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Abstract. Let G be a finite group. Denote by ψ(G) the sum ψ(G) =∑
x∈G |x|, where |x| denotes the order of the element x, and by o(G) the

average element orders, i.e. the quotient o(G) =
ψ(G)
|G| . We prove that

o(G) = o(A5) if and only if G ≃ A5, where A5 is the alternating group of

degree 5.

1. Introduction

Let G be a finite group. Denote by ψ(G) the sum

ψ(G) =
∑

x∈G
|x|,

where |x| denotes the order of the element x, and by o(G) the quotient

o(G) =
ψ(G)

|G| .

Thus o(G) denotes the average element order of G. Moreover, if S ⊆ G, then
we define ψ(S) =

∑
x∈S |x|.

Recently many authors studied the function ψ(G) and, more generally,
properties of finite groups determined by their element orders (see for example
[1–9,11–18,20–26,30,31,33–37]). It is easy to see that ψ(A4) = 31 = ψ(D10),
where A4 is the alternating group of degree 4 and D10 is the dihedral group
of order 10. Hence ψ(G) usually does not identify the group G. However,
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it is possible to prove that, if ψ(G) = ψ(S3), then G ≃ S3, and that, if
ψ(G) = ψ(A5), then G ≃ A5 (see [1, 4, 22] for more examples of groups G
identified by the function ψ(G)). Another problem that has been recently
studied by many authors is to find some bounds on ψ(G) that imply that
the group G belongs to some classes of groups, like the class of solvable, or
nilpotent, or supersolvable groups (see for example [3–5,9, 14,18,34,35]).

In this paper we shall study similar problems for the function o(G).
If Cn denotes the cyclic group of order n, and we consider the groups

G1 = C8 × C2, and G2 = C8 ⋊ C2, where C2 = ⟨a⟩, C8 = ⟨b⟩, ba = b5, then
it is easy to prove that ψ(G1) = ψ(G2) = 87. Thus o(G1) = o(G2) and of
course G1 and G2 are not isomorphic. Hence usually the function o(G) does
not identify the group G. But again sometimes that happens, for example
o(G) = o(S3) if and only if G ≃ S3 (see [17, Theorem A]), and o(G) = o(A4)
if and only if G ≃ A4 (see [36]).

A. Jaikin-Zapirain started in his paper [27] the investigation of the func-
tion o(G). He proved that if G is a finite group, then o(G) ≥ o(Z(G))
([27, Lemma 2.7]), and that o(G) ≤ k(G), the number of conjugacy classes
in G ( [27, Lemma 2.9]). He also posed the following question: let G be
a finite (p-)group and N a normal (abelian) subgroup of G, is it true that

o(G) ≥ o(N)
1
2 ? Ten years later, in their paper [19], E. I. Khukhro, A. Moretó

and M. Zarrin provided a negative answer to Jaikin-Zapirain’s question, in
fact they proved that if c > 0 is any real number and p ≥ 3

c a prime, then
there exists a finite p-group with a normal abelian subgroup N such that
o(G) < o(N)c.

In the same paper they posed the following conjecture.

Conjecture 1.1. Let G be a finite group and suppose that

o(G) < o(A5).

Then G is solvable.

In the paper [17] we proved that the conjecture is true. In fact we proved
the following theorem.

Theorem 1.2. Let G be a finite group and suppose that

o(G) ≤ o(A5).

Then either G is solvable or G ≃ A5.

Notice that

o(A5) =
ψ(A5)

|A5|
=

211

60
= 3.51666...

The structure of a solvable group with o(G) ≤ o(A5) is still unknown.
In this paper we prove that there are no solvable groups with o(G) =

o(A5). In fact we prove the following theorem.
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Theorem 1.3. Let G be a finite group and suppose that

o(G) = o(A5) =
211

60
.

Then G ≃ A5.

In particular the groupA5 is identified by the average order of its elements.
Notice that M. Tărnăuceanu in the paper [36] obtained a similar criterion

for supersolvability, showing that if o(G) < o(A4), then G is supersolvable.
Our notation in this paper is the usual one (see for example [10] and

[32]). If G is a finite group, then 1 will denote the identity element of G
and sometimes also the group {1}. We shall denote by i2(G) the number of
elements of G of order 2 and by i3(G) the number of elements of G of order 3.
Sometimes we shall use the shorter notation i2 and i3, if there is no ambiguity.
Moreover, if S ⊆ G, then we shall denote by i2(S) the number of elements of
S of order 2.

In Section 2 we shall recall some useful results concerning the function
o(G).

In Section 3 we shall prove Theorem 1.3.

2. Some results about the function o(G).

We start this section with some basic results concerning the function o(G).

Proposition 2.1. Let G be a finite group and G ̸= 1. Then the following
statements hold.

(1) We have o(G) ≥ 2 − 1
|G| ≥ 3

2 . In particular, if G is an elementary

abelian 2-group, then o(G) = 2 − 1
|G| and if G is not an elementary

abelian 2-group, then o(G) ≥ 2+ 1
|G| . Hence o(G) ≤ 2 if and only if G

is an elementary abelian 2-group and o(G) = 2− 1
|G| .

(2) If G is of odd order, then o(G) ≥ 3− 2
|G| ≥ 3− 2

3 = 7
3 .

(3) If G = A×B with (|A|, |B|) = 1, then o(G) = o(A)o(B). In particular,
if A ̸= 1 and B ̸= 1, then

o(G) ≥ 7

2
.

Proof. See [17, Lemma 1.1].

For groups G of odd order and of exponent greater than 3, we have the
following stronger result.

Proposition 2.2. Let G be a group of odd order and of exponent greater
than 3. Then

o(G) ≥ 3.5− 2

|G| ≥ 3.1.
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Proof. If G is not a 3-group, then, by [28], i3(G)+ 1 ≤ 3
4 |G|, thus there

exist at least 1
4 |G| elements ofG of order≥ 5. Then we have ψ(G) ≥ 1+3(|G|−

1)+ 2 · 14 |G| = −2+3.5|G|, thus o(G) ≥ 3.5− 2
|G| ≥ 3.5− 2

5 = 3.5− 0.4 = 3.1.

If G is a 3-group of exponent greater than 3, then, by [29], i3(G) + 1 ≤
7
9 |G|, thus there exist at least 2

9 |G| elements of G of order ≥ 9. Then we have

ψ(G) ≥ 1 + 3(|G| − 1) + 6 · 29 |G| ≥ −2 + 4.3|G|, thus o(G) ≥ 4.3 − 2
|G| ≥

4.3− 2
9 ≥ 4.3− 0.2 = 4.1.

The function o(G) has a very good behavior with respect to factor groups.

Proposition 2.3. Let G be a finite group containing a non-trivial normal
subgroup H. Then the following statements hold.

(1) If x ∈ G \H, then the order |xH| of xH in G/H divides the order of
xh in G for every h ∈ H. In particular, |xh| ≥ |xH| for every h ∈ H.

(2) o(G/H) < o(G).

Proof. See [17, Lemma 3.1].

Now we shall prove two very useful lemmas, which we shall use in our
proof of Theorem 1.3.

Lemma 2.4. Let G = N ⋊ ⟨x⟩, with |x| = 2, N of odd order and non-
abelian. Then the following holds

ψ(Nx) ≥ 2|N |+ 8

3
|N | = 4|N |+ 2

3
|N |.

Proof. Write I = {n ∈ N |nx = n−1}. Then i2(Nx) = |I|. Moreover
I ⊂ N , since N is not abelian. Also |I| = |N |/|CN (x)| (see [10, Lemma

10.4.1]), thus |I| divides |N |, hence |I| ≤ |N |
3 , since |N | is odd. Then the

number of elements of Nx of order 2 is less or equal to |N |
3 , hence there exist

at least 2|N |
3 elements of Nx of order bigger that 2 and then of order ≥ 6, by

Proposition 2.3(1). Therefore we have

ψ(Nx) ≥ 2|N |+ 2|N |
3

4 = 2|N |+ 8

3
|N | = 4|N |+ 2

3
|N |,

as required.

Lemma 2.5. Let G = N ⋊ ⟨x⟩, with |x| = 2, N of odd order. Then the
following hold:

(1) if 3 divides |CN (x)|, then ψ(Nx) ≥ 4.66|N |,
(2) if 5 divides |CN (x)|, then ψ(Nx) ≥ 5.2|N |.
Proof. Write I = {n ∈ N |nx = n−1}. Then i2(Nx) = |I|. Moreover

|I| = |N |/|CN (x)|, by [10, Lemma 10.4.1].
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If 3 divides |CN (x)|, then |I| ≤ |N |
3 . Then the number of elements of Nx

of order 2 is less or equal to |N |
3 , hence there exist at least 2|N |

3 elements of Nx
of order bigger that 2 and then of order ≥ 6, by Proposition 2.3(1). Therefore

we have ψ(Nx) ≥ 2|N |+ 2|N |
3 4 = 2|N |+ 8

3 |N | = 4|N |+ 2
3 |N | ≥ 4.66|N |. That

proves (1).

If 5 divides |CN (x)|, then |I| ≤ |N |
5 . Then the number of elements of Nx

of order 2 is less or equal to |N |
5 , hence there exist at least 4|N |

5 elements of Nx
of order bigger that 2 and then of order ≥ 6, by Proposition 2.3(1). Therefore

we have ψ(Nx) ≥ 2|N |+ 4|N |
5 4 = 2|N |+ 16

5 |N | = 5.2|N |. Therefore (2) holds.

3. The proof of Theorem 1.3

In this section we shall study the structure of a finite group G such that
o(G) = o(A5). We start with an easy but interesting remark on the order of
G.

Lemma 3.1. Let G be a finite group with o(G) = o(A5). Then

|G| = 60k,

where k is an odd number.

Proof. We have ψ(G)
|G| = 211

60 = o(A5). Moreover ψ(G) is odd. Thus

211|G| = 60ψ(G), 60 divides |G| and |G| = 60k, with k odd.

By Lemma 3.1, if G is a finite group such that o(G) = o(A5), then a
Sylow 2-subgroup D of G has order 4. First we show that D is not cyclic.

Proposition 3.2. Let G be a finite group such that o(G) = o(A5). Then
a Sylow 2-subgroup D of G is not cyclic.

Proof. Suppose that o(G) = o(A5) and G has a cyclic 2-subgroup. Then
G is 2-nilpotent (see, for example, [32, 10.1.9]). Therefore G = N ⋊ ⟨y⟩, with
|y| = 4 and |N | odd. We have ψ(G) = ψ(N) + ψ(Ny) + ψ(Ny2) + ψ(Ny3),
and, by Proposition 2.3(1), ψ(G) ≥ ψ(N)+4|N |+2|N |+4|N |. Then ψ(G) ≥
ψ(N) + 2|G| + |G|

2 = ψ(N) + 2.5|G|. Then o(G) ≥ o(N)
4 + 2.5, and o(N) ≤

(3.52− 2.5)× 4 = 1.02× 4 = 4.08.
If N is abelian, there exists a cyclic quotient N/V of N of order 15. Then

we have o(N/V ) = 21
5

7
3 = 49

5 = 9.8, a contradiction, since, by Proposition
2.3(2), o(N/V ) ≤ o(N) ≤ 4.08.

Then N is not abelian, therefore, by Lemma 2.4, ψ(Ny2) ≥ 4|N |+ 2
3 |N |.

Therefore we have ψ(G) = ψ(N)+ψ(Ny)+ψ(Ny3)+ψ(Ny2) ≥ ψ(N)+4|N |+
4|N |+ 4|N |+ 2

3 |N | = ψ(N) + 3|G|+ |G|
6 . Thus o(N) ≤ (o(G)− 3.166)× 4 ≤

0.36× 4 = 1.44, a contradiction with Proposition 2.2.
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Now we shall prove that a finite group with o(G) = o(A5) is not 2-
nilpotent.

Proposition 3.3. Let G = N ⋊ V be a finite group, with |N | odd and
|V | = 4. Then

o(G) ̸= o(A5).

Proof. Suppose o(G) = o(A5). Then V is not cyclic, by Proposition 3.2.
Then V is a Klein group. Hence G = N∪Nx1∪Nx2∪Nx3, with |x1| = |x2| =
|x3| = 2. Thus, by Proposition 2.3(1), ψ(G) ≥ ψ(N) + 2|N |+ 2|N |+ 2|N | =
ψ(N) + |G|+ |G|

2 . Then o(N) ≤ (o(G)− 1.5)× 4 ≤ 2.02× 4 = 8.08.
If N is abelian, then N has a cyclic quotient N/V of order 15, thus, ar-

guing as in Proposition 3.2, o(N/V ) = 9.8, a contradiction, since, by Propo-
sition 2.3(2), o(N/V ) ≤ o(N) ≤ 8.08.

Then N is not abelian. Hence, by Lemma 2.4, ψ(Nxi) ≥ 4|N |+ 2
3 |N |, for

every i ∈ {1, 2, 3}. Then ψ(G) ≥ ψ(N)+4|N |+4|N |+4|N |+2|N | = ψ(N)+

3|G|+ |G|
2 = ψ(N) + 3.5|G| and o(N) ≤ (o(G)− 3.5)× 4 ≤ 0.017× 4 = 0.068,

a contradiction with Proposition 2.2.

We conclude this paper with the proof of Theorem 1.3.

Proof of Theorem 1.3. Suppose that there exists a finite group G
which satisfies o(G) = o(A5) and it is not isomorphic to A5. Then G is a
solvable group, by [17, Theorem B]. Moreover, |G| = 60k, with k odd, by
Lemma 3.1.

We shall reach a contradiction, which will indicate that if a finite group
G satisfies o(G) = o(A5), then G ≃ A5, as required.

By Hall’s theorem, there exists a subgroup H of G of index 4. Write
M = HG, the core of H in G. Then M is normal in G and G/M is a
subgroup of S4. Also |M | is odd, 4 divides |G/M | and 8 does not divide
|G/M |. Moreover |G/M | is not 4, by Proposition 3.3. Therefore |G/M | =
12 and G/M ≃ A4. Then there exists a normal subgroup N/M of G/M ,
with |G/N | = 3, and N = M ⋊ V where V is a Klein group. Write G =
N⟨y⟩. If |yn| > 3, for every n ∈ N , then |yn| ≥ 6, for every n ∈ N , by
Proposition 2.3(1). Then we have ψ(Ny) ≥ 6|N | and ψ(Ny2) ≥ 6|N |. Hence
ψ(G) ≥ ψ(N) + 6|N | + 6|N | = ψ(N) + 4|G|, and o(G) ≥ o(N)/3 + 4, a
contradiction since o(G) = o(A5) ≤ 3.52.

Therefore we can suppose that |y| = 3. Then G = N ⋊ ⟨y⟩.
Now we prove that o(N) ≤ 4.56. In fact, we have ψ(G) ≥ ψ(N) + 3|N |+

3|N | = ψ(N) + 2|G|, and o(G) ≥ o(N)/3 + 2. Hence o(N) ≤ (3.52− 2)× 3 =
1.52× 3 = 4.56, as required.

Recall that N =M ⋊ V , where V is a Klein group and |M | is odd. Then
5 divides the order of M , since 5 divides the order of G.

We claim that there exists a non-trivial element a ∈ V such that 5 divides
|CM (a)|.
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Suppose not. Write V = {1, x1, x2, x3}. By [10, Theorem 6.2.2] there
exists a non-trivial V -invariant Sylow 5-subgroup P of M . Then CP (xi) = 1,
otherwise there exists an element of order 5 in CM (xi), and 5 divides CM (xi).
Write Ji = {x ∈ P | xxi = x−1}. Then P = J1 = J2, since |Ji| = |P |/|CP (xi)|,
by [10, Lemma 10.4.1]. But then x1 inverts all elements of P and x2 inverts all
elements of P and then x3 = x1x2 centralizes all elements of P , i.e. CP (x3) =
P , a contradiction since 5 does not divide |CM (x3)|.

Let a be a non-trivial element of V such that 5 divides |CM (a)|. Then 5

divides also |(CM (a))y| = |CM (ay)|, and |(CM (a))y
2 | = |CM (ay

2

)|, since M
is normal in G.

Also N/M = {M,aM, ayM,ay
2

M}, since G/M is isomorphic to A4.

Then we have ψ(N) = ψ(M) + ψ(aM) + ψ(ayM) + ψ(ay
2

M). By

Lemma 2.5(2), ψ(aM) ≥ 5.2|M |, ψ(ayM) ≥ 5.2|M | and ψ(ay2)M ≥ 5.2|M |.
Hence ψ(N) ≥ ψ(M)+15.6|M | = ψ(M)+3.9|N |, hence o(N) ≥ o(M)/4+3.9
and o(M) ≤ (4.56− 3.9)× 4 = 0.66× 4 = 2.64, contradicting Proposition 2.2,
since M is a group of odd order and 5 divides |M |.

The proof of Theorem 1.3 is now complete.
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