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Abstract. A p-group G with the property that its every nonabelian

subgroup has a trivial centralizer (namely only its center) is called a CZ-

group. In Berkovich’s monograph (see [1]) the description of the structure
of a CZ-group was posted as a research problem. Here we provide further

progress on this topic based on results proved in [5]. In this paper we

have described the structure of CZ-groups G that possess a nonabelian
normal subgroup of order p4 which is contained in the Frattini subgroup

Φ(G). We manage to prove that such a group of order p4 is unique and

that the order of the entire group G is less than or equal to p7, p being a
prime. Additionally, all such groups G are shown to be of a class less than

maximal.

1. Introduction

A p-group G is a group of order pn, where p is prime. The conjugation
of x by y is given by xy = y−1xy, where x, y ∈ G. If xy = x, then x and y
commute, i.e. [x, y] = x−1y−1xy = 1. Let H ≤ G be a subgroup of G. The
centralizer of H in G is CG(H) = {g ∈ G | hg = h, ∀h ∈ H}. The center
of G is given by Z(G) = {g ∈ G | xg = x, ∀x ∈ G}. The center Z(H) of a
subgroup H ≤ G is defined in the same way.

A finite group G is called a CZ -group (this abbreviated form comes from
the words centralizer and Zentrum) if CG(H) = Z(H) for all nontrivial H ≤
G. The set of all CZ-groups that are at the same time p-groups will be denoted
by CZp and sometimes we will call such a group a CZp-group. The question
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of determining the general structure of G ∈ CZp was posted in [1] as one
of the open problems in the theory of p-groups. More on p-groups can be
found in [2] and [3]. The first results about groups G ∈ CZp were published
in [5], where it was shown that a minimal CZp-group has order at least p5.
Additionally, the structure of maximal abelian subgroups of a minimal CZp
group has been described in that paper as well.

In this paper, we assume that the Frattini subgroup Φ(G), which is de-
fined as the intersection of all maximal subgroups of G, contains a normal
nonabelian subgroup of order p4. A subgroup H ≤ G that is a normal sub-
group of G will be sometimes called G-invariant (if we want to point out this
fact, we will denoted it by H ⊴ G). The existence of a normal subgroup of
order p4 in Φ(G) does not appear as a limitation, since we can always find
normal subgroups in p-groups of any given order. What however appears o
be a true assumption is that we, in addition assume, that this subgroup of
order p4 is nonabelian.

In the next result we will determine the lower bound for the order |G| of
G ∈ CZp.

Lemma 1.1. If G ∈ CZp, then |G : Z(G)| ≥ p3 and |G| ≥ p5.
Proof. Let us assume the opposite, so let |G : Z(G)| ≤ p2. Then imme-

diately we get |G : Z(G)| = p2, since otherwiseG would be abelian. The factor
group G/Z(G) cannot be cyclic, otherwise G would be abelian again. Thus,
G/Z(G) ∼= Ep2 (the elementary abelian group of order p2). Since the Frattini
subgroup is the smallest subgroup such that its factor group is elementary
abelian, we get Φ(G) ≤ Z(G). If Φ(G) < Z(G), there is some maximal sub-
group M such that Z(G) ≰ M. Hence, M must be abelian, since otherwise,
we would be able to find some g ∈ Z(G) \M , leading further to g ∈ CG(M),
which is a contradiction since G ∈ CZp. Therefore, MZ(G) = G and G is
abelian, which is a contradiction again. So, |G : Z(G)| ≥ p3 and |G| ≥ p4

(since |Z(G)| ≥ p). If |G| = p4, then |Z(G)| = p and Z(G) ≤ Φ(G). This
implies that any maximal subgroup of G is minimally nonabelian, thus G is a
minimal CZ group, from which follows that |G| ≥ p5 (as it was proved in [5]).
This is a contradiction. Therefore, the only remaining option is |G| ≥ p5.

Lemma 1.2. Let G ∈ CZp and M < G, M ∈ CZp. Then |G : Z(G)| ≥ p4
and |G| ≥ p5.

Proof. Lemma 1.1 states that |G : Z(G)| ≥ p3. Let M ∈ CZp and
M < G. Then again by Lemma 1.1, |M : Z(M)| ≥ p3. It was proved in [5]
that Z(G) ≤ Z(M). Thus |G : Z(G)| > |M : Z(G)| ≥ |M : Z(M)| ≥ p3.
Therefore, |G : Z(G)| ≥ p4 and |G| ≥ p5.

The following statement establishes a connection between CZp-groups
and the maximality of class.
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Theorem 1.3. Let G ∈ CZp and B < G be a nonabelian group of order
p3. Then G is a group of maximal class.

Proof. Let B < G, where |B| = p3 and B nonabelian. Then CG(B) <
B. Therefore, Z(G) ≤ Z(B). Clearly, |Z(B)| = p and Z(G) = Z(B).

It is known that if H ∈ Sylp(Aut(B)) (a Sylow p-group), then |H| = p3

and H is nonabelian. Therefore, NG(B)/CG(B) ≤ Aut(B) is a p-group.
Also, NG(B) > B and CG(B) = Z(B). Therefore, |NG(B)/CG(B)| ≥ p3

since |NG(B) : CG(B)| = |NG(B) : B| · |B : Z(B)| ≥ p · p2 = p3. Thus, it
is necessary that NG(B)/Z(G) ∼= H ∈ Sylp(Aut(B)). Also, NG(B)/Z(G) <
G/Z(G) (since |Z(G)| = p and |G| ≥ p5 and H nonabelian of order p3).

Obviously CG(NG(B)/Z(G)) ≤ NG(B)/Z(G). Inductively, G/Z(G) is of
maximal class, where |Z(G)| = p. From here we deduce that G is of maximal
class.

2. CZ-groups with nonabelian G-invariant subgroup N ≤ Φ(G) of
order p4

Let us now we introduce the main assumption. We will assume further
that G is a CZp group possessing a subgroup N ≤ Φ(G) which is a nonabelian
G-invariant subgroup of order p4. The nilpotency class of a group G will be
denoted by cl(G). If the class is maximal, we will put cl(G) = max, otherwise
cl(G) < max. If the group is generated by at least k elements, we shall say
that it is a k-generated group and write d(G) = k.

We will make use of the following result. Its proof can be found in [1,
Lemma 1.4.].

Lemma 2.1. Let G be a p-group for p > 2 and N ⊴ G. If N has no abelian
G-invariant subgroups of type (p, p), then N is cyclic.

The structure of a p-subgroup N satisfying the properties mentioned
above is partially described in the following result.

Lemma 2.2. Let G ∈ CZp where p > 2 and cl(G) < max. Let N ≤ Φ(G)
be a G-invariant nonabelian group of order p4. Then Φ(N) = Z(N) ∼= Ep2

and N is a 2-generated group of exponent p2.

Proof. Assume that Z(N) is cyclic. Let A ⊴ G and A ≤ N of order
p2. Then |NG(A)/CG(A)| = |G/CG(A)| ≤ |Aut(A)|p = p, where |Aut(A)|p is
the maximal power of p that divides |Aut(A)|. Hence, N ≤ Φ(G) ≤ CG(A)
and A ≤ CG(A). Thus, A ≤ Z(Φ(G)) ∩N and A ≤ Z(N) (since N ≤ Φ(G)).
Therefore, A is cyclic. Then, according to Lemma 2.1, N must be cyclic,
which is a contradiction. Therefore, Z(N) is not cyclic. If d(Z(N)) ≥ 3,
then |Z(N)| ≥ p3 and |N : Z(N)| ≤ p. This would imply that N is abelian.
Therefore, d(Z(N)) = 2 and Z(N) ∼= Ep2 . Clearly, d(N) ≥ 2. Assume that
d(N) = 4. Then N/Φ(N) ∼= Ep4 and Φ(N) = 1. On the other hand, Φ(N) =
N ′℧1(N) and N ′ = 1. This is a contradiction. Thus, d(N) ≤ 3.
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If d(N) = 3, then Φ(N) ∼= Cp and 1 < N ′ ≤ Φ(N). Thus, Φ(N) = N ′.
Clearly, N ′ ∩ Z(N) > 1 since N ′ ⊴N. Put Z(N) = ⟨x⟩ × ⟨y⟩ ∼= Cp ×Cp such
that N ′ = ⟨x⟩. Thus, there is y ∈ Z(N)− Φ(N).

Thus, y is a generator of N and the order of y is p. Then there is some
maximal subgroup M < N such that y ̸∈ M. Therefore, N = ⟨M,y⟩ =
M×⟨y⟩. If wp = y for some w, then y ∈ ℧1(N) ≤ Φ(N). This is a contradiction
since y is a generator. Because N is nonabelian, M must be nonabelian,
otherwise N = M × ⟨y⟩ would be abelian. Therefore, M ′ > 1 and |M | = p3.
Then, according to the Theorem 1.3, the class of the group G is maximal. This
is a contradiction with our assumption. Therefore, d(N) = 2 and N/Φ(N) ∼=
Ep2 where |Φ(N)| = p2. If Z(N) ≰ Φ(N), then there is some maximalM◁pN
such that Z(N) ≰M then M ′ = 1. Otherwise, by Theorem 1.3 we would get
cl(G) = max. Thus, it is necessary that Z(N) ≤ Φ(N). Since both groups
have order p2, we get Z(N) = Φ(N).

Let exp(G) = p. Then |℧1(G)| = 1 and Φ(N) = N ′℧1(N) = N ′ ∼=
Cp ×Cp. Since N has a maximal abelian subgroup, then p4 = |N | = p · |N ′| ·
|Z(N)| = p · p2 · p2. This is a contradiction. Thus, exp(N) > p.

If exp(N) = p3, then N ∼=Mp4 , whereMp4 is a minimal nonabelian group
with a maximal cyclic subgroup. Then, there is some w ∈ N of order p3. Hence
℧1(N) = ⟨wp⟩ ∼= Cp2 and ℧1(N) = Φ(N) = Z(N) and d(N) = 1. Again, this
is a contradiction. Thus, the only remaining option is exp(N) = p2.

The following result shows the uniqueness of the nonabelian G-invariant
subgroup N ≤ Φ(G), where cl(G) < max, G ∈ CZp and |N | = p4.

Lemma 2.3. Let G ∈ CZp, p > 2 and cl(G) < max. Let N ≤ Φ(G) be a
G-invariant nonabelian subgroup of order p4. Then N is uniquely determined

by its generators and relations with N = ⟨x, y | xp2 = yp
2

= 1, xy = x1+p⟩.
Proof. From Lemma 2.2 we have Z(N) = Φ(N) ∼= Ep2 . Also, exp(N) =

p2. If M ◁ N is maximal, then Z(N) < M and M ′ = 1. Thus, |N | =
p · |N ′||Z(N)|. Hence, |N ′| = p. We can put Z(N) = ⟨a⟩ × ⟨b⟩. We can
assume N ′ = ⟨a⟩. There are x, y ∈ N such that xp = a, yp = b. Otherwise,
a ̸∈ Φ(N) = N ′℧1(N) and b ̸∈ Φ(N). Now, take [x, y] = a = x−1y−1xy =
x−1xy = xp. This gives us xy = x1+p.

Lemma 2.4. Let the group N be defined as N = ⟨x, y | xp2 = yp
2

=
1, xy = x1+p⟩. Let z−1 = xp. Then for all integers i, j, n the following relations

hold: yjx = xyjzj, yjxi = xiyjzij. Furthermore, (xiyj)n = xniynjz(
n
2)ij and

the order o(g) = p2, for all g ∈ N − Φ(N). The subgroup ⟨xiypj⟩ ≤ N is
normal in N.

Proof. Since z−1 = xp ∈ Z(N), it follows xy = xz−1 and xyz = yx.
Then, yjx = yj−1(yx) = yj−1(xy)z = yj−2(yx)yz = yj−2(xy)yz2 =
yj−2xy2z2 = · · · = xyjzj . We have yjxi = yjxxi−1 = xyjxi−1zj =
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xyjxxi−2zj = xxyjxi−2z2j = · · · = xiyjzij . We will use induction to
prove the claim about (xiyj)n. For n = 1 the claim is trivial. Assume that

(xiyj)n = xniynjz(
n
2)ij . Now we proceed with the induction step by computing

(xiyj)n+1 = xniynjz(
n
2)ijxiyj = xniynjxiyjz(

n
2)ij = xnixiynjyjznijz(

n
2)ij

= x(n+1)iy(n+1)jz(
n+1
2 )ij .

Let g ̸∈ Φ(N). Then g = xiyj , where either i or j is not divisible by p.
Otherwise, g ∈ ⟨xp, yp⟩ = Φ(N) = Z(N), (see Lemma 2.2). Since zp = 1

and p |
(
p

2

)
, we obtain (xiyj)p = xpiypjz(

p
2)ij = xpiypj . If gp = 1, then

xpi = y−pj ∈ ⟨x⟩ ∩ ⟨y⟩, which implies xpi = 1 and i ≡ 0 (mod p). In the other
case j ≡ 0 (mod p). This is a contradiction. Therefore o(g) = p2.

Look now at xiypj , where i and j are not divisible by p. Since yp ∈
Z(N), it follows (xiypj)x = xiypj . Let us assume that there is some integer
n such that (xiypj)y = (xiypj)n. This would imply ⟨xiypj⟩ ⊴ N. If such an
n exists, this would imply (xz−1)iypj = (xiypj)n. Then, xiypjz−i = xniynpj

and ynpj−pj ∈ ⟨x⟩. Thus pj(n−1) ≡ 0 (mod p2) and n−1 ≡ 0 (mod p) since
j ̸≡ 0 (mod p). Let n = 1 +mp, for some integer m. Then xi(1−n) = zi and
x−mpi = zi. Therefore, zmi = zi. Take m = 1 and n = 1 + p. We conclude,
such n exists and ⟨xiypj⟩⊴N.

Lemma 2.5. Let G ∈ CZp, p > 2 and cl(G) < max. Let N ⊴ G and
N ≤ Φ(G) be nonabelian of order p4. Then G/Z(N) is isomorphic to some
subgroup of Aut(N).

Proof. Since NG(N) = G and CG(N) ≤ N , we get CG(N) = Z(N).
Then by the N/C-theorem, NG(N)/CG(N) ≲ Aut(N).

The following results is from [4, Theorem 12.2.2, page 178].

Theorem 2.6. Let |G| = pn and d(G) = d. Then |Aut(G)| divides
|Aut(Epd)× Φ(G)d|.

The following result establishes an upper bound for the order of a group
G with conditions we are studying here.

Theorem 2.7. Let G ∈ CZp, cl(G) < max and let N ≤ Φ(G) be a
normal nonabelian subgroup of G of order p4. Then |G| ≤ p7.

Proof. According to Lemma 2.2 and Lemma 2.3, Φ(N) = Z(N) ∼= Ep2

and N is uniquely determined by N = ⟨x, y | xp2 = yp
2

= 1, xy = x1+p⟩.
Applying Lemma 2.5 and Theorem 2.6, we have G/Z(N) ≲ Aut(N) and
|G/Z(N)|p divides |Aut(Ep2)×Φ(N)2|p = |(p2 − 1)(p2 − p) · p4|p = p5. Since
|Z(N)| = p2, we get |G| ≤ p7.
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Corollary 2.8. Let G ∈ CZp, cl(G) < max and N ≤ Φ(G) a normal
nonabelian subgroup of order p4. Then |G| ∈ {p5, p6, p7}.

We conclude this section with a technical result that we shall need.

Lemma 2.9. Let ⟨x⟩ ∼= Cp2 , p > 2 and let φ ∈ Aut(⟨x⟩) be an automor-
phism of ⟨x⟩ of order p. Then, there is some m ∈ N such that xφ = x1+mp.

3. The case |G| = p6 and cl(G) < max

We shall continue with the same assumption that G possesses a non-
abelian subgroup N ≤ Φ(G) of order p4. Additionally, we shall assume that
G is not of maximal class. By Corollary 2.8, the order of G is at least p5.
If |G| = p5, then |G : Φ(G)| = p and G is cyclic. Therefore, from this moment
on, we can assume that |G| ≥ p6. If |G| = p6, then |G : Φ(G)| = p2 and G is
a 2-generated group.

We now prove additional results about the structure of the group N.

Lemma 3.1. Let N = ⟨x, y | xp2 = yp
2

= 1, xy = x1+p⟩. Then Z(N) =
Φ(N) = ⟨xp, yp⟩ ∼= Ep2 and ⟨ypi+1⟩ ⋪ N, i = 0, 1, . . . , p− 1.

Proof. From (xp)y = (xy)p = (x1+p)p = xp and [x, xp] = 1 we have
xp ∈ Z(N). Furthermore, xy

p

= x(1+p)
p

= xp (since (1 + p)p ≡ p (mod p2)).
Therefore, ⟨xp, yp⟩ ≤ Z(N). Since |N : Z(N)| ≥ p2 and ⟨xp⟩ ∩ ⟨yp⟩ = 1, we
have Z(N) = ⟨xp, yp⟩. Since N is 2-generated and N/Z(N) ∼= Ep2 , it follows
that Z(N) = Φ(N).

Now we shall prove the second claim. We firstly use the following:
(ypi+1)x = (yx)pi+1 = (yx−p)pi+1 = ypi+1(x−p)pi+1 = ypi+1x−p. If ⟨ypi+1⟩
is N -invariant, then ypi+1x−p ∈ ⟨ypi+1⟩. This implies x−p ∈ ⟨ypi+1⟩ ≤ ⟨y⟩
and ⟨x⟩ ∩ ⟨y⟩ > 1, which is a contradiction. Therefore, ⟨ypi+1⟩ ⋬ N.

The following two results were proved in [1]. We shall present them here
with slightly different proofs. We will use the following notation: if H is a
normal subgroup of index pi of G, then we shall write this as H ◁pi G.

Theorem 3.2. Let G be a p-group and let K ⊴ G contain a abelian
maximal subgroup. Then K contains a maximal abelian subgroup that is G-
invariant.

Proof. If G is an abelian group, the claim is true. Let G be a nonabelian
group, and let A ◁p K ⊴ G, where A is an abelian subgroup. If {T | T ◁p
K, T ′ = 1} = {A}, then Ag ◁p Kg = K for all g ∈ G (Ag is abelian as well).
Therefore, Ag = A for all g ∈ G. This implies that A is G-invariant.

Now assume that A1 and A2 are distinct maximal abelian subgroups
of K. Then Ai ◁ K and A1A2 = K. Since A1 ∩ A2 ◁p Ai, we have
A1 ∩ A2 ≤ CK(A1) ∩ CK(A2). This implies A1 ∩ A2 ≤ Z(K). Let K be
a nonabelian group. Then K/Z(K) ∼= Ep2 . There is a subgroup C ≤ K such
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that C/Z(K) ∼= Cp. Then C/Z(K) ◁ K/Z(K). There is a one-to-one map be-
tween {C/Z(K) | C/Z(K) ◁ K/Z(K)} and {C/Z(K) | Z(K) ◁p C ◁p K}.
Note that

|{C/Z(K) | C/Z(K)◁p K/Z(K)}| =
[
2

1

]

p

=
p2 − 1

p− 1
= p+ 1.

This implies that K has p + 1 abelian maximal subgroups. The group G
acts via conjugation on p+1 maximal abelian subgroups of K. Orbits of this
action have lengths ≡ 0 (mod p). This implies that there is at least one fixed
subgroup and that one is G-invariant. The proof is identical in the case when
K ′ = 1.

Theorem 3.3. Let N ⊴ G and |N | > p3, where G is a p-group. Then
there is some abelian D < N of order p3 such that D ⊴ G.

Proof. There is a composition series that goes through each normal
subgroup of G. It implies that there is a G-invariant subgroup M < N of
order p4. Let A < M be of order p2. Then, A is abelian and |M : A| = p2.
By Theorem 3.2, there is a B ⊴ M of order p2. Note that B is abelian as
well. Since |Aut(B)p| = p, it is necessary that |NM (B) : CM (B)| ≤ p, where
NM (B) = M . If M = CM (B), then B ≤ Z(M). This implies that there is
g ∈M −B such that gp ∈ B and ⟨B, g⟩ < M is an abelian group of order p3.

If CM (B) ◁p M, then CM (B) is abelian of order p3. Thus, we can always
find an abelian M -invariant subgroup of M the order of which is p3. The
claim follows from Theorem 3.2.

Proposition 3.4. Let G ∈ CZp be a 2-generated group of order p6. Let

Φ(G) = N = ⟨x, y | xp2 = yp
2

= 1, xy = x1+p⟩ and exp(G) ≤ p2. Then
℧1(G) = ℧1(N) = ⟨xp, yp⟩ and |G′| ≥ p3.

Proof. From Lemma 3.1 the center of N is Z(N) = ⟨xp, yp⟩ = Φ(N).
Therefore, ⟨xp, yp⟩ ≤ ℧1(N) ≤ Φ(N) = ⟨xp, yp⟩. This implies ℧1(N) =
⟨xp, yp⟩. Thus, ⟨xp, yp⟩ ≤ ℧1(G). Since exp(G) = p2, there is x ∈ G and
o(g) = p2. Furthermore, gp ∈ Φ(G) = N and o(gp) = p. By Lemma 2.4, it
follows that if t ∈ N \Φ(N), then o(t) = p2. Therefore, gp ∈ Φ(N) = ⟨xp, yp⟩.
Thus, ℧1(G) ≤ ⟨xp, yp⟩ and finally ℧1(G) = ⟨xp, yp⟩.

Since ⟨xp⟩ = N ′ ≤ G′ and ⟨xp⟩ ≤ ℧1(G), we have |℧1(G) ∩G′| ≥ p and

p ≤ |℧1(G) ∩G′| = |℧1(G)||G′|
|℧1(G)G′| =

p2|G′|
|Φ(G)| =

|G′|
p2

,

yielding |G′| ≥ p3.

Theorem 3.5. Let G ∈ CZp be of order p6 and Φ(G) = N = ⟨x, y | xp2 =

yp
2

= 1, xy = x1+p⟩. Let exp(G) = p2 and |G′| = p4. Then Z(G) = ⟨xp⟩ and
Z2(G) = Z(N) = ⟨xp, yp⟩.
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Proof. By Proposition 3.4, |G′| ≥ p3. Since |G : G′| ≤ p2, the only
options are |G′| = p3 or |G′| = p4. Let |G′| = p4. Since G′ ≤ Φ(G) =
℧1(G)G

′, we have G′ = N. By Grünn’s theorem (see [1]), we have [G′ :
Z2(G)] = 1. Therefore, [N,Z2(G)] = 1. Since G ∈ CZp, we have Z2(G) ≤
CG(N) = Z(N) = ⟨xp, yp⟩ (see Lemma 3.1). This implies Z2(G)/Z1(G) =
Z(G/Z1(G)) > 1. Therefore, Z2(G) > Z1(G) > 1. Since |Z2(G)| = |⟨xp, yp⟩| =
p2, we have |Z1(G)| = |Z(G)| = p. Note that N ′ = ⟨xp⟩ is a characteristic
subgroup of N, and N is a characteristic subgroup of G. It follows know that
N ′ ⊴G is of order p. Therefore, |N ′ ∩ Z(G)| > 1 and N ′ = Z(G) = ⟨xp⟩.

Theorem 3.6. Let G ∈ CZp be a group of order p6. Let Φ(G) = N =

⟨x, y | xp2 = yp
2

= 1, xy = x1+p⟩ and exp(G) ≤ p2. If |G′| = p4, then G is a
group of maximal class.

Proof. If we assume that cl(G) < max, then, by Theorem 3.3, there
is a G-invariant, abelian subgroup A ≤ N of order p3. This implies Z(N) =
⟨xp, yp⟩ ≤ A. Otherwise, N would be an abelian group. Note that ℧1(N) =
Z(N) ≤ A. Since ℧1(N) is a characteristic subgroup of A, we have ⟨xp, yp⟩ ◁
G. We know that |G : Φ(G)| = p2 and G = ⟨a, b⟩ for some a, b ∈ G. By
Theorem 3.5, we have Z(G) = ⟨xp⟩. This yields [xp, a] = [xp, b] = 1. If (yp)a =
(yp)b = yp, then yp ∈ Z(G) = ⟨xp⟩, which is a contradiction. Therefore, we
have (yp)a ̸= yp. Since ⟨xp, yp⟩ ◁ G, we have (yp)a ∈ ⟨xp, yp⟩. Also, o(ap) ≤ p
and ap ∈ N. Therefore, ap ∈ Ω1(N) = ⟨xp, yp⟩. It follows that ⟨xp, yp, a⟩ is a
nonabelian group of order p3 and by Theorem 1.3 we have cl(G) = max. This
is the final contradiction which proves the theorem.

Theorem 3.7. Let G ∈ CZp, cl(G) < max, exp(G) ≤ p2 and let N ≤
Φ(G) be a nonabelian G-invariant subgroup of order p4. Then |G| = p7.

Proof. By Corollary 2.8, we have p5 ≤ |G| ≤ p7. Since |Φ(G)| ≥ p4, it
follows |G| ≥ p6 (since otherwise d(G) = 1). By Lemma 2.3, we know the
structure of the group N.

Let |G| = p6. By Proposition 3.4, we have |G′| ≥ p3. Since |G| = p6 and
d(G) = 2, it follows that G′ ≤ Φ(G) and |G′| ≤ p4. If |G′| = p4, then by
Theorem 3.6, the class of G would be maximal, contradicting the assumption.
Hence |G′| = p3. By Proposition 3.4, we have ℧1(G) = ℧1(N) = Z(N) =
⟨xp, yp⟩ = Φ(N). Since |G′| = p3, we haveG′ ≤ N = Φ(G).On the other hand,
G′ is a maximal subgroup of N. Therefore Z(N) = ℧1(G) = Φ(N) ≤ G′. This
implies Φ(G) = ℧1(G)G

′ = G′ < N = Φ(G). This is a contradiction. So, the
only remaining possibility is |G| = p7.
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4. The case |G| = p7 and cl(G) < max

We shall continue with the same assumption that there is a nonabelian
N ≤ Φ(G) of order p4. Additionally, we shall assume that G is not of max-
imal class and |G| = p7, exp(G) = p2. Note that exp(G) ≤ p3. We begin
with the following result on the size of G′.

Lemma 4.1. Let G ∈ CZp be a group of order p7 and exp(G) = p2 where

N = Φ(G) = ⟨x, y | xp2 = yp
2

= 1, xy = x1+p⟩. Then ℧1(G) = ℧1(N) =
⟨xp, yp⟩ and |G′| ≥ p3.

Proof. Notice that ℧1(N) ≤ ℧1(G) and exp(℧1(G)) = p. By
Lemma 3.1, we have ℧1(N) = Φ(N) = ⟨xp, yp⟩. We also have ℧1(G) ≤
Φ(G) = N. Then ℧1(G) ≤ Φ(N) = ℧1(N). This implies ℧1(G) = ℧1(N) =
⟨xp, yp⟩.

By Lemma 3.4, we have ⟨xp⟩ = N ′ ≤ G′ ∩ ℧1(G). Therefore

p ≤ |℧1(G) ∩G′| = |℧1(G)| · |G′|
|℧1(G) ·G′| =

p2 · |G′|
|Φ(G)| =

|G′|
p2

.

This yields |G′| ≥ p3.
Theorem 4.2. Let G ∈ CZp be a group of order p7 with exp(G) = p2

where N = Φ(G) = ⟨x, y | xp2 = yp
2

= 1, xy = x1+p⟩. If |G′| = p4, then
Z(G) = ⟨xp⟩ and Z2(G) = Z(N) = ⟨xp, yp⟩.

Proof. By Lemma 4.1, we have |G′| ≥ p3. Since G′ ≤ Φ(G) = N , it
follows |G′| ≤ p4. The rest of the proof follows the proof of Theorem 3.5.

Now we shall present the main result.

Theorem 4.3. Let G ∈ CZp be of exponent p2, where cl(G) < max. Let
N ≤ Φ(G) be a G-invariant nonabelian subgroup of order p4. Then |G| = p7

and N = ⟨x, y | xp2 = yp
2

= 1, xy = x1+p⟩ is of index p in Φ(G).

Proof. Assume that N = Φ(G) and |G′| = p4. As in Theorem 3.5, we
have Z(G) = ⟨xp⟩ and Z2(G) = Z(N) = ⟨xp, yp⟩. By Theorem 3.3, there is an
abelian group A⊴G such that A ≤ N and |A| = p3. Therefore Z(N) ≤ A, since
otherwise AZ(N) = N and N would be an abelian group. By Lemma 4.1,
we have ℧1(G) = ℧1(N) = ⟨xp, yp⟩ ≤ A. Note that ℧1(N) = Z(N). By
Lemma 3.1, we have Z(N) = Φ(N) = ⟨xp, yp⟩⊴G (since ℧1(G) = ⟨xp, yp⟩ is
a characteristic subgroup of G). From G/Φ(G) ∼= Ep3 , we have G = ⟨a, b, c⟩
for some generators a, b, c ∈ G. Since xp ∈ Z(G), it follows [xp, a] = [xp, b] =
[xp, c].

If (yp)a = (yp)b = (yp)c = yp, then yp ∈ Z(G). This is a contradiction.
Thus, we may assume (yp)a ̸= yp. Furthermore, o(ap) ≤ p (since exp(G) = p2)
and ap℧1(G) = ⟨xp, yp⟩. This implies that ⟨xp, yp, a⟩ is a nonabelian group
of order p3 and by Theorem 1.3 the group G has maximal class. This is a
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contradiction. Therefore, by Lemma 4.1, we have |G′| = p3. By Lemma 4.1,
it follows that ℧1(G) = ℧1(N) = Z(N) = Φ(N) = ⟨xp, yp⟩. From |G′| = p3,
we have G′ ≤ N = G′Φ(G). Since G′ is maximal in N , it implies Φ(N) < G′.
Since ℧1(G) = ℧1(N) = Φ(N) < G′, it follows that Φ(G) = ℧1(G)G

′ ≤
G′ < N. This yields now Φ(G) < N = Φ(G), which is a contradiction.
By Theorem 3.7, we have |G| = p7. It follows N < Φ(G). The description
of the group N is given by Lemma 2.3. Since |G : Φ(G)| ≥ p2, we have
|Φ(G) : N | = p.
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