.3 and 4.1 (3), H(n)′ ∼= F ′I/I ∼= Cu2 with u =
(n3 + n2)/2, and by [11, Hilfsatz 1.11(a) and (b)],

H(n)′ = ⟨[z, z′], [[z, z′], z′′]h | z, z′, z′′ ∈ X0 ∪ Y0, h ∈ H(n)⟩.
Also, by Lemma 4.2 (2), H(n)3 ≤ Z(H(n)) and hence [[z, z′], z′′]h = [[z, z′], z′′]
for each h ∈ H(n). Let x, x′ ∈ X0 and y, y′ ∈ Y0. Since [x, x′] = [y, y′] = 1
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are relations in R, the only weight two generators required are [xi, yj ], for
1 ≤ i, j ≤ n, and for the weight three generators [[z, z′], z′′], we may assume
that one of z, z′ lies in X0 and the other lies in Y0. Since H(n)4 = 1 by
Lemma 4.2(3), it follows from Lemma 3.8(4) that [[x, y], y′]−1 = [[y, x], y′], and
since [[y, x], y′] = 1 is a relation inR, also [[x, y], y′] = 1, and so the only weight
three generators required are those of the form [[y, x], x′] or [[x, y], x′]. Further
by part (1), [[x, y], x′] = [[x′, y], x], and by Lemma 4.2 (1), [[x, y], x] = 1. Thus
we have

H(n)′ = ⟨[xi, yj ], [[xi, yj ], xk] | 1 ≤ i, j ≤ n, i < k ≤ n⟩.
Since there are precisely u = (n3 + n2)/2 generators in the generating set
above, and since H(n)′ = Cu2 , we conclude that H(n)′ = W × H(n)3, where
W = ⟨[xi, yj ] : 1 ≤ i, j ≤ n⟩ ∼= Cn

2

2 and H(n)3 = ⟨[[xi, yj ], xk] : 1 ≤ i, j ≤
n, i < k ≤ n⟩ ∼= C

n2(n−1)/2
2 .

(4) By part (3), we have [b, a] = gh where g ∈ W and h ∈ H(n)3.
Moreover, by part (3) we also have H(n)3 ≤ Z(H(n)). This implies that

[[b, a], b′] = [gh, b′] = (gh)−1(b′)−1(gh)b′ = g−1(b′)−1gb′ = [g, b′].

Again by part (3), we have g = w1w2 . . . ws for some w1, w2, . . . , ws ∈
{[xi, yj ] : 1 ≤ i, j ≤ n}. We will use induction on s to prove that [g, yk] = 1,
for any yk ∈ Y0. In the proof of part (3) we showed that [[xi, yj ], yk] = 1, for
all i, j, k.

Thus, if s = 1, then [g, yk] = [w1, yk] = 1. Now assume that s > 1, and
assume inductively that [g, yk] = 1 if g ∈ W can be expressed as a word of
length less than s in the generators. Then, by [11, Hilfssatz III.1.2(c)],

[g, yk] = [w1w2 . . . ws−1ws, yk] = [w1w2 . . . ws−1, yk]
ws [ws, yk],

and also [ws, yk] = 1 from the case s = 1. Since by part (3) the commutator
subgroup H(n)′ is abelian, we have

[g, yk] = [w1w2 . . . ws−1, yk]
ws = [w1w2 . . . ws−1, yk].

By induction [w1w2 . . . ws−1, yk] = 1, and hence [g, yk] = 1. This implies that
g commutes with every yk ∈ Y0. Since Y is generated by Y0, it follows that g
centralises Y , and hence we have [g, b′] = 1. Thus, [[b, a], b′] = 1. By part (3),
H(n)′ is an elementary abelian 2-group, so [b, a] = [b, a]−1 = [a, b], and hence
also [[a, b], b′] = 1.

(5) Let (g1, g2) ∈ Aut(X) × Aut(Y ), and let x′i = xg1i and y′i = yg2i , for
each i ∈ {1, . . . , n}. Set X ′

0 = {x′i : i = 1, 2, . . . , n} and Y ′
0 = {y′i : i =

1, 2, . . . , n}. We will apply von Dyck’s Theorem (see [23, Theorem 2.2.1])
to show that the map ϕ : X0 ∩ Y0 → H(n) given by xi → x′i, yi → y′i, for
i = 1, . . . , n, extends uniquely to an automorphism ϕ of H(n). To do this, it is
sufficient to show thatH(n) is generated by X ′

0∪Y ′
0 and that for every relation

w(x1, . . . , xn, y1, . . . , yn) = 1 in R, we have w(x′1, . . . , x
′
n, y

′
1, . . . , y

′
n) = 1.
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First, X = ⟨X0⟩ ∼= Y = ⟨Y0⟩ ∼= Cn2 and H(n) = ⟨X,Y ⟩, by the definition of
H(n). Also ⟨X ′

0⟩ = X and ⟨Y ′
0⟩ = Y , by the definition of g1 and g2. Hence

H(n) = ⟨X ′
0 ∪ Y ′

0⟩. Next we consider the relations. Let a, a′ ∈ X ′
0, b, b

′ ∈ Y ′
0

and c, c′ ∈ X ′
0 ∪Y ′

0 . Then c
2 = 1 and [a, a′] = [b, b′] = 1. By part (3), we have

[a, b], [[a, b], c] ∈ H(n)′ ∼= C
n2(n+1)/2
2 , and thus, [a, b]2 = 1 and [[a, b], c]2 = 1.

By part (4), [[b, a], b′] = 1. Finally, [[[a, b], c], c′] lies in H(n)4 and hence is
trivial, by Lemma 4.2(3). This proves part (5).

(6) In the following we write, for convenience, w ≡ w′ (mod H(n)3) if
and only if wH(n)3 = w′H(n)3.

First we apply [11, Hilfssatz III.1.2(c)] several times: [gh, f ] = [g, f ]h ·
[h, f ] = [g, f ] · [[g, f ], h] · [h, f ], for any g, h, f ∈ H(n). Writing c = c′xik , this
implies that [c, d] = [c′, d]·[[c′, d], xik ]·[xik , d], and since [[c′, d], xik ] ∈ Z(H(n)3)
(by part (3)), it follows that [c, d] ≡ [c′, d] · [xik , d] (mod H(n)3). Repeating
this k times we obtain

[c, d] ≡ [xi1 , d] . . . [xik , d] (mod H(n)3).
Now we apply [11, Hilfssatz III.1.2(b)] several times: [g, hf ] = [g, f ] · [g, h]f =
[g, f ]·[g, h]·[[g, h], f ], for any g, h, f ∈ H(n). Writing d = d′yjℓ , this implies, for
all u, that [xiu , d] = [xiu , yjℓ ]·[xiu , d′]·[[xiu , d′], yjℓ ], and since [[xiu , d

′], yjℓ ] = 1
(by part (4)), it follows that [xiu , d] = [xiu , yjℓ ] · [xiu , d′]. Repeating this ℓ
times for each u, and using the fact that H(n)′/H(n)3 is abelian (by part (3)),
we obtain

[c, d] ≡
∏

1≤u≤k,1≤v≤ℓ
[xiu , yjv ] (mod H(n)3).

This completes the proof.

5. Proof of Theorem 1.3

Let H(n), X = ⟨X0⟩, Y = ⟨Y0⟩ and R be as in Definition 1.2. By
Theorem 4.5 (2), H(n) is an n-dimensional mixed dihedral group relative

to X and Y . By Proposition 4.3, the order of H(n) is 2(n
3+n2+4n)/2. Let

Γ = C(H(n), X, Y ) and Σ = Σ(H(n), X, Y ) be as in Definition 1.1. It follows
from Lemma 2.3(5) that Σ has valency 2n, and from Definition 1.1(b) that
|V (Σ)| = 2 · |H(n) : X| = 2a, where a = 1 + (n3 + n2 + 4n)/2 − n =
1 + (n3 + n2 + 2n)/2. By Lemma 2.3(5), Σ is a normal cover of K2n,2n . It
remains for us to prove that Σ is semisymmetric and locally 2-arc-transitive.

First we prove that Σ is locally 2-arc-transitive. By Lemma 2.3(1), (3)
and (4), Σ is the clique graph of Γ, Aut(Γ) = Aut(Σ) contains G := H(n) ⋊
A(H(n), X, Y ), the group H(n) has two obits on V (Σ), namely {Xh : h ∈
H(n)} and {Y h : h ∈ H(n)}, and H(n) acts regularly on E(Σ). Further
the stabiliser in G of the 1-arc (X,Y ) of Σ is the subgroup A(H(n), X, Y ).
By Theorem 4.5(5), A(H(n), X, Y ) contains Aut(X) × Aut(Y ). By (1.2),
(X,Y, Z) is a 2-arc of Σ if and only if Z = Xz for some z ∈ H(n) such



SEMISYMMETRIC, LOCALLY 2-ARC-TRANSITIVE GRAPHS 281

that Xz ∩ Y ̸= ∅. Thus Z = Xy for some y ∈ Y and since Z ̸= X, we
have y ̸= 1. Since Aut(Y ) ∼= GLn(2) is transitive on Y \ {1} it follows that
Aut(X) × Aut(Y ) is transitive on all the 2-arcs of the form (X,Y, Z), and
hence the stabiliser in G of X is transitive on all the 2-arcs of Σ with first
vertex X. An analogous argument with X and Y interchanged shows that
the stabiliser in G of Y is transitive on all the 2-arcs of Σ with first vertex Y ,
and it follows that Σ is locally 2-arc-transitive.

Showing that Σ is semisymmetric is the most delicate part of the proof.
In the smallest case, where n = 2, a computation using Magma [1] shows that
Σ is semisymmetric (see Remark 5.1 for a description of these computations).
Thus we assume that n ≥ 3. By Lemma 2.3 (4), Σ is edge-transitive. Thus,
to show that Σ is semisymmetric it is sufficient to prove that Aut(Σ) is not
transitive on V (Σ). We suppose to the contrary that Aut(Σ) is transitive on
V (Σ), and seek a contradiction. Under this assumption Σ is a 2-arc-transitive
graph of order a 2-power and valency 2n ≥ 8. We shall process the proof by
the following four steps.

Step 1. H(n)′ ⊴Aut(Σ).
Let u = X ∈ V (Σ), and let A := H(n) ⋊ (Aut(X) × Aut(Y )). Then by

(1.2), Σ(u) = {Y x : x ∈ X}, and hence by Lemma 2.3(4) and Theorem 4.5(5),
the kernel of the action of Aut(σ)u on Σ(u) contains Aut(Y ). Thus Lemma 2.2
applies, and so there exists a 2-group M ⊴ Aut(Σ) such that M ≤ Aut(Σ)+,
M is semiregular on V (Σ), and Σ is an M -normal cover of ΣM ∼= K2n,2n . As
noted above H(n) ⊴ A ≤ Aut(Σ)+ and H(n) acts regularly on E(Σ) and A
is locally 2-arc-transitive on Σ (by Lemma 2.3(4)). Hence MH(n) ⊴MA ≤
Aut(Σ)+, MH(n) is a 2-group (since both M and H(n) are 2-groups), and
MH(n) is edge-transitive on Σ (since H(n) is transitive on E(Σ)), and its
vertex-orbits are the two biparts of Σ. Let Φ be the Frattini subgroup of
MH(n), so Φ is a characteristic subgroup of MH(n) and hence Φ ⊴MA. If
Φ were transitive on one of the biparts, say O, of ΣM , and if v ∈ O, then
MH(n) = (MH(n))vΦ, and by the properties of a Frattini subgroup ( [11,
Satz III.3.2(a)]), MH(n) = (MH(n))v, contradicting the fact that MH(n) is
transitive on each bipart of Σ. Thus Φ is intransitive on each bipart of ΣM ,
and Φ ⊴MA. On the other hand Σ is locally (MA, 2)-arc transitive (since
it is locally (A, 2)-arc transitive), and hence ΣM is locally (MA/M, 2)-arc
transitive (by [7, Lemma 5.1]).

Since ΣM ∼= K2n,2n , this means that MA acts 2-transitively on each bi-
part O of ΣM , and since Φ is an intransitive normal subgroup ofMA it follows
that Φ acts trivially on O, for each bipart O of ΣM . Hence Φ is contained in
the kernel of the action of MA on ΣM , that is, Φ ≤M . Thus MH(n)/M is a
quotient ofMH(n)/Φ and henceMH(n)/M ∼= Cs2 for some s (by Lemma 3.1).
Since MH(n) is edge-transitive on Σ, it follows that MH(n)/M is an abelian
group acting transitively on E(ΣM ), and hence MH(n)/M is regular on
E(ΣM ) (see [22, Lemma 2.4]), so s = 2n and H(n)/(M ∩ H(n)) ∼= C2n

2 .
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The group induced by A on ΣM is A/(A ∩M) ∼= MA/M , and is isomorphic
to C2n

2 ⋊ (Aut(X) × Aut(Y )). Thus both A and MA are edge-transitive on
Σ with edge-stabilisers isomorphic to Aut(X)×Aut(Y ), and hence MA = A,
that is, M ≤ A. Then since H(n) is the largest normal 2-subgroup of A, we
have M ≤ H(n). It follows that H(n)/M ∼= C2n

2 and hence M ≤ H(n)′; and
since H(n)/H(n)′ ∼= C2n

2 by Theorem 4.5(2), we conclude that M = H(n)′,
and the assertion of Step 1 is proved.

For the next part of the argument we exploit the fact that Aut(Σ) =
Aut(Γ), recalling that Γ = C(H(n), X, Y ) is the Cayley graph Cay(H(n), S),
where S = (X∪Y )\{1}. We will frequently use the basic fact [10, Lemma 2.1]
about mixed dihedral groups that the natural projection map ϕ : h→ hH(n)′
determines an isomorphism H(n)/H(n)′ ∼= ϕ(X)× ϕ(Y ) ∼= X × Y . In Step 2
we study the subset Γ4(1) of the vertex set H(n) of Γ consising of all elements
h which can be reached by a path of length at most four from the vertex 1, so
Γ4(1) consists of all elements h ∈ H(n) such that h = h1h2 . . . hk with each
hi ∈ S and 0 ≤ k ≤ 4.

Step 2. Γ4(1) ∩ H(n)′ = {1} ∪ S′, where S′ := {[x, y] : x ∈ X \ {1}, y ∈
Y \ {1}}.

Let Γ4(1)
′ := Γ4(1) ∩ H(n)′. Clearly 1 ∈ Γ4(1)

′ and Γ4(1)
′ ⊆ H(n)′.

Suppose that h ∈ Γ4(1)
′ \ {1}, so h = h1h2 . . . hk with each hi ∈ S and

1 ≤ k ≤ 4. Choose such an expression for h with k minimal. Note in
particular that h ∈ H(n)′ and hence ϕ(h) = 1, with ϕ as above. If all the
hi ∈ X \ {1} then h ∈ X, and since h ̸= 1 it follows from [10, Lemma 2.1]
that ϕ(h) ̸= 1 which is a contradiction. We obtain a similar contradiction if
all the hi lie in Y \ {1}. Hence 2 ≤ k ≤ 4 and not all the hi lie in the same
set, X \ {1} or Y \ {1}. Next if there exists a unique i such that hi ∈ X \ {1},
then ϕ(h) = ϕ(hi) ·a for some a ∈ ϕ(Y ), and again we find that ϕ(h) ̸= 1, and
obtain a contradiction. Thus at least two of the hi lie in X\{1} and, similarly,
at least two of the hi lie in Y \ {1}. This means that k = 4, and exactly two
of the hi lie in X \ {1}, say x and x′, and exactly two of the hi lie in Y \ {1},
say y and y′. Then ϕ(h) = ϕ(xx′) · ϕ(yy′). If at least one of xx′ or yy′ is
nontrivial then ϕ(h) ̸= 1 by [10, Lemma 2.1], and we have a contradiction.
Thus x′ = x−1 = x and y′ = y−1 = y. Further, if hi = hi+1 for some i
we would have hihi+1 = 1 and obtain a shorter expression for h. Thus the
minimality of k implies that h = xyxy = [x, y], or h = yxyx = [y, x] = [x, y]
(where the last equality uses the facts that each of x, y and [x, y] is equal to
its inverse). Thus Step 2 is proved.

Step 3. Aut(Σ)1 fixes setwise the subset S′ of V (Γ) in Step 2, and acts
transitively on S′.

By Step 1, we have H(n)′⊴Aut(Σ). Thus α−1hα ∈ H(n)′ for all α in the
vertex stabiliser Aut(Σ)1 and h ∈ H(n)′. Since H(n) acts on V (Γ) = H(n) by



SEMISYMMETRIC, LOCALLY 2-ARC-TRANSITIVE GRAPHS 283

right multiplication, the image of the vertex h ∈ H(n)′ under α ∈ Aut(Σ)1 is

hα = (1h)α = 1hα = 1α
−1hα = α−1hα.

This implies that Aut(Σ)1 fixes setwise the subset H(n)′ of V (Γ). Since
Aut(Σ)1 also fixes Γ4(1) setwise, and fixes the vertex 1, it follows that Aut(Σ)1
fixes (Γ4(1)∩H(n)′)\{1} setwise. By Step 2, we have (Γ4(1)∩H(n)′)\{1} =
{[x, y] : x ∈ X \ {1}, y ∈ Y \ {1}} = S′. Recall that Aut(X) × Aut(Y ) ≤
Aut(Σ)1 and, since Aut(X)×Aut(Y ) normalises H(n), that Aut(X)×Aut(Y )
acts on V (Γ) = H(n) via its natural action. Since Aut(X) is transitive on
X \{1} and Aut(Y ) is transitive on Y \{1}, it follows that Aut(X)×Aut(Y ),
and hence also Aut(Σ)1, is transitive on S′. Thus Step 3 is proved.

Step 4. A final contradiction.
For the final part of the proof we analyse a Cayley graph related to Γ,

namely the graph Λ := Cay(H(n), S ∪ S′). Note that the right multiplication
action ofH(n) yieldsH(n) as a subgroup of automorphisms of the graphs Γ :=
Cay(H(n), S) and Cay(H(n), S′), and hence also H(n) ≤ Aut(Λ). Moreover,
since Aut(Σ) = Aut(Γ), the group Aut(Σ)1, in its natural action on V (Λ) =
H(n), leaves S invariant, and by Step 3, Aut(Σ)1 also leaves S′ invariant (and
is transitive on it), and hence Aut(Σ)1 leaves S ∪ S′ invariant. Therefore
also Aut(Σ)1 ≤ Aut(Λ) and hence, since Aut(Σ) = H(n)Aut(Σ)1, we have
Aut(Σ) ≤ Aut(Λ). Now Λ(1) = S ∪ S′ and S′ ∩ S = ∅, and Aut(Σ)1 is
transitive on S′.

We claim that also S is an orbit of Aut(Σ)1. The set S ∪ {1} = X ∪ Y
is invariant under Aut(Σ)1, and in the proof of Step 3 we noted that the
subgroup Aut(X) × Aut(Y ) of Aut(Σ)1 is transitive on each of X \ {1} and
Y \ {1}. Moreover we are assuming that Aut(Σ) is transitive on V (Σ) and
hence, since Σ is locally 2-arc-transitive, Aut(Σ) is transitive on the arcs of
Σ. Thus Aut(Σ) contains an element σ which maps the arc (X,Y ) of Σ to the
arc (Y,X). Since Σ is the clique graph of Γ (Lemma 2.3(1)), X,Y (as subsets
of H(n)) are maximal cliques of Γ and are interchanged by σ. In particular,
σ induces an automorphism of the subgraph of Γ induced on X ∪ Y . The
identity 1 is adjacent in Γ to every vertex of S, while each other vertex z ∈ S
is adjacent to only |X| − 1 elements of S ∪ {1}. Thus σ must fix 1 and
interchange X \ {1} and Y \ {1}. It follows that Aut(Σ)1 is transitive on
S, proving the claim. Thus Aut(Σ) has exactly two orbits on the arcs of Λ,
namely the arcs (w, z) with wz−1 ∈ S and those with wz−1 ∈ S′.

Next we identify certain small subgraphs of Λ. For any [x, y] ∈ S′ and
y′ ∈ Y \ {1}, by Theorem 4.5 (4) we have [[y, x], y′] = 1 and [[x, y], y′] = 1, so
[x, y]y′ = y′[x, y], and

(1, y′, [x, y]y′, [x, y], 1)

is a 4-arc of Λ. Moreover, since [x, y]y′ ̸∈ S ∪ S′, it follows that the subgraph
of Λ induced on C(x, y, y′) := {1, y′, [x, y]y′, [x, y]} is a 4-cycle.
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Recall the generating sets X0 and Y0 for X and Y from Definition 1.2,
and choose x′ = x2 ∈ X0 and a = x1 ∈ X0, b = y1 ∈ Y0 so that [a, b] ∈ S′.
These elements arise as images under σ as follows: there exists [x, y] ∈ S′

such that [x, y]σ = [a, b], and there exists y′ ∈ Y such that (y′)σ = x′. Thus
the subgraph of Λ induced on C ′ := C(x, y, y′)σ = {1, x′, ([x, y]y′)σ, [a, b]} is
a 4-cycle including the 2-arc ([a, b], 1, x′). Thus, setting z := ([x, y]y′)σ, this
4-cycle is (1, x′, z, [a, b], 1) and hence z = sx′ = t[a, b] for some s, t ∈ S ∪ S′.
As these four vertices are pairwise distinct, sx′ ̸= 1 and tsx′ = [a, b] ̸= 1.

Each of t, s lies in either S or S′, giving four possible combinations. We
obtain a contradiction from each possibility as follows. First, if both t, s ∈ S′,
then x′ = st[a, b] and st[a, b] ∈ H(n)′ while x′ ∈ X \ {1}, and we have a
contradiction since by [10, Lemma 2.1], ϕ(x′) ̸= 1 while ϕ(st[a, b]) = 1. Next
suppose that t ∈ S′ and s ∈ S. Then sx′ = t[a, b] ∈ H(n)′ and hence
ϕ(sx′) = ϕ(t[a, b]) = 1, which implies that sx′ = 1 (by [10, Lemma 2.1]), a
contradiction. Thirdly, suppose that s, t ∈ S. Then tsx′ = [a, b] ∈ H(n)′ and
hence ϕ(tsx′) = ϕ([a, b]) = 1. Again we conclude that tsx′ = 1 by [10, Lemma
2.1], which is a contradiction.

This leaves the case t ∈ S, s ∈ S′, and hence ϕ(x′) = ϕ(sx′) = ϕ(t[a, b]) =
ϕ(t). Then by [10, Lemma 2.1], we must have t ∈ X \ {1} and ϕ(x′) = ϕ(t)

implies that t = x′. Thus x′sx′ = [a, b] and so s = x′[a, b]x′ = [a, b]x
′ ∈ S′,

which implies that [a, b][[a, b], x′] = [a, b]x
′
= s = [c, d] for some c ∈ X \ {1}

and d ∈ Y \ {1}. Now c = xi1xi2 . . . xik and d = yj1yj2 . . . yjℓ for some
xi1 , xi2 , . . . , xik ∈ X0 and yj1 , yj2 , . . . , yjℓ ∈ Y0, and we choose these expres-
sions with k, ℓminimal. We now apply Theorem 4.5 (6) to [c, d], observing that
[a, b]H(n)3 = [c, d]H(n)3, recalling that a = x1 ∈ X0 and b = y1 ∈ Y0, and
using the fact that the cosets [xiu , yjv ]H(n)3, for 1 ≤ u, v ≤ n, form a basis for

H(n)′/H(n)3 ∼= Cn
2

2 (see Theorem 4.5 (3)). We deduce that k = ℓ = 1, so that
a = c = xi1 = x1 and b = d = yj1 = y1. The equality [a, b][[a, b], x′] = [c, d]
then implies that [[a, b], x′] = 1, that is to say, [[x1, y1], x2] = 1, which con-
tradicts Theorem 4.5 (3). Thus AutΓ acts intransitively on the vertices of Γ,
and Γ is semisymmetric, completing the proof of Theorem 1.3.

Remark 5.1. To prove Σ is semisymmertic in case n = 2, we make use
of a Magma [1] computation, which we now describe. First, the group H(2)
is input in the category GrpFP via the presentation given in Definition 1.2.
Next, the pQuotient command is used to construct the largest 2-quotient H2
of H(2) having lower exponent-2 class at most 100 as a group in the category
GrpPC. Comparing the orders of these groups, we find |H(2)| = |H2|, so that
H(2) ∼= H2. Next we construct the graph Σ. Computation shows that Σ is
edge-transitive but not vertex-transitive, and has valency 4. We have made
available the Magma programs in the following Appendix.
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Appendix: Magma programs used in the proof of Theorem 1.3 in
the case n = 2.

Input the group H(2):
G<x1,x2,y1,y2>:=Group<x1,x2,y1,y2| x1^2, x2^2, y1^2, y2^2,

(x1,x2)=(y1,y2)=1,

(x1,y1)^2=(x1,y2)^2=(x2,y1)^2=(x2,y2)^2=1,

((x1,y1),x2)^2=((x1,y1),y2)=1,

((x1,y2),x2)^2=((x1,y2),y1)=1,

((x2,y1),x1)^2=((x2,y1),y2)=1,

((x2,y2),x1)^2=((x2,y2),y1)=1,

(x1,((x1,y1),x2))=(x2,((x1,y1),x2))=1,

(y1,((x1,y1),x2))=(y2,((x1,y1),x2))=1,

(x1,((x1,y1),y2))=(x2,((x1,y1),y2))=1,

(y1,((x1,y1),y2))=(y2,((x1,y1),y2))=1,

(x1,((x1,y2),x2))=(x2,((x1,y2),x2))=1,

(y1,((x1,y2),x2))=(y2,((x1,y2),x2))=1,

(x1,((x1,y2),y1))=(x2,((x1,y2),y1))=1,

(y1,((x1,y2),y1))=(y2,((x1,y2),y1))=1,

(x1,((x2,y1),x1))=(x2,((x2,y1),x1))=1,

(y1,((x2,y1),x1))=(y2,((x2,y1),x1))=1,

(x1,((x2,y1),y2))=(x2,((x2,y1),y2))=1,

(y1,((x2,y1),y2))=(y2,((x2,y1),y2))=1,

(x1,((x2,y2),x1))=(x2,((x2,y2),x1))=1,

(y1,((x2,y2),x1))=(y2,((x2,y2),x1))=1,

(x1,((x2,y2),y1))=(x2,((x2,y2),y1))=1,

(y1,((x2,y2),y1))=(y2,((x2,y2),y1))=1>;

Construct the largest 2-quotient group of H(2) having lower exponent-2 class
at most 100 as group in the category GrpPC:

H2,q:=pQuotient(G,2,100);

Order of H2 (The result shows that |H2| = |H(2)|, and so H2 ∼= H(2)):
FactoredOrder(H2);

Construct the graph Σ:
X:=sub<H2|x1,x2>; Y:=sub<H2|y1,y2>;

Vsigma1:={};
for g in H2 do

Xg:={};
for a in X do

Include(∼Xg, a*g);

end for;

Include(∼Vsigma1,Xg);
end for;

Vsigma2:={};
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for g in H2 do

Yg:={};
for b in Y do

Include(∼Yg, b*g);

end for;

Include(∼Vsigma2,Yg);
end for;

Vsigma:=Vsigma1 join Vsigma2;

Esigma:={{x,y}: x in Vsigma1,y in Vsigma2 | ♯(x meet y) ne 0};
Sigma:=Graph<Vsigma|Esigma>;

Test if Σ is a tetravalent semisymmetric graph:
IsVertexTransitive(Sigma);

IsEdgeTransitive(Sigma);

Valence(Sigma);
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