$C Z$-GROUPS WITH NONABELIAN NORMAL SUBGROUP OF ORDER p^{4}

Mario Osvin Pavčević and Kristijan Tabak
University of Zagreb and Rochester Institute of Technology, Croatia

Dedicated to the memory of Zvonimir Janko

Abstract

A p-group G with the property that its every nonabelian subgroup has a trivial centralizer (namely only its center) is called a $C Z$ group. In Berkovich's monograph (see [1]) the description of the structure of a $C Z$-group was posted as a research problem. Here we provide further progress on this topic based on results proved in [5]. In this paper we have described the structure of $C Z$-groups G that possess a nonabelian normal subgroup of order p^{4} which is contained in the Frattini subgroup $\Phi(G)$. We manage to prove that such a group of order p^{4} is unique and that the order of the entire group G is less than or equal to p^{7}, p being a prime. Additionally, all such groups G are shown to be of a class less than maximal.

1. Introduction

A p-group G is a group of order p^{n}, where p is prime. The conjugation of x by y is given by $x^{y}=y^{-1} x y$, where $x, y \in G$. If $x^{y}=x$, then x and y commute, i.e. $[x, y]=x^{-1} y^{-1} x y=1$. Let $H \leq G$ be a subgroup of G. The centralizer of H in G is $C_{G}(H)=\left\{g \in G \mid h^{g}=h, \forall h \in H\right\}$. The center of G is given by $Z(G)=\left\{g \in G \mid x^{g}=x, \forall x \in G\right\}$. The center $Z(H)$ of a subgroup $H \leq G$ is defined in the same way.

A finite group G is called a $C Z$-group (this abbreviated form comes from the words centralizer and Zentrum) if $C_{G}(H)=Z(H)$ for all nontrivial $H \leq$ G. The set of all $C Z$-groups that are at the same time p-groups will be denoted by $C Z_{p}$ and sometimes we will call such a group a $C Z_{p}$-group. The question

[^0]of determining the general structure of $G \in C Z_{p}$ was posted in [1] as one of the open problems in the theory of p-groups. More on p-groups can be found in [2] and [3]. The first results about groups $G \in C Z_{p}$ were published in [5], where it was shown that a minimal $C Z_{p}$-group has order at least p^{5}. Additionally, the structure of maximal abelian subgroups of a minimal $C Z_{p}$ group has been described in that paper as well.

In this paper, we assume that the Frattini subgroup $\Phi(G)$, which is defined as the intersection of all maximal subgroups of G, contains a normal nonabelian subgroup of order p^{4}. A subgroup $H \leq G$ that is a normal subgroup of G will be sometimes called G-invariant (if we want to point out this fact, we will denoted it by $H \unlhd G)$. The existence of a normal subgroup of order p^{4} in $\Phi(G)$ does not appear as a limitation, since we can always find normal subgroups in p-groups of any given order. What however appears o be a true assumption is that we, in addition assume, that this subgroup of order p^{4} is nonabelian.

In the next result we will determine the lower bound for the order $|G|$ of $G \in C Z_{p}$.

Lemma 1.1. If $G \in C Z_{p}$, then $|G: Z(G)| \geq p^{3}$ and $|G| \geq p^{5}$.
Proof. Let us assume the opposite, so let $|G: Z(G)| \leq p^{2}$. Then immediately we get $|G: Z(G)|=p^{2}$, since otherwise G would be abelian. The factor group $G / Z(G)$ cannot be cyclic, otherwise G would be abelian again. Thus, $G / Z(G) \cong E_{p^{2}}$ (the elementary abelian group of order p^{2}). Since the Frattini subgroup is the smallest subgroup such that its factor group is elementary abelian, we get $\Phi(G) \leq Z(G)$. If $\Phi(G)<Z(G)$, there is some maximal subgroup M such that $Z(G) \not \leq M$. Hence, M must be abelian, since otherwise, we would be able to find some $g \in Z(G) \backslash M$, leading further to $g \in C_{G}(M)$, which is a contradiction since $G \in C Z_{p}$. Therefore, $M Z(G)=G$ and G is abelian, which is a contradiction again. So, $|G: Z(G)| \geq p^{3}$ and $|G| \geq p^{4}$ (since $|Z(G)| \geq p)$. If $|G|=p^{4}$, then $|Z(G)|=p$ and $Z(G) \leq \Phi(G)$. This implies that any maximal subgroup of G is minimally nonabelian, thus G is a minimal CZ group, from which follows that $|G| \geq p^{5}$ (as it was proved in [5]). This is a contradiction. Therefore, the only remaining option is $|G| \geq p^{5}$.

Lemma 1.2. Let $G \in C Z_{p}$ and $M<G, M \in C Z_{p}$. Then $|G: Z(G)| \geq p^{4}$ and $|G| \geq p^{5}$.

Proof. Lemma 1.1 states that $|G: Z(G)| \geq p^{3}$. Let $M \in C Z_{p}$ and $M<G$. Then again by Lemma 1.1, $|M: Z(M)| \geq p^{3}$. It was proved in [5] that $Z(G) \leq Z(M)$. Thus $|G: Z(G)|>|M: Z(G)| \geq|M: Z(M)| \geq p^{3}$. Therefore, $|G: Z(G)| \geq p^{4}$ and $|G| \geq p^{5}$.

The following statement establishes a connection between $C Z_{p}$-groups and the maximality of class.

Theorem 1.3. Let $G \in C Z_{p}$ and $B<G$ be a nonabelian group of order p^{3}. Then G is a group of maximal class.

Proof. Let $B<G$, where $|B|=p^{3}$ and B nonabelian. Then $C_{G}(B)<$ B. Therefore, $Z(G) \leq Z(B)$. Clearly, $|Z(B)|=p$ and $Z(G)=Z(B)$.

It is known that if $H \in \operatorname{Syl}_{p}(\operatorname{Aut}(B))$ (a Sylow p-group), then $|H|=p^{3}$ and H is nonabelian. Therefore, $N_{G}(B) / C_{G}(B) \leq A u t(B)$ is a p-group. Also, $N_{G}(B)>B$ and $C_{G}(B)=Z(B)$. Therefore, $\left|N_{G}(B) / C_{G}(B)\right| \geq p^{3}$ since $\left|N_{G}(B): C_{G}(B)\right|=\left|N_{G}(B): B\right| \cdot|B: Z(B)| \geq p \cdot p^{2}=p^{3}$. Thus, it is necessary that $N_{G}(B) / Z(G) \cong H \in \operatorname{Syl}_{p}(\operatorname{Aut}(B))$. Also, $N_{G}(B) / Z(G)<$ $G / Z(G)$ (since $|Z(G)|=p$ and $|G| \geq p^{5}$ and H nonabelian of order p^{3}).

Obviously $C_{G}\left(N_{G}(B) / Z(G)\right) \leq N_{G}(B) / Z(G)$. Inductively, $G / Z(G)$ is of maximal class, where $|Z(G)|=p$. From here we deduce that G is of maximal class.

2. CZ-groups with nonabelian G-invariant subgroup $N \leq \Phi(G)$ of ORDER p^{4}

Let us now we introduce the main assumption. We will assume further that G is a $C Z_{p}$ group possessing a subgroup $N \leq \Phi(G)$ which is a nonabelian G-invariant subgroup of order p^{4}. The nilpotency class of a group G will be denoted by $\operatorname{cl}(G)$. If the class is maximal, we will put $\operatorname{cl}(G)=\max$, otherwise $\operatorname{cl}(G)<\max$. If the group is generated by at least k elements, we shall say that it is a k-generated group and write $d(G)=k$.

We will make use of the following result. Its proof can be found in [1, Lemma 1.4.].

Lemma 2.1. Let G be a p-group for $p>2$ and $N \unlhd G$. If N has no abelian G-invariant subgroups of type (p, p), then N is cyclic.

The structure of a p-subgroup N satisfying the properties mentioned above is partially described in the following result.

Lemma 2.2. Let $G \in C Z_{p}$ where $p>2$ and $\operatorname{cl}(G)<\max$. Let $N \leq \Phi(G)$ be a G-invariant nonabelian group of order p^{4}. Then $\Phi(N)=Z(N) \cong E_{p^{2}}$ and N is a 2-generated group of exponent p^{2}.

Proof. Assume that $Z(N)$ is cyclic. Let $A \unlhd G$ and $A \leq N$ of order p^{2}. Then $\left|N_{G}(A) / C_{G}(A)\right|=\left|G / C_{G}(A)\right| \leq|\operatorname{Aut}(A)|_{p}=p$, where $|\operatorname{Aut}(A)|_{p}$ is the maximal power of p that divides $|A u t(A)|$. Hence, $N \leq \Phi(G) \leq C_{G}(A)$ and $A \leq C_{G}(A)$. Thus, $A \leq Z(\Phi(G)) \cap N$ and $A \leq Z(N)$ (since $N \leq \Phi(G)$). Therefore, A is cyclic. Then, according to Lemma 2.1, N must be cyclic, which is a contradiction. Therefore, $Z(N)$ is not cyclic. If $d(Z(N)) \geq 3$, then $|Z(N)| \geq p^{3}$ and $|N: Z(N)| \leq p$. This would imply that N is abelian. Therefore, $d(Z(N))=2$ and $Z(N) \cong E_{p^{2}}$. Clearly, $d(N) \geq 2$. Assume that $d(N)=4$. Then $N / \Phi(N) \cong E_{p^{4}}$ and $\Phi(N)=1$. On the other hand, $\Phi(N)=$ $N^{\prime} \mho_{1}(N)$ and $N^{\prime}=1$. This is a contradiction. Thus, $d(N) \leq 3$.

If $d(N)=3$, then $\Phi(N) \cong C_{p}$ and $1<N^{\prime} \leq \Phi(N)$. Thus, $\Phi(N)=N^{\prime}$. Clearly, $N^{\prime} \cap Z(N)>1$ since $N^{\prime} \unlhd N$. Put $Z(N)=\langle x\rangle \times\langle y\rangle \cong C_{p} \times C_{p}$ such that $N^{\prime}=\langle x\rangle$. Thus, there is $y \in Z(N)-\Phi(N)$.

Thus, y is a generator of N and the order of y is p. Then there is some maximal subgroup $M<N$ such that $y \notin M$. Therefore, $N=\langle M, y\rangle=$ $M \times\langle y\rangle$. If $w^{p}=y$ for some w, then $y \in \mho_{1}(N) \leq \Phi(N)$. This is a contradiction since y is a generator. Because N is nonabelian, M must be nonabelian, otherwise $N=M \times\langle y\rangle$ would be abelian. Therefore, $M^{\prime}>1$ and $|M|=p^{3}$. Then, according to the Theorem 1.3, the class of the group G is maximal. This is a contradiction with our assumption. Therefore, $d(N)=2$ and $N / \Phi(N) \cong$ $E_{p^{2}}$ where $|\Phi(N)|=p^{2}$. If $Z(N) \nsubseteq \Phi(N)$, then there is some maximal $M \triangleleft_{p} N$ such that $Z(N) \nsubseteq M$ then $M^{\prime}=1$. Otherwise, by Theorem 1.3 we would get $c l(G)=$ max. Thus, it is necessary that $Z(N) \leq \Phi(N)$. Since both groups have order p^{2}, we get $Z(N)=\Phi(N)$.

Let $\exp (G)=p$. Then $\left|\mho_{1}(G)\right|=1$ and $\Phi(N)=N^{\prime} \mho_{1}(N)=N^{\prime} \cong$ $C_{p} \times C_{p}$. Since N has a maximal abelian subgroup, then $p^{4}=|N|=p \cdot\left|N^{\prime}\right|$. $|Z(N)|=p \cdot p^{2} \cdot p^{2}$. This is a contradiction. Thus, $\exp (N)>p$.

If $\exp (N)=p^{3}$, then $N \cong M_{p^{4}}$, where $M_{p^{4}}$ is a minimal nonabelian group with a maximal cyclic subgroup. Then, there is some $w \in N$ of order p^{3}. Hence $\mho_{1}(N)=\left\langle w^{p}\right\rangle \cong C_{p^{2}}$ and $\mho_{1}(N)=\Phi(N)=Z(N)$ and $d(N)=1$. Again, this is a contradiction. Thus, the only remaining option is $\exp (N)=p^{2}$.

The following result shows the uniqueness of the nonabelian G-invariant subgroup $N \leq \Phi(G)$, where $c l(G)<\max , G \in C Z_{p}$ and $|N|=p^{4}$.

Lemma 2.3. Let $G \in C Z_{p}, p>2$ and $\operatorname{cl}(G)<\max$. Let $N \leq \Phi(G)$ be a G-invariant nonabelian subgroup of order p^{4}. Then N is uniquely determined by its generators and relations with $N=\left\langle x, y \mid x^{p^{2}}=y^{p^{2}}=1, x^{y}=x^{1+p}\right\rangle$.

Proof. From Lemma 2.2 we have $Z(N)=\Phi(N) \cong E_{p^{2}}$. Also, $\exp (N)=$ p^{2}. If $M \triangleleft N$ is maximal, then $Z(N)<M$ and $M^{\prime}=1$. Thus, $|N|=$ $p \cdot\left|N^{\prime}\right||Z(N)|$. Hence, $\left|N^{\prime}\right|=p$. We can put $Z(N)=\langle a\rangle \times\langle b\rangle$. We can assume $N^{\prime}=\langle a\rangle$. There are $x, y \in N$ such that $x^{p}=a, y^{p}=b$. Otherwise, $a \notin \Phi(N)=N^{\prime} \mho_{1}(N)$ and $b \notin \Phi(N)$. Now, take $[x, y]=a=x^{-1} y^{-1} x y=$ $x^{-1} x^{y}=x^{p}$. This gives us $x^{y}=x^{1+p}$.

Lemma 2.4. Let the group N be defined as $N=\langle x, y| x^{p^{2}}=y^{p^{2}}=$ $\left.1, x^{y}=x^{1+p}\right\rangle$. Let $z^{-1}=x^{p}$. Then for all integers i, j, n the following relations hold: $y^{j} x=x y^{j} z^{j}, y^{j} x^{i}=x^{i} y^{j} z^{i j}$. Furthermore, $\left(x^{i} y^{j}\right)^{n}=x^{n i} y^{n j} z^{\binom{n}{2}^{i j}}$ and the order o $(g)=p^{2}$, for all $g \in N-\Phi(N)$. The subgroup $\left\langle x^{i} y^{p j}\right\rangle \leq N$ is normal in N.

Proof. Since $z^{-1}=x^{p} \in Z(N)$, it follows $x^{y}=x z^{-1}$ and $x y z=y x$. Then, $y^{j} x=y^{j-1}(y x)=y^{j-1}(x y) z=y^{j-2}(y x) y z=y^{j-2}(x y) y z^{2}=$ $y^{j-2} x y^{2} z^{2}=\cdots=x y^{j} z^{j}$. We have $y^{j} x^{i}=y^{j} x x^{i-1}=x y^{j} x^{i-1} z^{j}=$
$x y^{j} x x^{i-2} z^{j}=x x y^{j} x^{i-2} z^{2 j}=\cdots=x^{i} y^{j} z^{i j}$. We will use induction to prove the claim about $\left(x^{i} y^{j}\right)^{n}$. For $n=1$ the claim is trivial. Assume that $\left(x^{i} y^{j}\right)^{n}=x^{n i} y^{n j} z^{\binom{n}{2} i j}$. Now we proceed with the induction step by computing

$$
\begin{aligned}
\left(x^{i} y^{j}\right)^{n+1} & =x^{n i} y^{n j} z^{\binom{n}{2} i j} x^{i} y^{j}=x^{n i} y^{n j} x^{i} y^{j} z^{\binom{n}{2} i j}=x^{n i} x^{i} y^{n j} y^{j} z^{n i j} z^{\binom{n}{2} i j} \\
& =x^{(n+1) i} y^{(n+1) j} z^{\binom{n+1}{2} i j}
\end{aligned}
$$

Let $g \notin \Phi(N)$. Then $g=x^{i} y^{j}$, where either i or j is not divisible by p. Otherwise, $g \in\left\langle x^{p}, y^{p}\right\rangle=\Phi(N)=Z(N)$, (see Lemma 2.2). Since $z^{p}=1$ and $p \left\lvert\,\binom{ p}{2}\right.$, we obtain $\left(x^{i} y^{j}\right)^{p}=x^{p i} y^{p j} z^{\binom{p}{2} i j}=x^{p i} y^{p j}$. If $g^{p}=1$, then $x^{p i}=y^{-p j} \in\langle x\rangle \cap\langle y\rangle$, which implies $x^{p i}=1$ and $i \equiv 0(\bmod p)$. In the other case $j \equiv 0(\bmod p)$. This is a contradiction. Therefore $o(g)=p^{2}$.

Look now at $x^{i} y^{p j}$, where i and j are not divisible by p. Since $y^{p} \in$ $Z(N)$, it follows $\left(x^{i} y^{p j}\right)^{x}=x^{i} y^{p j}$. Let us assume that there is some integer n such that $\left(x^{i} y^{p j}\right)^{y}=\left(x^{i} y^{p j}\right)^{n}$. This would imply $\left\langle x^{i} y^{p j}\right\rangle \unlhd N$. If such an n exists, this would imply $\left(x z^{-1}\right)^{i} y^{p j}=\left(x^{i} y^{p j}\right)^{n}$. Then, $x^{i} y^{p j} z^{-i}=x^{n i} y^{n p j}$ and $y^{n p j-p j} \in\langle x\rangle$. Thus $p j(n-1) \equiv 0\left(\bmod p^{2}\right)$ and $n-1 \equiv 0(\bmod p)$ since $j \not \equiv 0(\bmod p)$. Let $n=1+m p$, for some integer m. Then $x^{i(1-n)}=z^{i}$ and $x^{-m p i}=z^{i}$. Therefore, $z^{m i}=z^{i}$. Take $m=1$ and $n=1+p$. We conclude, such n exists and $\left\langle x^{i} y^{p j}\right\rangle \unlhd N$.

Lemma 2.5. Let $G \in C Z_{p}, p>2$ and $\operatorname{cl}(G)<\max$. Let $N \unlhd G$ and $N \leq \Phi(G)$ be nonabelian of order p^{4}. Then $G / Z(N)$ is isomorphic to some subgroup of $\operatorname{Aut}(N)$.

Proof. Since $N_{G}(N)=G$ and $C_{G}(N) \leq N$, we get $C_{G}(N)=Z(N)$. Then by the N / C-theorem, $N_{G}(N) / C_{G}(N) \lesssim \operatorname{Aut}(N)$.

The following results is from [4, Theorem 12.2.2, page 178].
Theorem 2.6. Let $|G|=p^{n}$ and $d(G)=d$. Then $|A u t(G)|$ divides $\left|A u t\left(E_{p^{d}}\right) \times \Phi(G)^{d}\right|$.

The following result establishes an upper bound for the order of a group G with conditions we are studying here.

Theorem 2.7. Let $G \in C Z_{p}, c l(G)<\max$ and let $N \leq \Phi(G)$ be a normal nonabelian subgroup of G of order p^{4}. Then $|G| \leq p^{7}$.

Proof. According to Lemma 2.2 and Lemma 2.3, $\Phi(N)=Z(N) \cong E_{p^{2}}$ and N is uniquely determined by $N=\left\langle x, y \mid x^{p^{2}}=y^{p^{2}}=1, x^{y}=x^{1+p}\right\rangle$. Applying Lemma 2.5 and Theorem 2.6, we have $G / Z(N) \lesssim A u t(N)$ and $|G / Z(N)|_{p}$ divides \mid Aut $\left(E_{p^{2}}\right) \times\left.\Phi(N)^{2}\right|_{p}=\left|\left(p^{2}-1\right)\left(p^{2}-p\right) \cdot{\underset{p}{4}}^{4}\right|_{p}=p^{5}$. Since $|Z(N)|=p^{2}$, we get $|G| \leq p^{7}$.

Corollary 2.8. Let $G \in C Z_{p}, c l(G)<\max$ and $N \leq \Phi(G)$ a normal nonabelian subgroup of order p^{4}. Then $|G| \in\left\{p^{5}, p^{6}, p^{7}\right\}$.

We conclude this section with a technical result that we shall need.
LEMMA 2.9. Let $\langle x\rangle \cong C_{p^{2}}, p>2$ and let $\varphi \in \operatorname{Aut}(\langle x\rangle)$ be an automorphism of $\langle x\rangle$ of order p. Then, there is some $m \in \mathbb{N}$ such that $x^{\varphi}=x^{1+m p}$.

$$
\text { 3. The CASE }|G|=p^{6} \text { AND } c l(G)<\max
$$

We shall continue with the same assumption that G possesses a nonabelian subgroup $N \leq \Phi(G)$ of order p^{4}. Additionally, we shall assume that G is not of maximal class. By Corollary 2.8 , the order of G is at least p^{5}. If $|G|=p^{5}$, then $|G: \Phi(G)|=p$ and G is cyclic. Therefore, from this moment on, we can assume that $|G| \geq p^{6}$. If $|G|=p^{6}$, then $|G: \Phi(G)|=p^{2}$ and G is a 2 -generated group.

We now prove additional results about the structure of the group N.
Lemma 3.1. Let $N=\left\langle x, y \mid x^{p^{2}}=y^{p^{2}}=1, x^{y}=x^{1+p}\right\rangle$. Then $Z(N)=$ $\Phi(N)=\left\langle x^{p}, y^{p}\right\rangle \cong E_{p^{2}}$ and $\left\langle y^{p i+1}\right\rangle \nless N, i=0,1, \ldots, p-1$.

Proof. From $\left(x^{p}\right)^{y}=\left(x^{y}\right)^{p}=\left(x^{1+p}\right)^{p}=x^{p}$ and $\left[x, x^{p}\right]=1$ we have $x^{p} \in Z(N)$. Furthermore, $x^{y^{p}}=x^{(1+p)^{p}}=x^{p}\left(\right.$ since $\left.(1+p)^{p} \equiv p\left(\bmod p^{2}\right)\right)$. Therefore, $\left\langle x^{p}, y^{p}\right\rangle \leq Z(N)$. Since $|N: Z(N)| \geq p^{2}$ and $\left\langle x^{p}\right\rangle \cap\left\langle y^{p}\right\rangle=1$, we have $Z(N)=\left\langle x^{p}, y^{p}\right\rangle$. Since N is 2-generated and $N / Z(N) \cong E_{p^{2}}$, it follows that $Z(N)=\Phi(N)$.

Now we shall prove the second claim. We firstly use the following: $\left(y^{p i+1}\right)^{x}=\left(y^{x}\right)^{p i+1}=\left(y x^{-p}\right)^{p i+1}=y^{p i+1}\left(x^{-p}\right)^{p i+1}=y^{p i+1} x^{-p}$. If $\left\langle y^{p i+1}\right\rangle$ is N-invariant, then $y^{p i+1} x^{-p} \in\left\langle y^{p i+1}\right\rangle$. This implies $x^{-p} \in\left\langle y^{p i+1}\right\rangle \leq\langle y\rangle$ and $\langle x\rangle \cap\langle y\rangle>1$, which is a contradiction. Therefore, $\left\langle y^{p i+1}\right\rangle \nsupseteq N$.

The following two results were proved in [1]. We shall present them here with slightly different proofs. We will use the following notation: if H is a normal subgroup of index p^{i} of G, then we shall write this as $H \triangleleft_{p^{i}} G$.

Theorem 3.2. Let G be a p-group and let $K \unlhd G$ contain a abelian maximal subgroup. Then K contains a maximal abelian subgroup that is G invariant.

Proof. If G is an abelian group, the claim is true. Let G be a nonabelian group, and let $A \triangleleft_{p} K \unlhd G$, where A is an abelian subgroup. If $\left\{T \mid T \triangleleft_{p}\right.$ $\left.K, T^{\prime}=1\right\}=\{A\}$, then $A^{g} \triangleleft_{p} K^{g}=K$ for all $g \in G\left(A^{g}\right.$ is abelian as well). Therefore, $A^{g}=A$ for all $g \in G$. This implies that A is G-invariant.

Now assume that A_{1} and A_{2} are distinct maximal abelian subgroups of K. Then $A_{i} \triangleleft K$ and $A_{1} A_{2}=K$. Since $A_{1} \cap A_{2} \triangleleft_{p} A_{i}$, we have $A_{1} \cap A_{2} \leq C_{K}\left(A_{1}\right) \cap C_{K}\left(A_{2}\right)$. This implies $A_{1} \cap A_{2} \leq Z(K)$. Let K be a nonabelian group. Then $K / Z(K) \cong E_{p^{2}}$. There is a subgroup $C \leq K$ such
that $C / Z(K) \cong C_{p}$. Then $C / Z(K) \triangleleft K / Z(K)$. There is a one-to-one map between $\{C / Z(K) \mid C / Z(K) \triangleleft K / Z(K)\}$ and $\left\{C / Z(K) \mid Z(K) \triangleleft_{p} C \triangleleft_{p} K\right\}$. Note that

$$
\left|\left\{C / Z(K) \mid C / Z(K) \triangleleft_{p} K / Z(K)\right\}\right|=\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{p}=\frac{p^{2}-1}{p-1}=p+1
$$

This implies that K has $p+1$ abelian maximal subgroups. The group G acts via conjugation on $p+1$ maximal abelian subgroups of K. Orbits of this action have lengths $\equiv 0(\bmod p)$. This implies that there is at least one fixed subgroup and that one is G-invariant. The proof is identical in the case when $K^{\prime}=1$.

Theorem 3.3. Let $N \unlhd G$ and $|N|>p^{3}$, where G is a p-group. Then there is some abelian $D<N$ of order p^{3} such that $D \unlhd G$.

Proof. There is a composition series that goes through each normal subgroup of G. It implies that there is a G-invariant subgroup $M<N$ of order p^{4}. Let $A<M$ be of order p^{2}. Then, A is abelian and $|M: A|=p^{2}$. By Theorem 3.2, there is a $B \unlhd M$ of order p^{2}. Note that B is abelian as well. Since $\left|\operatorname{Aut}(B)_{p}\right|=p$, it is necessary that $\left|N_{M}(B): C_{M}(B)\right| \leq p$, where $N_{M}(B)=M$. If $M=C_{M}(B)$, then $B \leq Z(M)$. This implies that there is $g \in M-B$ such that $g^{p} \in B$ and $\langle B, g\rangle<M$ is an abelian group of order p^{3}.

If $C_{M}(B) \triangleleft_{p} M$, then $C_{M}(B)$ is abelian of order p^{3}. Thus, we can always find an abelian M-invariant subgroup of M the order of which is p^{3}. The claim follows from Theorem 3.2.

Proposition 3.4. Let $G \in C Z_{p}$ be a 2-generated group of order p^{6}. Let $\Phi(G)=N=\left\langle x, y \mid x^{p^{2}}=y^{p^{2}}=1, x^{y}=x^{1+p}\right\rangle$ and $\exp (G) \leq p^{2}$. Then $\mho_{1}(G)=\mho_{1}(N)=\left\langle x^{p}, y^{p}\right\rangle$ and $\left|G^{\prime}\right| \geq p^{3}$.

Proof. From Lemma 3.1 the center of N is $Z(N)=\left\langle x^{p}, y^{p}\right\rangle=\Phi(N)$. Therefore, $\left\langle x^{p}, y^{p}\right\rangle \leq \mho_{1}(N) \leq \Phi(N)=\left\langle x^{p}, y^{p}\right\rangle$. This implies $\mho_{1}(N)=$ $\left\langle x^{p}, y^{p}\right\rangle$. Thus, $\left\langle x^{p}, y^{p}\right\rangle \leq \mho_{1}(G)$. Since $\exp (G)=p^{2}$, there is $x \in G$ and $o(g)=p^{2}$. Furthermore, $g^{p} \in \Phi(G)=N$ and $o\left(g^{p}\right)=p$. By Lemma 2.4, it follows that if $t \in N \backslash \Phi(N)$, then $o(t)=p^{2}$. Therefore, $g^{p} \in \Phi(N)=\left\langle x^{p}, y^{p}\right\rangle$. Thus, $\mho_{1}(G) \leq\left\langle x^{p}, y^{p}\right\rangle$ and finally $\mho_{1}(G)=\left\langle x^{p}, y^{p}\right\rangle$.

Since $\left\langle x^{p}\right\rangle=N^{\prime} \leq G^{\prime}$ and $\left\langle x^{p}\right\rangle \leq \mho_{1}(G)$, we have $\left|\mho_{1}(G) \cap G^{\prime}\right| \geq p$ and

$$
p \leq\left|\mho_{1}(G) \cap G^{\prime}\right|=\frac{\left|\mho_{1}(G)\right|\left|G^{\prime}\right|}{\left|\mho_{1}(G) G^{\prime}\right|}=\frac{p^{2}\left|G^{\prime}\right|}{|\Phi(G)|}=\frac{\left|G^{\prime}\right|}{p^{2}}
$$

yielding $\left|G^{\prime}\right| \geq p^{3}$.
Theorem 3.5. Let $G \in C Z_{p}$ be of order p^{6} and $\Phi(G)=N=\langle x, y| x^{p^{2}}=$ $\left.y^{p^{2}}=1, x^{y}=x^{1+p}\right\rangle$. Let $\exp (G)=p^{2}$ and $\left|G^{\prime}\right|=p^{4}$. Then $Z(G)=\left\langle x^{p}\right\rangle$ and $Z_{2}(G)=Z(N)=\left\langle x^{p}, y^{p}\right\rangle$.

Proof. By Proposition 3.4, $\left|G^{\prime}\right| \geq p^{3}$. Since $\left|G: G^{\prime}\right| \leq p^{2}$, the only options are $\left|G^{\prime}\right|=p^{3}$ or $\left|G^{\prime}\right|=p^{4}$. Let $\left|G^{\prime}\right|=p^{4}$. Since $G^{\prime} \leq \Phi(G)=$ $\mho_{1}(G) G^{\prime}$, we have $G^{\prime}=N$. By Grünn's theorem (see [1]), we have [G^{\prime} : $\left.Z_{2}(G)\right]=1$. Therefore, $\left[N, Z_{2}(G)\right]=1$. Since $G \in C Z_{p}$, we have $Z_{2}(G) \leq$ $C_{G}(N)=Z(N)=\left\langle x^{p}, y^{p}\right\rangle$ (see Lemma 3.1). This implies $Z_{2}(G) / Z_{1}(G)=$ $Z\left(G / Z_{1}(G)\right)>1$. Therefore, $Z_{2}(G)>Z_{1}(G)>1$. Since $\left|Z_{2}(G)\right|=\left|\left\langle x^{p}, y^{p}\right\rangle\right|=$ p^{2}, we have $\left|Z_{1}(G)\right|=|Z(G)|=p$. Note that $N^{\prime}=\left\langle x^{p}\right\rangle$ is a characteristic subgroup of N, and N is a characteristic subgroup of G. It follows know that $N^{\prime} \unlhd G$ is of order p. Therefore, $\left|N^{\prime} \cap Z(G)\right|>1$ and $N^{\prime}=Z(G)=\left\langle x^{p}\right\rangle$.

Theorem 3.6. Let $G \in C Z_{p}$ be a group of order p^{6}. Let $\Phi(G)=N=$ $\left\langle x, y \mid x^{p^{2}}=y^{p^{2}}=1, x^{y}=x^{1+p}\right\rangle$ and $\exp (G) \leq p^{2}$. If $\left|G^{\prime}\right|=p^{4}$, then G is a group of maximal class.

Proof. If we assume that $\operatorname{cl}(G)<\max$, then, by Theorem 3.3, there is a G-invariant, abelian subgroup $A \leq N$ of order p^{3}. This implies $Z(N)=$ $\left\langle x^{p}, y^{p}\right\rangle \leq A$. Otherwise, N would be an abelian group. Note that $\mho_{1}(N)=$ $Z(N) \leq A$. Since $\mho_{1}(N)$ is a characteristic subgroup of A, we have $\left\langle x^{p}, y^{p}\right\rangle \triangleleft$ G. We know that $|G: \Phi(G)|=p^{2}$ and $G=\langle a, b\rangle$ for some $a, b \in G$. By Theorem 3.5, we have $Z(G)=\left\langle x^{p}\right\rangle$. This yields $\left[x^{p}, a\right]=\left[x^{p}, b\right]=1$. If $\left(y^{p}\right)^{a}=$ $\left(y^{p}\right)^{b}=y^{p}$, then $y^{p} \in Z(G)=\left\langle x^{p}\right\rangle$, which is a contradiction. Therefore, we have $\left(y^{p}\right)^{a} \neq y^{p}$. Since $\left\langle x^{p}, y^{p}\right\rangle \triangleleft G$, we have $\left(y^{p}\right)^{a} \in\left\langle x^{p}, y^{p}\right\rangle$. Also, $o\left(a^{p}\right) \leq p$ and $a^{p} \in N$. Therefore, $a^{p} \in \Omega_{1}(N)=\left\langle x^{p}, y^{p}\right\rangle$. It follows that $\left\langle x^{p}, y^{p}, a\right\rangle$ is a nonabelian group of order p^{3} and by Theorem 1.3 we have $\operatorname{cl}(G)=$ max. This is the final contradiction which proves the theorem.

Theorem 3.7. Let $G \in C Z_{p}, \operatorname{cl}(G)<\max , \exp (G) \leq p^{2}$ and let $N \leq$ $\Phi(G)$ be a nonabelian G-invariant subgroup of order p^{4}. Then $|G|=p^{7}$.

Proof. By Corollary 2.8, we have $p^{5} \leq|G| \leq p^{7}$. Since $|\Phi(G)| \geq p^{4}$, it follows $|G| \geq p^{6}$ (since otherwise $d(G)=1$). By Lemma 2.3, we know the structure of the group N.

Let $|G|=p^{6}$. By Proposition 3.4, we have $\left|G^{\prime}\right| \geq p^{3}$. Since $|G|=p^{6}$ and $d(G)=2$, it follows that $G^{\prime} \leq \Phi(G)$ and $\left|G^{\prime}\right| \leq p^{4}$. If $\left|G^{\prime}\right|=p^{4}$, then by Theorem 3.6, the class of G would be maximal, contradicting the assumption. Hence $\left|G^{\prime}\right|=p^{3}$. By Proposition 3.4, we have $\mho_{1}(G)=\mho_{1}(N)=Z(N)=$ $\left\langle x^{p}, y^{p}\right\rangle=\Phi(N)$. Since $\left|G^{\prime}\right|=p^{3}$, we have $G^{\prime} \leq N=\Phi(G)$. On the other hand, G^{\prime} is a maximal subgroup of N. Therefore $Z(N)=\mho_{1}(G)=\Phi(N) \leq G^{\prime}$. This implies $\Phi(G)=\mho_{1}(G) G^{\prime}=G^{\prime}<N=\Phi(G)$. This is a contradiction. So, the only remaining possibility is $|G|=p^{7}$.

4. The CASE $|G|=p^{7}$ And $\operatorname{cl}(G)<\max$

We shall continue with the same assumption that there is a nonabelian $N \leq \Phi(G)$ of order p^{4}. Additionally, we shall assume that G is not of maximal class and $|G|=p^{7}, \exp (G)=p^{2}$. Note that $\exp (G) \leq p^{3}$. We begin with the following result on the size of G^{\prime}.

Lemma 4.1. Let $G \in C Z_{p}$ be a group of order p^{7} and $\exp (G)=p^{2}$ where $N=\Phi(G)=\left\langle x, y \mid x^{p^{2}}=y^{p^{2}}=1, x^{y}=x^{1+p}\right\rangle$. Then $\mho_{1}(G)=\mho_{1}(N)=$ $\left\langle x^{p}, y^{p}\right\rangle$ and $\left|G^{\prime}\right| \geq p^{3}$.

Proof. Notice that $\mho_{1}(N) \leq \mho_{1}(G)$ and $\exp \left(\mho_{1}(G)\right)=p . \quad$ By Lemma 3.1, we have $\mho_{1}(N)=\Phi(N)=\left\langle x^{p}, y^{p}\right\rangle$. We also have $\mho_{1}(G) \leq$ $\Phi(G)=N$. Then $\mho_{1}(G) \leq \Phi(N)=\mho_{1}(N)$. This implies $\mho_{1}(G)=\mho_{1}(N)=$ $\left\langle x^{p}, y^{p}\right\rangle$.

By Lemma 3.4, we have $\left\langle x^{p}\right\rangle=N^{\prime} \leq G^{\prime} \cap \mho_{1}(G)$. Therefore

$$
p \leq\left|\mho_{1}(G) \cap G^{\prime}\right|=\frac{\left|\mho_{1}(G)\right| \cdot\left|G^{\prime}\right|}{\left|\mho_{1}(G) \cdot G^{\prime}\right|}=\frac{p^{2} \cdot\left|G^{\prime}\right|}{|\Phi(G)|}=\frac{\left|G^{\prime}\right|}{p^{2}}
$$

This yields $\left|G^{\prime}\right| \geq p^{3}$.
Theorem 4.2. Let $G \in C Z_{p}$ be a group of order p^{7} with $\exp (G)=p^{2}$ where $N=\Phi(G)=\left\langle x, y \mid x^{p^{2}}=y^{p^{2}}=1, x^{y}=x^{1+p}\right\rangle$. If $\left|G^{\prime}\right|=p^{4}$, then $Z(G)=\left\langle x^{p}\right\rangle$ and $Z_{2}(G)=Z(N)=\left\langle x^{p}, y^{p}\right\rangle$.

Proof. By Lemma 4.1, we have $\left|G^{\prime}\right| \geq p^{3}$. Since $G^{\prime} \leq \Phi(G)=N$, it follows $\left|G^{\prime}\right| \leq p^{4}$. The rest of the proof follows the proof of Theorem 3.5.

Now we shall present the main result.
Theorem 4.3. Let $G \in C Z_{p}$ be of exponent p^{2}, where $c l(G)<$ max. Let $N \leq \Phi(G)$ be a G-invariant nonabelian subgroup of order p^{4}. Then $|G|=p^{7}$ and $N=\left\langle x, y \mid x^{p^{2}}=y^{p^{2}}=1, x^{y}=x^{1+p}\right\rangle$ is of index p in $\Phi(G)$.

Proof. Assume that $N=\Phi(G)$ and $\left|G^{\prime}\right|=p^{4}$. As in Theorem 3.5, we have $Z(G)=\left\langle x^{p}\right\rangle$ and $Z_{2}(G)=Z(N)=\left\langle x^{p}, y^{p}\right\rangle$. By Theorem 3.3, there is an abelian group $A \unlhd G$ such that $A \leq N$ and $|A|=p^{3}$. Therefore $Z(N) \leq A$, since otherwise $A Z(N)=N$ and N would be an abelian group. By Lemma 4.1, we have $\mho_{1}(G)=\mho_{1}(N)=\left\langle x^{p}, y^{p}\right\rangle \leq A$. Note that $\mho_{1}(N)=Z(N)$. By Lemma 3.1, we have $Z(N)=\Phi(N)=\left\langle x^{p}, y^{p}\right\rangle \unlhd G\left(\right.$ since $\mho_{1}(G)=\left\langle x^{p}, y^{p}\right\rangle$ is a characteristic subgroup of $G)$. From $G / \Phi(G) \cong E_{p^{3}}$, we have $G=\langle a, b, c\rangle$ for some generators $a, b, c \in G$. Since $x^{p} \in Z(G)$, it follows $\left[x^{p}, a\right]=\left[x^{p}, b\right]=$ [$\left.x^{p}, c\right]$.

If $\left(y^{p}\right)^{a}=\left(y^{p}\right)^{b}=\left(y^{p}\right)^{c}=y^{p}$, then $y^{p} \in Z(G)$. This is a contradiction. Thus, we may assume $\left(y^{p}\right)^{a} \neq y^{p}$. Furthermore, $o\left(a^{p}\right) \leq p\left(\right.$ since $\left.\exp (G)=p^{2}\right)$ and $a^{p} \mho_{1}(G)=\left\langle x^{p}, y^{p}\right\rangle$. This implies that $\left\langle x^{p}, y^{p}, a\right\rangle$ is a nonabelian group of order p^{3} and by Theorem 1.3 the group G has maximal class. This is a
contradiction. Therefore, by Lemma 4.1, we have $\left|G^{\prime}\right|=p^{3}$. By Lemma 4.1, it follows that $\mho_{1}(G)=\mho_{1}(N)=Z(N)=\Phi(N)=\left\langle x^{p}, y^{p}\right\rangle$. From $\left|G^{\prime}\right|=p^{3}$, we have $G^{\prime} \leq N=G^{\prime} \Phi(G)$. Since G^{\prime} is maximal in N, it implies $\Phi(N)<G^{\prime}$. Since $\mho_{1}(G)=\mho_{1}(N)=\Phi(N)<G^{\prime}$, it follows that $\Phi(G)=\mho_{1}(G) G^{\prime} \leq$ $G^{\prime}<N$. This yields now $\Phi(G)<N=\Phi(G)$, which is a contradiction. By Theorem 3.7, we have $|G|=p^{7}$. It follows $N<\Phi(G)$. The description of the group N is given by Lemma 2.3. Since $|G: \Phi(G)| \geq p^{2}$, we have $|\Phi(G): N|=p$.

Acknowledgements.

This work has been fully supported by Croatian Science Foundation under the projects 6732 and 9752 .

References

[1] Y. Berkovich, Groups of prime power order. Vol. 1, Walter de Gruyter, Berlin-New York, 2008.
[2] Y. Berkovich, Z. Janko, Groups of prime power order. Vol. 2, Walter de Gruyter, Berlin-New York, 2008.
[3] Y. Berkovich and Z. Janko, Groups of prime power order. Vol. 3, Walter de Gruyter, Berlin-New York, 2010.
[4] M. Hall, Jr., Theory of groups, The Macmillan Company, New York, 1959.
[5] M. O. Pavčević, and K. Tabak, CZ-groups, Glas. Mat. Ser. III 51(71) (2016), 345358.
M. O. Pavčević

Department of applied mathematics
Faculty of Electrical Engineering and Computing
University of Zagreb
10000 Zagreb
Croatia
E-mail: mario.pavcevic@fer.hr
K. Tabak

Rochester Institute of Technology
Zagreb Campus
D.T. Gavrana 15, 10000 Zagreb

Croatia
E-mail: kxtcad@rit.edu
Received: 31.8.2022.
Revised: 3.12.2022.

[^0]: 2020 Mathematics Subject Classification. 20D15, 20D25.
 Key words and phrases. p-group, center, centralizer, Frattini subgroup, minimal nonabelian subgroup.

