ON GROUPS WITH AVERAGE ELEMENT ORDERS EQUAL TO THE AVERAGE ELEMENT ORDER OF THE ALTERNATING GROUP OF DEGREE 5

Marcel Herzog, Patrizia Longobardi and Mercede Maj

Tel-Aviv University, Israel and Università di Salerno, Italy

This paper is dedicated to the memory of Professor Zvonimir Janko

Abstract

Let G be a finite group. Denote by $\psi(G)$ the sum $\psi(G)=$ $\sum_{x \in G}|x|$, where $|x|$ denotes the order of the element x, and by $o(G)$ the average element orders, i.e. the quotient $o(G)=\frac{\psi(G)}{|G|}$. We prove that $o(G)=o\left(A_{5}\right)$ if and only if $G \simeq A_{5}$, where A_{5} is the alternating group of degree 5 .

1. Introduction

Let G be a finite group. Denote by $\psi(G)$ the sum

$$
\psi(G)=\sum_{x \in G}|x|,
$$

where $|x|$ denotes the order of the element x, and by $o(G)$ the quotient

$$
o(G)=\frac{\psi(G)}{|G|} .
$$

Thus $o(G)$ denotes the average element order of G. Moreover, if $S \subseteq G$, then we define $\psi(S)=\sum_{x \in S}|x|$.

Recently many authors studied the function $\psi(G)$ and, more generally, properties of finite groups determined by their element orders (see for example $[1-9,11-18,20-26,30,31,33-37])$. It is easy to see that $\psi\left(A_{4}\right)=31=\psi\left(D_{10}\right)$, where A_{4} is the alternating group of degree 4 and D_{10} is the dihedral group of order 10 . Hence $\psi(G)$ usually does not identify the group G. However,

2020 Mathematics Subject Classification. 20D60, 20F16, 20 E 34.
Key words and phrases. Group element orders, alternating group.
it is possible to prove that, if $\psi(G)=\psi\left(S_{3}\right)$, then $G \simeq S_{3}$, and that, if $\psi(G)=\psi\left(A_{5}\right)$, then $G \simeq A_{5}$ (see $[1,4,22]$ for more examples of groups G identified by the function $\psi(G))$. Another problem that has been recently studied by many authors is to find some bounds on $\psi(G)$ that imply that the group G belongs to some classes of groups, like the class of solvable, or nilpotent, or supersolvable groups (see for example [3-5, 9, 14, 18, 34, 35]).

In this paper we shall study similar problems for the function $o(G)$.
If C_{n} denotes the cyclic group of order n, and we consider the groups $G_{1}=C_{8} \times C_{2}$, and $G_{2}=C_{8} \rtimes C_{2}$, where $C_{2}=\langle a\rangle, C_{8}=\langle b\rangle, b^{a}=b^{5}$, then it is easy to prove that $\psi\left(G_{1}\right)=\psi\left(G_{2}\right)=87$. Thus $o\left(G_{1}\right)=o\left(G_{2}\right)$ and of course G_{1} and G_{2} are not isomorphic. Hence usually the function $o(G)$ does not identify the group G. But again sometimes that happens, for example $o(G)=o\left(S_{3}\right)$ if and only if $G \simeq S_{3}$ (see [17, Theorem A]), and $o(G)=o\left(A_{4}\right)$ if and only if $G \simeq A_{4}$ (see [36]).
A. Jaikin-Zapirain started in his paper [27] the investigation of the function $o(G)$. He proved that if G is a finite group, then $o(G) \geq o(Z(G))$ ([27, Lemma 2.7]), and that $o(G) \leq k(G)$, the number of conjugacy classes in G ([27, Lemma 2.9]). He also posed the following question: let G be a finite $(p$ - $)$ group and N a normal (abelian) subgroup of G, is it true that $o(G) \geq o(N)^{\frac{1}{2}}$? Ten years later, in their paper [19], E. I. Khukhro, A. Moretó and M. Zarrin provided a negative answer to Jaikin-Zapirain's question, in fact they proved that if $c>0$ is any real number and $p \geq \frac{3}{c}$ a prime, then there exists a finite p-group with a normal abelian subgroup N such that $o(G)<o(N)^{c}$.

In the same paper they posed the following conjecture.
Conjecture 1.1. Let G be a finite group and suppose that

$$
o(G)<o\left(A_{5}\right)
$$

Then G is solvable.
In the paper [17] we proved that the conjecture is true. In fact we proved the following theorem.

Theorem 1.2. Let G be a finite group and suppose that

$$
o(G) \leq o\left(A_{5}\right)
$$

Then either G is solvable or $G \simeq A_{5}$.
Notice that

$$
o\left(A_{5}\right)=\frac{\psi\left(A_{5}\right)}{\left|A_{5}\right|}=\frac{211}{60}=3.51666 \ldots
$$

The structure of a solvable group with $o(G) \leq o\left(A_{5}\right)$ is still unknown.
In this paper we prove that there are no solvable groups with $o(G)=$ $o\left(A_{5}\right)$. In fact we prove the following theorem.

Theorem 1.3. Let G be a finite group and suppose that

$$
o(G)=o\left(A_{5}\right)=\frac{211}{60}
$$

Then $G \simeq A_{5}$.
In particular the group A_{5} is identified by the average order of its elements. Notice that M. Tărnăuceanu in the paper [36] obtained a similar criterion for supersolvability, showing that if $o(G)<o\left(A_{4}\right)$, then G is supersolvable.

Our notation in this paper is the usual one (see for example [10] and [32]). If G is a finite group, then 1 will denote the identity element of G and sometimes also the group $\{1\}$. We shall denote by $i_{2}(G)$ the number of elements of G of order 2 and by $i_{3}(G)$ the number of elements of G of order 3 . Sometimes we shall use the shorter notation i_{2} and i_{3}, if there is no ambiguity. Moreover, if $S \subseteq G$, then we shall denote by $i_{2}(S)$ the number of elements of S of order 2.

In Section 2 we shall recall some useful results concerning the function $o(G)$.

In Section 3 we shall prove Theorem 1.3.
2. Some results about the function $o(G)$.

We start this section with some basic results concerning the function $o(G)$.
Proposition 2.1. Let G be a finite group and $G \neq 1$. Then the following statements hold.
(1) We have $o(G) \geq 2-\frac{1}{|G|} \geq \frac{3}{2}$. In particular, if G is an elementary abelian 2-group, then $o(G)=2-\frac{1}{|G|}$ and if G is not an elementary abelian 2 -group, then $o(G) \geq 2+\frac{1}{|G|}$. Hence $o(G) \leq 2$ if and only if G is an elementary abelian 2 -group and $o(G)=2-\frac{1}{|G|}$.
(2) If G is of odd order, then $o(G) \geq 3-\frac{2}{|G|} \geq 3-\frac{2}{3}=\frac{7}{3}$.
(3) If $G=A \times B$ with $(|A|,|B|)=1$, then $o(G)=o(A) o(B)$. In particular, if $A \neq 1$ and $B \neq 1$, then

$$
o(G) \geq \frac{7}{2}
$$

Proof. See [17, Lemma 1.1].
For groups G of odd order and of exponent greater than 3, we have the following stronger result.

Proposition 2.2. Let G be a group of odd order and of exponent greater than 3. Then

$$
o(G) \geq 3.5-\frac{2}{|G|} \geq 3.1
$$

Proof. If G is not a 3 -group, then, by [28], $i_{3}(G)+1 \leq \frac{3}{4}|G|$, thus there exist at least $\frac{1}{4}|G|$ elements of G of order ≥ 5. Then we have $\psi(G) \geq 1+3(|G|-$ 1) $+2 \cdot \frac{1}{4}|G|=-2+3.5|G|$, thus $o(G) \geq 3.5-\frac{2}{|G|} \geq 3.5-\frac{2}{5}=3.5-0.4=3.1$.

If G is a 3 -group of exponent greater than 3 , then, by [29], $i_{3}(G)+1 \leq$ $\frac{7}{9}|G|$, thus there exist at least $\frac{2}{9}|G|$ elements of G of order ≥ 9. Then we have $\psi(G) \geq 1+3(|G|-1)+6 \cdot \frac{2}{9}|G| \geq-2+4.3|G|$, thus $o(G) \geq 4.3-\frac{2}{|G|} \geq$ $4.3-\frac{2}{9} \geq 4.3-0.2=4.1$.

The function $o(G)$ has a very good behavior with respect to factor groups.
Proposition 2.3. Let G be a finite group containing a non-trivial normal subgroup H. Then the following statements hold.
(1) If $x \in G \backslash H$, then the order $|x H|$ of $x H$ in G / H divides the order of xh in G for every $h \in H$. In particular, $|x h| \geq|x H|$ for every $h \in H$.
(2) $o(G / H)<o(G)$.

Proof. See [17, Lemma 3.1].
Now we shall prove two very useful lemmas, which we shall use in our proof of Theorem 1.3.

Lemma 2.4. Let $G=N \rtimes\langle x\rangle$, with $|x|=2, N$ of odd order and nonabelian. Then the following holds

$$
\psi(N x) \geq 2|N|+\frac{8}{3}|N|=4|N|+\frac{2}{3}|N| .
$$

Proof. Write $I=\left\{n \in N \mid n^{x}=n^{-1}\right\}$. Then $i_{2}(N x)=|I|$. Moreover $I \subset N$, since N is not abelian. Also $|I|=|N| /\left|C_{N}(x)\right|$ (see [10, Lemma 10.4.1]), thus $|I|$ divides $|N|$, hence $|I| \leq \frac{|N|}{3}$, since $|N|$ is odd. Then the number of elements of $N x$ of order 2 is less or equal to $\frac{|N|}{3}$, hence there exist at least $\frac{2|N|}{3}$ elements of $N x$ of order bigger that 2 and then of order ≥ 6, by Proposition 2.3(1). Therefore we have

$$
\psi(N x) \geq 2|N|+\frac{2|N|}{3} 4=2|N|+\frac{8}{3}|N|=4|N|+\frac{2}{3}|N|
$$

as required.
Lemma 2.5. Let $G=N \rtimes\langle x\rangle$, with $|x|=2, N$ of odd order. Then the following hold:
(1) if 3 divides $\left|C_{N}(x)\right|$, then $\psi(N x) \geq 4.66|N|$,
(2) if 5 divides $\left|C_{N}(x)\right|$, then $\psi(N x) \geq 5.2|N|$.

Proof. Write $I=\left\{n \in N \mid n^{x}=n^{-1}\right\}$. Then $i_{2}(N x)=|I|$. Moreover $|I|=|N| /\left|C_{N}(x)\right|$, by [10, Lemma 10.4.1].

If 3 divides $\left|C_{N}(x)\right|$, then $|I| \leq \frac{|N|}{3}$. Then the number of elements of $N x$ of order 2 is less or equal to $\frac{|N|}{3}$, hence there exist at least $\frac{2|N|}{3}$ elements of $N x$ of order bigger that 2 and then of order ≥ 6, by Proposition 2.3(1). Therefore we have $\psi(N x) \geq 2|N|+\frac{2|N|}{3} 4=2|N|+\frac{8}{3}|N|=4|N|+\frac{2}{3}|N| \geq 4.66|N|$. That proves (1).

If 5 divides $\left|C_{N}(x)\right|$, then $|I| \leq \frac{|N|}{5}$. Then the number of elements of $N x$ of order 2 is less or equal to $\frac{|N|}{5}$, hence there exist at least $\frac{4|N|}{5}$ elements of $N x$ of order bigger that 2 and then of order ≥ 6, by Proposition 2.3(1). Therefore we have $\psi(N x) \geq 2|N|+\frac{4|N|}{5} 4=2|N|+\frac{16}{5}|N|=5.2|N|$. Therefore (2) holds.

3. The proof of Theorem 1.3

In this section we shall study the structure of a finite group G such that $o(G)=o\left(A_{5}\right)$. We start with an easy but interesting remark on the order of G.

Lemma 3.1. Let G be a finite group with $o(G)=o\left(A_{5}\right)$. Then

$$
|G|=60 k
$$

where k is an odd number.
Proof. We have $\frac{\psi(G)}{|G|}=\frac{211}{60}=o\left(A_{5}\right)$. Moreover $\psi(G)$ is odd. Thus $211|G|=60 \psi(G), 60$ divides $|G|$ and $|G|=60 k$, with k odd.

By Lemma 3.1, if G is a finite group such that $o(G)=o\left(A_{5}\right)$, then a Sylow 2-subgroup D of G has order 4. First we show that D is not cyclic.

Proposition 3.2. Let G be a finite group such that $o(G)=o\left(A_{5}\right)$. Then a Sylow 2-subgroup D of G is not cyclic.

Proof. Suppose that $o(G)=o\left(A_{5}\right)$ and G has a cyclic 2-subgroup. Then G is 2-nilpotent (see, for example, [32, 10.1.9]). Therefore $G=N \rtimes\langle y\rangle$, with $|y|=4$ and $|N|$ odd. We have $\psi(G)=\psi(N)+\psi(N y)+\psi\left(N y^{2}\right)+\psi\left(N y^{3}\right)$, and, by Proposition 2.3(1), $\psi(G) \geq \psi(N)+4|N|+2|N|+4|N|$. Then $\psi(G) \geq$ $\psi(N)+2|G|+\frac{|G|}{2}=\psi(N)+2.5|G|$. Then $o(G) \geq \frac{o(N)}{4}+2.5$, and $o(N) \leq$ $(3.52-2.5) \times 4=1.02 \times 4=4.08$.

If N is abelian, there exists a cyclic quotient N / V of N of order 15 . Then we have $o(N / V)=\frac{21}{5} \frac{7}{3}=\frac{49}{5}=9.8$, a contradiction, since, by Proposition $2.3(2), o(N / V) \leq o(N) \leq 4.08$.

Then N is not abelian, therefore, by Lemma 2.4, $\psi\left(N y^{2}\right) \geq 4|N|+\frac{2}{3}|N|$. Therefore we have $\psi(G)=\psi(N)+\psi(N y)+\psi\left(N y^{3}\right)+\psi\left(N y^{2}\right) \geq \psi(N)+4|N|+$ $4|N|+4|N|+\frac{2}{3}|N|=\psi(N)+3|G|+\frac{|G|}{6}$. Thus $o(N) \leq(o(G)-3.166) \times 4 \leq$ $0.36 \times 4=1.44$, a contradiction with Proposition 2.2.

Now we shall prove that a finite group with $o(G)=o\left(A_{5}\right)$ is not 2nilpotent.

Proposition 3.3. Let $G=N \rtimes V$ be a finite group, with $|N|$ odd and $|V|=4$. Then

$$
o(G) \neq o\left(A_{5}\right)
$$

Proof. Suppose $o(G)=o\left(A_{5}\right)$. Then V is not cyclic, by Proposition 3.2. Then V is a Klein group. Hence $G=N \cup N x_{1} \cup N x_{2} \cup N x_{3}$, with $\left|x_{1}\right|=\left|x_{2}\right|=$ $\left|x_{3}\right|=2$. Thus, by Proposition 2.3(1), $\psi(G) \geq \psi(N)+2|N|+2|N|+2|N|=$ $\psi(N)+|G|+\frac{|G|}{2}$. Then $o(N) \leq(o(G)-1.5) \times 4 \leq 2.02 \times 4=8.08$.

If N is abelian, then N has a cyclic quotient N / V of order 15 , thus, arguing as in Proposition 3.2,o(N/V)=9.8, a contradiction, since, by Proposition $2.3(2), o(N / V) \leq o(N) \leq 8.08$.

Then N is not abelian. Hence, by Lemma $2.4, \psi\left(N x_{i}\right) \geq 4|N|+\frac{2}{3}|N|$, for every $i \in\{1,2,3\}$. Then $\psi(G) \geq \psi(N)+4|N|+4|N|+4|N|+2|N|=\psi(N)+$ $3|G|+\frac{|G|}{2}=\psi(N)+3.5|G|$ and $o(N) \leq(o(G)-3.5) \times 4 \leq 0.017 \times 4=0.068$, a contradiction with Proposition 2.2.

We conclude this paper with the proof of Theorem 1.3.
Proof of Theorem 1.3. Suppose that there exists a finite group G which satisfies $o(G)=o\left(A_{5}\right)$ and it is not isomorphic to A_{5}. Then G is a solvable group, by $[17$, Theorem B]. Moreover, $|G|=60 k$, with k odd, by Lemma 3.1.

We shall reach a contradiction, which will indicate that if a finite group G satisfies $o(G)=o\left(A_{5}\right)$, then $G \simeq A_{5}$, as required.

By Hall's theorem, there exists a subgroup H of G of index 4. Write $M=H_{G}$, the core of H in G. Then M is normal in G and G / M is a subgroup of S_{4}. Also $|M|$ is odd, 4 divides $|G / M|$ and 8 does not divide $|G / M|$. Moreover $|G / M|$ is not 4, by Proposition 3.3. Therefore $|G / M|=$ 12 and $G / M \simeq A_{4}$. Then there exists a normal subgroup N / M of G / M, with $|G / N|=3$, and $N=M \rtimes V$ where V is a Klein group. Write $G=$ $N\langle y\rangle$. If $|y n|>3$, for every $n \in N$, then $|y n| \geq 6$, for every $n \in N$, by Proposition 2.3(1). Then we have $\psi(N y) \geq 6|N|$ and $\psi\left(N y^{2}\right) \geq 6|N|$. Hence $\psi(G) \geq \psi(N)+6|N|+6|N|=\psi(N)+4|G|$, and $o(G) \geq o(N) / 3+4$, a contradiction since $o(G)=o\left(A_{5}\right) \leq 3.52$.

Therefore we can suppose that $|y|=3$. Then $G=N \rtimes\langle y\rangle$.
Now we prove that $o(N) \leq 4.56$. In fact, we have $\psi(G) \geq \psi(N)+3|N|+$ $3|N|=\psi(N)+2|G|$, and $o(G) \geq o(N) / 3+2$. Hence $o(N) \leq(3.52-2) \times 3=$ $1.52 \times 3=4.56$, as required.

Recall that $N=M \rtimes V$, where V is a Klein group and $|M|$ is odd. Then 5 divides the order of M, since 5 divides the order of G.

We claim that there exists a non-trivial element $a \in V$ such that 5 divides $\left|C_{M}(a)\right|$.

Suppose not. Write $V=\left\{1, x_{1}, x_{2}, x_{3}\right\}$. By [10, Theorem 6.2.2] there exists a non-trivial V-invariant Sylow 5 -subgroup P of M. Then $C_{P}\left(x_{i}\right)=1$, otherwise there exists an element of order 5 in $C_{M}\left(x_{i}\right)$, and 5 divides $C_{M}\left(x_{i}\right)$. Write $J_{i}=\left\{x \in P \mid x^{x_{i}}=x^{-1}\right\}$. Then $P=J_{1}=J_{2}$, since $\left|J_{i}\right|=|P| /\left|C_{P}\left(x_{i}\right)\right|$, by [10, Lemma 10.4.1]. But then x_{1} inverts all elements of P and x_{2} inverts all elements of P and then $x_{3}=x_{1} x_{2}$ centralizes all elements of P, i.e. $C_{P}\left(x_{3}\right)=$ P, a contradiction since 5 does not divide $\left|C_{M}\left(x_{3}\right)\right|$.

Let a be a non-trivial element of V such that 5 divides $\left|C_{M}(a)\right|$. Then 5 divides also $\left|\left(C_{M}(a)\right)^{y}\right|=\left|C_{M}\left(a^{y}\right)\right|$, and $\left|\left(C_{M}(a)\right)^{y^{2}}\right|=\left|C_{M}\left(a^{y^{2}}\right)\right|$, since M is normal in G.

Also $N / M=\left\{M, a M, a^{y} M, a^{y^{2}} M\right\}$, since G / M is isomorphic to A_{4}.
Then we have $\psi(N)=\psi(M)+\psi(a M)+\psi\left(a^{y} M\right)+\psi\left(a^{y^{2}} M\right) . \quad$ Вy Lemma 2.5(2), $\psi(a M) \geq 5.2|M|, \psi\left(a^{y} M\right) \geq 5.2|M|$ and $\psi\left(a^{y^{2}}\right) M \geq 5.2|M|$. Hence $\psi(N) \geq \psi(M)+15.6|M|=\psi(M)+3.9|N|$, hence $o(N) \geq o(M) / 4+3.9$ and $o(M) \leq(4.56-3.9) \times 4=0.66 \times 4=2.64$, contradicting Proposition 2.2, since M is a group of odd order and 5 divides $|M|$.

The proof of Theorem 1.3 is now complete.

Acknowledgements.

This work was supported by the "National Group for Algebraic and Geometric Structures, and their Applications"(GNSAGA - INdAM), Italy.

References

[1] H. Amiri and S. M. Jafarian Amiri, Sums of element orders on finite groups of the same order, J. Algebra Appl. 10 (2011), 187-190.
[2] H. Amiri and S. M. Jafarian Amiri, Sum of element orders of maximal subgroups of the symmetric group, Comm. Algebra 40 (2012), 770-778.
[3] H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), 2978-2980.
[4] A. Bahri, B. Khosravi and Z. Akhlaghi, A result on the sum of element orders of a finite group, Arch. Math. (Basel) 114 (2020), 3-12.
[5] M. Baniasad Azad and B. Khosravi, A criterion for solvability of a finite group by the sum of element orders, J. Algebra 516 (2018), 115-124.
[6] M. Baniasad Azad and B. Khosravi, On the sum of element orders of PSL(2, p) for some p, Ital. J. Pure and Applied Math. 42 (2019), 12-24.
[7] M. Baniasad Azad and B. Khosravi, On two conjectures about the sum of element orders, Can. Math. Bull. 65 (2022), 30-38.
[8] R. Brandl and W. Shi, The characterization of $P S L(2, p)$ by its element orders, J. Algebra 163 (1994), 109-114.
[9] M. Garonzi and M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra 45 (2017), 677-687.
[10] D. Gorenstein, Finite groups, Chelsea Publishing Co., New York, 1980.
[11] M. Herzog, P. Longobardi and M. Maj, An exact upper bound for sums of element orders in non-cyclic finite groups, J. Pure Appl. Algebra, 222 (2018), 1628-1642.
[12] M. Herzog, P. Longobardi and M. Maj, Properties of finite and periodic groups determined by their elements orders (a survey), in: Group Theory and Computation, Springer, Singapore, 2018, 59-90.
[13] M. Herzog, P. Longobardi and M. Maj, Sums of element orders in groups of order $2 m$ with m odd, Comm. Algebra 47 (2019), 2035-2048.
[14] M. Herzog, P. Longobardi and M. Maj, Two new criteria for solvability of finite groups, J. Algebra 511 (2018), 215-226.
[15] M. Herzog, P. Longobardi and M. Maj, Sums of element orders in groups of odd order, Internat. J. Algebra Comput. 31 (2021), 1049-1063.
[16] M. Herzog, P. Longobardi and M. Maj, The second maximal groups with respect to the sum of element orders, J. Pure Appl. Algebra 225 (2021), 106531, 11.
[17] M. Herzog, P. Longobardi and M. Maj, Another criterion for solvability of finite groups, J. Algebra 597 (2022), 1-23.
[18] M. Herzog, P. Longobardi and M. Maj, New criteria for solvability, nilpotency and other properties of finite groups in terms of the order elements or subgroups, Int. J. Group Theory 12 (2023), 35-44.
[19] E. I. Khukhro, A. Moretó and M. Zarrin, The average element order and the number of conjugacy classes of finite groups, J. Algebra 569 (2021), 1-11.
[20] S. M. Jafarian Amiri Second maximum sum of element orders of finite nilpotent groups, Comm. Algebra 41 (2013), 2055-2059.
[21] S. M. Jafarian Amiri, Maximum sum of element orders of all proper subgroups of $P G L(2, q)$, Bull. Iranian Math. Soc. 39 (2013), 501-505.
[22] S. M. Jafarian Amiri, Characterization of A_{5} and $P S L(2,7)$ by sum of element orders, Int. J. Group Theory 2 (2013), 35-39.
[23] S. M. Jafarian Amiri and M. Amiri, Second maximum sum of element orders on finite groups, J. Pure Appl. Algebra 218 (2014), 531-539.
[24] S. M. Jafarian Amiri and M. Amiri, Sum of the products of the orders of two distinct elements in finite groups, Comm. Algebra 42 (2014), 5319-5328.
[25] S. M. Jafarian Amiri and M. Amiri, Characterization of p-groups by sum of the element orders, Publ. Math. Debrecen 86 (2015), 31-37.
[26] S. M. Jafarian Amiri and M. Amiri, Sum of the Element Orders in Groups with the Square-Free Order, Bull. Malays. Math. Sci. Soc. 40 (2017), 1025-1034.
[27] A. Jaikin-Zapirain, On the number of conjugacy classes of finite nilpotent groups, Adv. Math. 227 (2011), 1129-1143.
[28] T. J. Laffey, The number of solutions of $x^{p}=1$ in a finite group, Math. Proc. Cambridge Philos. Soc. 80 (1976), 229-231.
[29] T. J. Laffey, The number of solutions of $x^{3}=1$ in a 3-group, Math. Z. 149 (1976), 43-45.
[30] M.S. Lazorec and M. M. Tărnăuceanu, On the average order of a finite group, J. Pure Appl. Algebra 227 (2023), 107276, 9.
[31] Y. Marefat, A. Iranmanesh and A. Tehranian, On the sum of element orders of finite simple groups, J. Algebra Appl. 12 (2013), 1350026, 4.
[32] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1996.
[33] R. Shen, G. Chen and C. Wu, On groups with the second largest value of the sum of element orders, Comm. Algebra 43 (2015), 2618-2631.
[34] M. Tărnăuceanu, Detecting structural properties of finite groups by the sum of element orders, Israel J. Math. 238 (2020), 629-637.
[35] M. Tărnăuceanu, A criterion for nilpotency of a finite group by the sum of element orders, Comm. Algebra 49 (2021), 1571-1577.
[36] M. Tărnăuceanu, Another criterion for supersolvability of finite groups, J. Algebra 604 (2022), 682-693.
[37] M. Tărnăuceanu and D. G. Fodor, On the sum of element orders of finite abelian groups, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 60 (2014), 1-7.
M. Herzog

School of Mathematical Sciences
Tel-Aviv University
Ramat-Aviv, Tel-Aviv
Israel
E-mail: herzogm@tauex.tau.ac.il
P. Longobardi

Dipartimento di Matematica
Università di Salerno
via Giovanni Paolo II, 132, 84084 Fisciano (Salerno)
Italy
E-mail: plongobardi@unisa.it
M. Maj

Dipartimento di Matematica
Università di Salerno
via Giovanni Paolo II, 132, 84084 Fisciano (Salerno)
Italy
E-mail: mmaj@unisa.it
Received: 30.11.2022.
Revised: 30.1.2023.

