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Abstract. Locally projective graphs in Mathieu–Conway–Monster
series appear in thin–thick pairs. A possible thick extension of a thin

locally projective graph associated with the fourth Janko group has been

questioned for a while. Such an extension could lead, if not to a new
sporadic simple group, to something equally exciting. This paper resolves

this issue ultimately in the non-existence form confirming that the list of 26

sporadic simple groups, although mysterious, is now stable. The result in
fact concludes the classification project of locally projective graphs, which

has been running for some twenty years.

1. Locally projective graphs

The paper is devoted to the study and the classification of locally projec-
tive graphs defined in the following way.

Definition 1.1. Let Φ be a connected (locally finite) graph and let F be
a vertex- and edge-transitive automorphism group of Φ. Then Φ is locally
projective in dimension n with respect to F if

(a) there is a collection of complete subgraphs in Φ, called lines, such that
every edge is in a unique line;

(b) every line contains α vertices, where α is 2 (thin graph) or 3 (thick
graph), and the stabiliser of a line induces on its vertices the symmetric
group of degree α;

(c) if x is a vertex of Φ and F (x) is the stabiliser of x in F , then F (x)
induces on the set of lines containing x the natural action of Ln(2) of
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degree 2n − 1 on a projective space πx, in particular the valency of Φ
is (α− 1)(2n − 1).

Classical examples of locally projective graphs come from symplectic and
orthogonal dual polar spaces over GF (2) along the following construction.

Let V2n be a 2n-dimensional GF (2)-space, let f be a non-singular sym-
plectic form, and let q be a quadratic form of maximal Witt index n, whose
associated bilinear form is f :

f(u, v) = q(u) + q(v) + q(u+ v) for all u, v ∈ V2n.
Let Sp2n(2) and O+

2n(2) be the corresponding symplectic and orthogonal
groups, which are the automorphism groups of (V2n, f) and (V2n, f, q), re-
spectively.

Let Vn be a maximal totally isotropic subspace in V2n with respect to q
(that is q(u) = 0 for all u ∈ Vn). Then Vn is also maximal totally singular
with respect to f (that is f(u, v) = 0 for all u, v ∈ Vn). Notice that some of
the totally singular subspaces are not totally isotropic. The geometries whose
elements are the images under Sp2n(2) and O

+
2n(2) of the non-zero subspaces

from Vn are the dual polar spaces with the following diagrams:

G(Sp2n(2)) :
n−1

2
◦ n−2

2
◦ · · · 2

2
◦ 1

2
◦ 0

2
◦

G(O+
2n(2)) :

n−1

2
◦ n−2

2
◦ · · · 2

2
◦ 1

2
◦ K3,3 0

1
◦,

where the (n−i)-dimensional subspaces have type i and the incidence relation
is the symmetrised inclusion. The elements of types 0 and 1 are also called
points and lines, respectively. Let Γ(n) and ∆(n) be the point–line graphs
of G(Sp2n(2)) and G(O+

2n(2)), respectively. These are thick and thin locally
projective graphs in dimension n with respect to Sp2n(2) and O

+
2n(2), respec-

tively. The orthogonal dual polar graph is densely embedded in the symplectic
dual polar graph according to the following definition, where G(x) denotes
the stabiliser of a vertex x in G, G1(x) is the joint stabiliser of the vertices
adjacent to x, and G 1

2
(x) is the stabiliser in G(x) of all the lines containing

x (in the thin case G 1
2
(x) = G1(x), while in the thick case G 1

2
(x)/G1(x) is a

2-group).

Definition 1.2. Suppose that G acts locally projectively on a thick graph
Γ in dimension n ≥ 2, and let ∆ be a connected subgraph in Γ. Then ∆ is
said to be densely embedded in Γ if the following conditions hold:

(i) ∆ is thin and the subgroup H of G which stabilises ∆ as a whole
induces on it a locally projective action in dimension n, possibly with
a non-trivial kernel;

(ii) if x ∈ ∆, then H(x) contains G1(x), and H(x)/G1(x) is an Ln(2)-
complement to G 1

2
(x)/G1(x) in G(x)/G1(x).
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An important role in the study of locally projective graphs is played by
geometric subgraphs defined as follows.

Definition 1.3. A connected subgraph Ξ in a locally projective graph Φ
in dimension n is called geometric at level k, where 1 ≤ k ≤ n− 1 whenever,
together with an edge, it contains the line on this edge, and the following
conditions hold:

(i) if a vertex x is in Ξ, then the set of neighbours Ξ(x) of x in Ξ is a k-
dimensional subspace in the projective space πx associated with x and
the stabiliser of Ξ(x) in G(x) stabilises Ξ;

(ii) the subgraph Ξ is locally projective in dimension k with respect to the
action on it of the setwise stabiliser of Ξ in G.

In the symplectic and orthogonal graphs the geometric subgraphs at level
k are those induced by the vertices and edges incident to elements of type
k in the corresponding dual polar space geometry. In general, the existence
of geometric subgraphs at all levels can only be guaranteed in the simply
connected case (that is, when the vertex-line incidence graph is a tree) and
we will see the non-existing examples. The geometric subgraphs at level 2
are called planes and a complete set of planes can be found in every locally
projective graph of dimension at least 3 (cf. Chapter 10 in [5]). Let X be the
action on a plane Ξ induced by the setwise stabiliser of Ξ. If the graph is
thick, and Ξ contains a vertex x and a line l on x, then the amalgam

A = {X(x), X(l)}
has index (3, 3) in the sense that [X(x) : X(x, l)] = [X(l) : X(x, l)] = 3. Such
amalgams were classified by D. Goldschmidt in 1980 [3]. Up to isomorphism
there are 15 Goldschmidt amalgams.

In the orthogonal dual polar graph the action X on a plane is the orthog-
onal group O+

4 (2)
∼= S3 ≀ S2, while in the symplectic graph X ∼= Sp4(2) ∼= S6

is a completion of the Goldschmidt amalgam

G1
3
∼= {S4 × 2, S4 × 2}.

2. Mathieu groups and their graphs

Most of the exceptional locally projective graphs owe their existence to
the exceptional cases in the following well known [13] proposition.

Proposition 2.1. Let M ∼=
∧m

Vn(2) : Ln(2) be the semidirect product
with respect to the natural action of the mth-exterior power of the natural mod-
ule Vn(2) of Ln(2), where n ≥ 2 and 1 ≤ m ≤ n−1. Then all automorphisms
of M are inner except for the following cases, where the outer automorphism
group of M is of order 2:

(i) n = 3 and m = 1 or 2;
(ii) n = 4 and m = 2.
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Notice that
∧2

V3(2) is the dual of V3(2). An explicit form of the outer
automorphisms can be constructed as follows. There is a famous isomor-
phism between L4(2) and the alternating group A8 of degree 8. This isomor-

phism sends
∧2

V4(2) onto the heart of the GF (2)-permutation module on 8
points. If V7 is the quotient of the permutation module over the 1-dimensional
submodule of constant functions, then V7 is an indecomposable extension of∧2

V4(2) and

A := V7 : A8
∼= Aut (

2∧
V4(2) : L4(2)).

Further on, if L(3) ∼= L3(2) denotes the Levi subgroup in L4(2) (the stabiliser
of a decomposition of V4(2) into the sum of 1- and 3-dimensional subspaces),

then
∧2

V4(2), as a L
(3)-module, is isomorphic to the direct sum of the natural

V3(2) and the dual natural V3(2)
∗ modules. The normalisers in A of V3(2) :

L(3) and of V3(2)
∗ : L(3) are the full automorphism groups of the respective

semidirect products. An automorphism will be called special if it acts trivially
on the largest normal 2-subgroup and on the quotient over this subgroup.

To approach the Mathieu groups, we start with the locally projective
action of H ∼= L5(2) on the Grassmannian with the following diagram, where
under the nodes we indicate the structure of the maximal parabolic subgroups.

G(L5(2)) :
3

L4(2)

24

◦ 2

S3×L3(2)

22⊗23

◦ 1

L3(2)×S3
23⊗22

◦ 0

L4(2)

24

◦.

The locally projective graph is complete on 31 vertices and the structure of
lines, planes etc. can only be seen through the group action.

The locally projective amalgam is

B = {H(x), H(l)} ∼= {24 : L4(2), (2
2 ⊗ 23) : (S3 × L3(2))}.

A plane is isomorphic to the Fano plane on seven points, its stabiliser induces
L3(2) on the plane, realising the Goldschmidt amalgam

G3
∼= {S4, S4}.

Because of Proposition 2.1 (ii), the intersection

H(x) ∩H(l) ∼= (23 × 23) : (L3(2)× 2)

possesses an outer automorphism which can be used through Goldschmidt’s
lemma to twist the amalgam B to obtain the Mathieu amalgam corresponding
to a locally truncated geometry with the following diagram:

H(M24) :
2

S6
26:3

◦ 1

L3(2)×S3
23⊗22

◦ 0

L4(2)

24

◦.

The details of this construction can be found in [5], where the twisted amalgam
was taken as the starting point to recover the whole theory of the Mathieu
groups. As indicated on the above diagram, geometric subgraphs at level 3
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do not exist in the Mathieu geometry, while planes enjoy an action of S6,
realising the amalgam

G1
3 = {S4 × 2, S4 × 2}.

The non-existence of the geometric subgraphs at level 3 is due to the fact
that the subamalgam

A = {H(x,Π), H(x,Π)} ∼= {21+6
+ : L3(2), [2

8] : (S3 × S3)}
(where Π is a hyperplane in the projective space associated with x) generates
the whole group M24. This means that A is a (faithful) locally projective
amalgam and the geometrisation of the corresponding locally projective graph
has the following diagram:

G(M24) :
2

3·S6
26

◦ 1

S3×S3
22⊗22

[24]

◦ ∼ 0

L3(2)

2
1+6
+

◦.

Here planes are triple covers of the generalised quadrangle of order (2, 2) with
the action of 3 · S6 realising the same amalgam G1

3. The graph contains a
densely embedded subgraph stabilised by the smaller Mathieu group M22.2
and corresponding to the following diagram:

G(M22) :
2

S5
25

◦ 1

S3×2

26

◦ P 0

L3(2)

2×23

◦.

The planes here are Petersen subgraphs with the natural action of S5 (iso-
morphic to O−

4 (2)). In this paper the following result will prove crucial.

Proposition 2.2. Let X be a locally projective amalgam corresponding to
a thick action in dimension 3 and suppose that X contains a densely embedded
subamalgam

Y = {Y (x), Y (l)} ∼= {2× 23 : L3(2), 2
6.(S3 × 2)}

corresponding to the action of M22.2 on its thin locally projective graph in
dimension 3. Then

(i) X is isomorphic to the amalgam corresponding to the action of M24 on
its thick locally projective graph in dimension 3 (this amalgam is also
contained in the Held group He);

(ii) the involution in the direct factor of order 2 in Y (x) is fused in X(l) to
an involution inside O2(2

3 : L3(2)), where 23 : L3(2) is a direct factor
of Y (x).

Proof. By Proposition 23 (i) in [7], we know that the chief X(x)-factors
of O2(X(x)) are (a) the trivial 1-dimensional, (b) the natural and (c) the
dual natural modules. Then the main result of [1] applies and we obtain two
possibilities for the isomorphism type of {X(x), X(l)}: the one realised in
M24 and in the Held group, and the one realised in the alternating group
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A16 of degree 16. In [15] it was shown that in the latter amalgam the thin
densely embedded subamalgam is completed in an index two subgroup of the
wreath product S8 ≀ 2 (and not in M22.2), which gives (i). To see (ii), let Ξ
be the locally projective graph associated with X and let Θ be its densely
embedded subgraph associated with Y. To a vertex x of Ξ we assign the
unique involution ιx in Z(X(x)). Then the 14 involutions corresponding to
u ∈ Ξ1(x) are contained in X1(x) ∼= 23 × 2 and they are pairwise different,
since the action of O2(X(x)) on X1(x) is non-trivial. We have Y1(x) = X1(x),
but only 7 involutions are assigned to vertices in Θ1(x). These involutions
must be diagonal in the direct product of L3(2)-modules, since ιx projects in
M22 : 2 outside the simple subgroup. Since

u 7→ ιu

is bijective on the set {x} ∪ Ξ1(x) of vertices, either y or z is contained in
the 23-submodule (we assume that it is y). Then the element in X(l) which
induces the permutation (x y)(z) conjugates ιx onto ιy confirming (ii).

3. Fourth Janko group

A path to the fourth Janko group J4 lies through a twist of the locally
projective amalgam of O+

10(2). The dual polar space of this group is described
by the following diagram indicating the structure of parabolic subgroups:

G(O+
10(2)) :

4

O
+
8 (2)

28

◦ 3

S3×S8

2
1+12
+

◦ 2

L3(2)×(S3≀S2)

23+12

◦ 1

L4(2)×2

24×24

26

◦ K3,3 0

L5(2)

210

◦.

Let H = O+
10(2) = Aut (V +

10(2), f, q). Let V5 and U5 be two disjoint
maximal totally isotropic subspaces in V +

10(2) with bases {v1, . . . , v5} and
{u1, . . . , u5}, such that f(vi, uj) = δij . Then V5 and U5 are vertices in the
corresponding locally projective graph at maximal distance 5 and their joint
stabiliser L(5) in H is isomorphic to L5(2) and it acts on the subspaces as on
the natural and the dual natural modules, respectively. The stabiliserH0 of V5
is the semidirect product of L(5) with the exterior square Q10 of V5 generated
by the Siegel transformations associated with 2-dimensional subspaces in V5:

H0
∼= 210 : L5(2)

as on the diagram. A 4-dimensional subspace in V5 is an edge l containing V5,
and we choose it to be V4 spanned by the leading four basis vectors in V5 and
denote its stabiliser by H1. Then the second vertex on l is the subspace W5

spanned by V4 together with u5. The structure of H1 is as follows. The largest
normal 2-subgroup Q14 in H0∩H1 has order 214, it is a semidirect product of

Q10 and Q
(a)
4 = O2(L

(5)(V4)). The whole of H0∩H1 is the semidirect product

of Q14 and a Levi L4(2)-subgroup L(4) in L(5) which is the stabiliser of the
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direct sum decomposition

V5 = V4 ⊕ ⟨v5⟩.
Finally, H0 is obtained by adjoining to H0 ∩H1 the symplectic transvection
τ , associated with the vector v5 + u5:

τ : v 7→ v + f(v, v5 + u5) (v5 + u5).

Notice that the vector v5 + u5 is non-isotropic, that is why τ belongs to
the orthogonal group (but not to its simple index 2 subgroup). In order to
describe the automorphism of H0 ∩ H1 induced by τ , we need some more
notation. Let Q6 be the subgroup of order 26 in Q10 generated by the Siegel
transformations associated with 2-subspaces in V4, so that Q6 is the exterior

square of V4. Further, let Q
(b)
4 be the subgroup of order 24 in Q10 generated

by the Siegel transformations associated with 2-subspaces contained in V5 and

containing v5. Then Q
(b)
4 is the natural module for L(4) and

Q10 = Q6 ⊕Q(b)
4

as L(4)-modules. Finally, Q
(a)
4 is generated by the Siegel transformations as-

sociated with 2-subspace inW5 containing u5. The following assertion follows
from the definitions.

Lemma 3.1. In the above terms τ commutes with Q6 and with L(4), and

swaps Q
(a)
4 and Q

(b)
4 , permuting the Siegel transformations associated with

⟨v, v5⟩ and with ⟨v, u5⟩ for all v ∈ V #
4 .

Now we can apply a twist. Let σ be an involutory outer automorphism
of Q6 : L(4), as in Proposition 2.1 (ii), which we extend to an automorphism

of H0 ∩H1 by requesting it centralises Q
(a)
4 and Q

(b)
4 . The twisted amalgam

is

A(1)
5 = {H0, (H0 ∩H1) : ⟨τσ⟩}.

The fourth Janko group J4 is a completion of A(1)
5 , which can be characterised

either as the unique completion in which Q10 is self-centralised [14], or as
the image of the minimal (1333-dimensional) representation of the universal
completion of the amalgam [11]. The corresponding geometry belongs to the
following diagram:

H(J4) :
3

M22.2

2
1+12
+

:3

◦ 2

L3(2)×S5
23+12

◦ 1

L4(2)×2

24×24

26

◦ P 0

L5(2)

210

◦.

The residue of an element of type 3 is the geometry of the Mathieu group
M22 from the previous section, in particular the edge on the right symbolises
the geometry of the Petersen graph. The geometric subgraphs at level 4 are
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missing, since the subamalgam (where τ and σ are assumed to be restricted
to H0 ∩H1 ∩H4)

A(4)
4 := {H0 ∩H4, (H0 ∩H1 ∩H4) : ⟨τσ⟩},

which is due to generate the stabiliser of such a subgraph, generates the
whole of the Janko group J4. Here H4 is the stabiliser in O+

10(2) of a vector

in V4, say of v1. Therefore, the constructed amalgam A(4)
4 is faithful (the

members contain no nontrivial normal subgroup in their intersection) and thus
corresponds to an action of J4 on a locally projective amalgam in dimension
3. The diagram of the geometric subgraphs in that graph is the following:

G(J4) :
3

3·M22.2

2
1+12
+

◦ 2

S3×S5
23+12+2

◦ 1

L3(2)×2

[216]

◦ P 0

L4(2)

26

24

24

◦.

The residue of an element of type 3 is the triple cover of the geometry of
M22.2 associated with the non-split extension by a normal subgroup of order
3. We follow notations for amalgams in Table 1 in [11].

The geometries H(M24) and G(M24) are subgeometries in H(J4) and
G(J4) on elements with types 1, 2 and 3 constructed as follows. The edges of
the Petersen graph are split into five antipodal triples. If we define a graph
on the edges of a locally projective graph of J4 where two edges are adjacent
whenever they are antipodal in a Petersen subgraph (which is geometric at
level 2), then a connected component of this graph is stabilised by a maximal
2-local subgroup in J4 isomorphic to 211 : M24, and leads to a subgeometry
as described above.

The structure of parabolics in A(4)
4 will be analysed closely, but one of

the properties we state right here (cf. Section 9 in [11]).

Lemma 3.2. The point-line stabiliser H0∩H1∩H4 in A(4)
4 is a semidirect

product of a group Q19 of order 219 with centre Z of order 23 and a group
L(3) ∼= L3(2) such that Z is the natural module for L(3).

The above lemma exhibits a possibility for a further twist. Indeed, by
Proposition 2.1 and Lemma 3.2, H0 ∩H1 ∩H4 possesses an involutory outer
automorphism ρ which centralises Q19 and induces an outer automorphism of
Z : L(3). The corresponding amalgam

A(5)
4 = {H0 ∩H4, (H0 ∩H1 ∩H4) : ⟨τσρ⟩}

was proved in [9] to embed in the alternating group A256 of degree 256. This
embedding leads to the following diagram of maximal parabolics:

G(A256) :
3

22×L6(2):2

2
1+12
+

◦ 2

S3×(S5×2)

23+12+2

◦ 1

L3(2)×2

[216]

◦ 2P 0

L4(2)

26

24

24

◦,
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where the edge on the right symbolises a double cover of the Petersen graph.

It was shown in [8] that A(1)
5 does not appear as a densely embedded thin

subamalgam in a thick locally projective amalgam in dimension 5. In the
present paper we prove the non-existence result for the other two amalgams.

Theorem 3.3. Neither A(4)
4 nor A(5)

4 appear as a densely embedded suba-
malgam in a thick locally projective amalgam in dimension 4.

4. An explicit form of the two amalgams

We start by deducing the structure of the amalgams A(4)
4 and A(5)

4 . The
vertex stabilisers are isomorphic (we denote it by G(x)) and can be described
as a parabolic subgroup in H ∼= O+

10(2). In fact, G(x) = H0 ∩H4 which is the
stabiliser in H of a maximal isotropic subspace, say V5 = ⟨v1, . . . , v5⟩ (giving
H0) and a vector in V5, say v1 (giving the intersection with H4). We have
seen in the previous section that

H0
∼= Q10 : L(5) ∼=

2∧
V5 : L5(2).

Let M (4) be the Levi subgroup in L(5) stabilising the decomposition

V5 = ⟨v1⟩ ⊕W4,

where W4 = ⟨v2, . . . , v5⟩. Of course M (4) is a conjugate of L(4), which will
reappear later on. As a module forM (4), the subgroup Q10 splits into a direct
sum

Q10 = R6 ⊕R(b)
4 ,

where R6 is the exterior square ofW4 generated by the Siegel transformations

associated with the 2-subspaces in W4, and R
(b)
4 is the natural module of

M (4) generated by the Siegel transformations of the 2-subspaces ⟨v1, v⟩ taken
for all v ∈ W4. The subgroup R

(a)
4 := O2(L

(5)(v1)) is generated by the
Siegel transformations associated with the subspaces ⟨v1, uj⟩ for 2 ≤ j ≤ 5,
where as above U5 = ⟨u1, . . . , u5⟩ is an isotropic complement to V5 in V10
with f(vi, uj) = δij . The above description leads to the following abstract
characterisation.

Lemma 4.1. The group H0 ∩H4 is a semidirect product of O2(H0 ∩H4)
and M (4) ∼= L4(2). Furthermore,

(i) O2(H0 ∩H4) = R
(b)
4 R6R

(a)
4 where R

(b)
4 , R6 and R

(a)
4 are the natural,

the exterior square of the natural and the dual natural modules for
M (4);

(ii) R
(b)
4 is the centre of O2(H0 ∩H4) and

[R
(a)
4 , R6] = R

(b)
4
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with [r(W3), r(W2)] = r(W3 ∩ W2), where W3, W2 are 3- and 2-
subspaces in V4 corresponding to elements in the commutator, which is
non-trivial only when W3 ∩W2 is 1-dimensional and hence determines

a vector from R
(b)
4 .

In order to refine further to obtain the vertex-edge stabiliser

G(x) ∩G(l) = H0 ∩H1 ∩H4,

along with V5 and v1, we stabilise a 4-subspace V4 = ⟨v1, v2, v3, v4⟩. Let
L(3) ∼= L3(2) be the Levi subgroup stabilising the direct sum decomposition

V5 = ⟨v1⟩ ⊕ V3 ⊕ ⟨v5⟩,
where V3 = V4∩W4 = ⟨v2, v3, v4⟩ is the natural module of L(3). We summarise
the structure in the following lemma.

Lemma 4.2. In the above terms the following assertions hold:

(i) there are the following decompositions of L(3)-modules:

R
(b)
4 = R

(b)
3 ⊕R

(b)
1 , R

(a)
4 = R

(a)
1 ⊕R(a)

3 , R6 = R
(c)
3 ⊕R

(d)
3 ,

where R
(b)
3 is the natural module generated by the Siegel transforma-

tion associated with the 2-subspaces ⟨v1, v⟩ for v ∈ V3, R
(b)
1 is the

1-dimensional trivial module generated by the Siegel transformation of

⟨v1, v5⟩, R(a)
1 is the trivial module generated by the Siegel transforma-

tion of ⟨v1, u5⟩, R(a)
3 is the dual natural module generated by the Siegel

transformations ⟨v1, uj⟩ for j = 2, 3, 4, R
(c)
3 is the dual natural module

generated by Siegel transformations associated with the 2-subspace in

V3, R
(d)
3 is the dual natural module generated by Siegel transformations

of the 2-subspaces ⟨v, v5⟩ for v ∈ V3;
(ii) R

(e)
3 := O2(M

(4)(V3)) is the dual natural module generated by the Siegel
transformations of the subspaces ⟨v5, uj⟩ for j = 2, 3, 4;

(iii) the actions of R
(e)
3 on R

(b)
4 , R

(a)
4 and R6 can be seen by restricting the

actions of M (4), in particular R
(e)
3 centralises R

(b)
3 , R

(a)
1 and R

(c)
3 ;

(iv) Q6 = R
(b)
3 ⊕R

(c)
3 , Q

(b)
4 = R

(b)
1 ⊕R

(d)
3 , Q

(a)
4 = R

(e)
3 ⊕R

(a)
1 .

Now the automorphisms τ , σ and ρ can be described rather explicitly.

Lemma 4.3. Each of the automorphisms τ , σ and ρ of G(x) ∩ G(l) =
H0 ∩H1 ∩H4 commutes with the action of L(3) ∼= L3(2); furthermore,

(i) τ permutes R
(b)
1 with R

(a)
1 and R

(d)
3 with R

(e)
3 and centralises the other

R’s and L(3);
(ii) σ acts as follows

(a) it induces special outer automorphisms of R
(b)
3 L(3) and R

(c)
3 L(3)

as in Proposition 2.1 (i);
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(b) it sends R
(a)
3 onto an L3(2)-invariant diagonal of R

(a)
3 and R

(b)
3 ;

(iii) ρ induces a special outer automorphism of R
(b)
3 : L(3) and centralises

all the R’s.

Proof. The assertion (i) is by Lemma 3.1, since τ is the restriction of
the symplectic transvection with respect to v5 + u5.

In order to see (ii), we need to determine the action of a special outer auto-
morphism of Q6 : L(4) on the intersection of the latter group with G(x)∩G(l).
This intersection J contains the whole of Q6 = R

(b)
3 ⊕ R

(c)
3 and a maximal

parabolic R
(a)
3 L(3) from L(4). It can be seen that J is a tri-extraspecial group

of plus type [12]. Now (ii) can be deduced either using the description of the
automorphisms of tri-extraspecial groups and/or using the description of the
special outer automorpohisms of Q6 : L4 in the paragraph after Lemma 2.1.

Notice that the diagonal in (ii) (b) does not split over R
(b)
3 as an L(3)-module,

but splits as a module for the image of L(3) under a special outer automor-

phism of R
(c)
3 L(3).

Finally, (iii) is by Lemma 3.2, since R
(b)
3 is the centre of O2(G(x)∩G(l)).

Notice that instead of L(3) we can take any other L3(2)-complement and
that in a sense ρ partially compensates the action of σ on the classes of such
complements.

Lemma 4.4. The amalgams

A(4)
4 = {H0 ∩H4, (H0 ∩H1 ∩H4) : ⟨τσ⟩}

and

A(5)
4 = {H0 ∩H4, (H0 ∩H1 ∩H4) : ⟨τσρ⟩}

are faithful.

Proof. The amalgam {H0 ∩ H4, (H0 ∩ H1 ∩ H4) : ⟨τ⟩} is contained
in H ∼= O+

10(2) and generates Q8 : O+
8 (2), where Q8 is the radical of the

amalgam, which is the largest normal subgroup in the intersection of the
members of the amalgam. The subgroup Q8 is elementary abelian of order
28, generated by the Siegel transformations associated with the subspaces
⟨v1, vj⟩ and ⟨v1, uj⟩ for 2 ≤ j ≤ 5. Therefore, it is sufficient to show that Q8

is not normalised by σ. In fact, by Lemma 4.3 (ii) (b), σ sends the element
S(⟨v1, u2⟩) contained in Q8 onto the product S(⟨v1, u2⟩) · S(⟨v3, v4⟩), which
is not in Q8 (of course S(U2) is the Siegel transformation associated with a
2-subspace U2).

It can be seen from the structure of the parabolic subgroups inH = O+
10(2)

indicated on a diagram of G(O+
10(2)) in Section 3 that the radical of the

subamalgam

{H0 ∩H3 ∩H4, (H0 ∩H1 ∩H3 ∩H4) : ⟨τ⟩}
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is an extraspecial group Q13 of order 213 of plus type: Q13
∼= 21+12

+ . This sub-
group is generated by the Siegel transformations commuting with S(⟨v1, v2⟩)
(which itself generates the centre of Q13). The subgroup Q13 is normalised
by σ and by ρ, and the following holds.

Lemma 4.5. The subgroup Q13
∼= 21+12

+ is the vertex-wise stabiliser of a
geometric subgraph at level 3 associated with the locally projective action of

A(i)
4 for i = 4 and 5. If I(i) denotes the image in Out (Q13) of the stabiliser

of this geometric subgraph as a whole, then

I(4) ∼= 3 ·M22 : 2, I(5) ∼= L6(2) : 2.

Proof. The stabiliser of a geometric subgraph at level 3 is the centraliser

of an involution in the fourth Janko group J4, which is a completion of A(4)
4

[4]. In the case of A(5)
4 the action was identified in the A256-completion in

[9]. Notice that Q13 is self-centralised in J4, while in A256 its centraliser is
elementary abelian of order 23.

5. Possibilities for thick extensions

Towards the proof of Theorem 1 we assume that Φ is a thick locally
projective graph in dimension 4 with respect to a group F , and that Φ contains
a densely embedded subgraph Γ with respect to G, where G is a completion

of amalgam A(4)
4 or A(5)

4 . Then G is a quotient of the stabiliser of Γ in F
over its vertex-wise stabiliser. In order to exclude the unwanted cycles, we
assume that Φ is simply connected, that is the vertex-line incidence graph is
a tree. In this case Γ is just a tree and G is the universal completion of the
corresponding amalgam.

Let x be a vertex of Φ and let l = {x, y, z} be a line containing x, with
l ∩ Γ = {x, y}. We start with an analysis of the stabiliser G(x) in order the
recover the possible structure of F (x). The following lemma follows directly
from Lemmas 4.2 and 4.3 (compare Section 9 in [10]).

Lemma 5.1. Let Gi(x) denote the joint stabiliser in G of the vertices at
distance at most i from x in Γ. Then

G4(x) = 1, G3(x) = R
(b)
4 , G2(x) = R

(b)
4 R

(a)
4 ,

G1(x) = R
(b)
4 R

(a)
4 R6, G(x) = R

(b)
4 R

(a)
4 R6L

(4).

Let Fi(x) be the joint stabiliser in F of the vertices at distance at most
i from x in Φ. Let F 1

2
(x) be the largest subgroup in F (x) which stabilises as

a whole every line containing x. We follow Section 3 in [7] for methods and
results in reconstructing thick stabiliser. The next result is Lemma 13 in [7].

Lemma 5.2. The following assertions hold:

(i) F 1
2
(x) = O2(F (x)) and F (x)/F 1

2
(x) ∼= L4(2);
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(ii) the quotient F 1
2
(x)/F1(x) is elementary abelian of order 24 isomorphic

to the natural module for F (x)/F 1
2
(x).

Further analysis heavily relies on the structure of the geometric subgraphs
in Γ and Φ as described in the next lemma.

Lemma 5.3. Let Ξ be a geometric subgraph at level 2 ≤ m ≤ 3 in Γ or
Φ containing the flag (x, l). Let X be an action of the stabiliser of Ξ in the
relevant group on the subgraph, and let A = {X(x), X(l)} be the corresponding
locally projective amalgam. Then

(i) if m = 2, then A is the Djoković–Miller amalgam {S3 × 2, D8} con-
tained in S5 in the thin case and the Goldschmidt amalgam G1

3 =
{S4 × 2, S4 × 2} contained in S6 in the thick case;

(ii) if m = 2, then A ∼= A(5)
3 contained in M22.2 in the thin case and in

the thick case

A ∼= {21+6
+ : L3(2), [2

8] : (S3 × S3)}
contained in M24;

(iii) Xm−1(x) induces on Ξ an action of order 2.

Proof. The level 3 case follows from the structure of the J4-parabolic

subgroups for the A(4)
4 -amalgam and then also for the A(5)

5 -amalgam, since
the automorphism ρ does not affect the structure of the residual amalgam
A (ρ adjusts an L3(2)-complement by the centre of O2, so that the action is
unchanged). Then the thick case follows from Lemma 2.2 (i). The level 2
case now follows from the structure of the residues in the M22.2- and M24-
geometries. Finally, (iii) is a well-known property of the relevant residual
geometries.

The assertion (iii) in the above lemma is equivalent to the validity of the
crucial condition (∗) (compare the paragraph prior Proposition 17 in [7] and
Section 9.3 in [10]).

The next result is Lemmas 18, 19 and 20 in [7], which relies on the validity
of the (∗) condition we have just established.

Lemma 5.4. The isomorphism

Fi(x)/Fi+1(x) ∼= Gi(x)/Gi+1(x)

holds for 1 ≤ i ≤ 2, and

F4(x) = 1.

Now it only remains to draw the connection between F3(x) and G3(x),
where the latter is the dual L4(2)-module by Lemma 5.1. The structure of
F3(x) comes from Proposition 22 (iii) in [7].

Lemma 5.5. One of the following holds:
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(i) F3(x) ∼= G3(x);
(ii) F3(x) is elementary abelian of order 25, F3(x) is in the centre of F1(x)

and F (x)/F1(x) ∼= 24 : L4(2) acts faithfully on F3(x) inducing the
stabiliser of a hyperplane in GL(F3(x)).

The following proposition is a summary of this section.

Proposition 5.6. The vertex stabiliser F (x) in a locally projective amal-

gam containing A(i)
4 as a densely embedded subamalgam for i = 4 or 5 has the

following structure:

(i) O2(F (x)) has order 218 or 219;
(ii) F (x) possesses the normal series

F (x) > F 1
2
(x) > F1(x) > F2(x) > F3(x) ≥ [F (x), F3(x)] > 1,

whose factors are L4(2), the natural, the exterior square of the natu-
ral, the natural, trivial 1- or 0-dimensional and the natural module of
L4(2).

Having Proposition 5.6 in hand, one can proceed to construct {F (x), F (l)}
by accomplishing the following steps:

(A) Recover the isomorphism type of F (x) from the structure of chief fac-
tors in Proposition 5.6 and from the knowledge of the isomorphism
type of its section G(x);

(B) lift the automorphisms τσ and/or τσρ to an automorphism α of F (x)∩
F (l) inducing on l the permutation (x, y)(z);

(C) reconstruct a preimage β in F (x) of an element from F 1
2
(x) which

induces on l the permutation (x)(yz) and commutes with the action
of an L3(2)-complement in F (x) ∩ F (l);

(D) check that ⟨α, β⟩ maps onto an S3-subgroup in Out (F (x, y, z)).

This plan was partially realised leading to failures on step (D). Then
we were returning back realising that some fancy possibilities for F (x) are
missed, like non-splitness, indecomposabilities and alike. Then another fail-
ure. Eventually it has been realised that the obstacle is in the impossibility
to realise the amalgam of the residual locally projective action at level 3 on
the vertex-wise stabiliser of the corresponding geometric subgraph. This led
to the non-existence proof accomplished in the next section.

6. Acting on the kernel at level 3

We continue to use hypotheses and notations from the previous section.
Let Ξ be a geometric subgraph at level 3 in Φ containing the flag (x, l) and let
Θ be the intersection of Ξ with Γ, so that Θ is a geometric subgraph at level
3 in Γ. Let X and Y be the actions on Ξ and Θ of their respective stabilisers
in F and G, and let N and M be the kernels of the actions. The following
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lemma summarises what we know about Θ, Y , N and M from Lemmas 4.5,
5.3 and 5.6.

Lemma 6.1. The following holds:

(i) M ∼= 21+12
+ ;

(ii) (G(x) ∩G[Θ])/M ∼= 2× 23 : L3(2), (F (x) ∩ F [Ξ])/N ∼= 21+6
+ : L3(2);

(iii) the action of F (a) of F (x) ∩ F [Ξ] on Ξ possesses the following normal
series:

F (a)(x) > F
(a)
1
2

(x) > F
(a)
1 (x) > F

(a)
2 (x) > F

(a)
3 (x) = 1

with factors isomorphic to L3(2), the natural module V3(2), the
dual natural V3(2)

∗ module, and the trivial 1-dimensional module for
F (a)(x)/F 1

2
(x) ∼= L3(2).

Next we restrict the series in Proposition 5.6 (ii) to the intersection of
F (x) with the stabiliser F [Ξ] of the geometric subgraph Ξ at level 3 and
decide which submodules fall into the vertex-wise stabiliser N , making use of
Lemma 6.1 (iii).

Lemma 6.2. The kernel N has the following (F (x) ∩ F [Ξ])-factors as
modules for an L3(3) ∼= (F (x) ∩ F [Ξ])/O2(F (x) ∩ F [Ξ])

(i) the whole of F3(x), which is the dual natural module extended by one
or two trivial 1-dimensional;

(ii) a 3-dimensional submodule of F2(x)/F3(x) isomorphic to the natural
module;

(iii) a 3-dimensional submodule of F1(x)/F2(x) isomorphic to the natural
module;

(iv) a 1-dimensional submodule of F 1
2
(x)/F1(x);

(v) a 3-dimensional submodule which is O2((F (x) ∩ F [Ξ])/F 1
2
(x)).

Lemma 6.3. The kernel N is isomorphic to the central product of M ∼=
21+12
+ with a group of order 4 or with a groups D8, depending on which of the
possibilities is realised in Lemma 17.

Proof. By Lemma 6.2, the order of N is 214 or 215 depending on the
possibilities in Lemma 17. The subgroup M is a factor group of a subgroup
of index 2 in N which misses the submodule in Lemma 6.2 (iv). The factor is
over a subgroup of order 2 or 1. The action described in Lemma 17 (ii) gives
the structure of N in case it has order 215, and the case of smaller N is also
clear.

Let a and b be elements in F stabilising x, Ξ and Θ whose actions ā and
b̄ on Θ satisfy:

(1) ā is the only non-trivial element in Y2(x);
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(2) b̄ is in the normal 2-subgroup of the direct factor of Y (x) ∼= 23 :
L3(2)× 2 different from ⟨ā⟩;

(3) ā and b̄ are conjugate in X(l) as in Proposition 5 (ii).

In the next proposition we reach the final contradiction by showing that
the elements a and b satisfying (1) and (2) above have centralisers in N̄ :=
N/[N,N ] of different orders. This is in fact not surprising, since b̄ maps into
the commutator subgroups of I(4) and I(5) in Lemma 12, while ā does not. So,
instead of a rather explicit calculation, below we could refer to a classification
of involutions in the orthogonal groups. Notice that since the commutator
subgroup of N is abelian, the orders of the centralisers do not depend on the
choice of representatives.

Proposition 6.4. The dimensions of CN̄ (a) and CN̄ (b) for elements
satisfying (1) and (2) above are different.

Proof. We count which part of the composition factors in Lemma 20
fall into the centralisers of a and b in N . For a we have everything from
(i), (ii) and (iv) and nothing else, giving dimension of CN̄ (a) equal to 6 or 7
depending on the order of F3(x). On the other hand, for b we have everything
from (i), (iii) and (iv), a 2-subspace from (ii), giving the total dimension of
CN̄ (b) of dimension 8 or 9, completing the proof.

The final contradiction, showing that elements satisfying (1) and (2) can-
not possibly satisfy (3), completes the proof of Theorem 1.
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