CZ-GROUPS WITH NONABELIAN NORMAL SUBGROUP OF ORDER p^4

MARIO OSVIN PAVČEVIĆ AND KRISTIJAN TABAK University of Zagreb and Rochester Institute of Technology, Croatia

Dedicated to the memory of Zvonimir Janko

ABSTRACT. A *p*-group *G* with the property that its every nonabelian subgroup has a trivial centralizer (namely only its center) is called a *CZ*group. In Berkovich's monograph (see [1]) the description of the structure of a *CZ*-group was posted as a research problem. Here we provide further progress on this topic based on results proved in [5]. In this paper we have described the structure of *CZ*-groups *G* that possess a nonabelian normal subgroup of order p^4 which is contained in the Frattini subgroup $\Phi(G)$. We manage to prove that such a group of order p^4 is unique and that the order of the entire group *G* is less than or equal to p^7 , *p* being a prime. Additionally, all such groups *G* are shown to be of a class less than maximal.

1. INTRODUCTION

A *p*-group *G* is a group of order p^n , where *p* is prime. The conjugation of *x* by *y* is given by $x^y = y^{-1}xy$, where $x, y \in G$. If $x^y = x$, then *x* and *y* commute, i.e. $[x, y] = x^{-1}y^{-1}xy = 1$. Let $H \leq G$ be a subgroup of *G*. The centralizer of *H* in *G* is $C_G(H) = \{g \in G \mid h^g = h, \forall h \in H\}$. The center of *G* is given by $Z(G) = \{g \in G \mid x^g = x, \forall x \in G\}$. The center Z(H) of a subgroup $H \leq G$ is defined in the same way.

A finite group G is called a CZ-group (this abbreviated form comes from the words centralizer and Zentrum) if $C_G(H) = Z(H)$ for all nontrivial $H \leq G$. The set of all CZ-groups that are at the same time p-groups will be denoted by CZ_p and sometimes we will call such a group a CZ_p -group. The question

²⁰²⁰ Mathematics Subject Classification. 20D15, 20D25.

Key words and phrases. p-group, center, centralizer, Frattini subgroup, minimal non-abelian subgroup.

³¹⁷

of determining the general structure of $G \in CZ_p$ was posted in [1] as one of the open problems in the theory of *p*-groups. More on *p*-groups can be found in [2] and [3]. The first results about groups $G \in CZ_p$ were published in [5], where it was shown that a minimal CZ_p -group has order at least p^5 . Additionally, the structure of maximal abelian subgroups of a minimal CZ_p group has been described in that paper as well.

In this paper, we assume that the Frattini subgroup $\Phi(G)$, which is defined as the intersection of all maximal subgroups of G, contains a normal nonabelian subgroup of order p^4 . A subgroup $H \leq G$ that is a normal subgroup of G will be sometimes called G-invariant (if we want to point out this fact, we will denoted it by $H \leq G$). The existence of a normal subgroup of order p^4 in $\Phi(G)$ does not appear as a limitation, since we can always find normal subgroups in p-groups of any given order. What however appears o be a true assumption is that we, in addition assume, that this subgroup of order p^4 is nonabelian.

In the next result we will determine the lower bound for the order |G| of $G \in CZ_p$.

LEMMA 1.1. If $G \in CZ_p$, then $|G: Z(G)| \ge p^3$ and $|G| \ge p^5$.

PROOF. Let us assume the opposite, so let $|G: Z(G)| \leq p^2$. Then immediately we get $|G: Z(G)| = p^2$, since otherwise G would be abelian. The factor group G/Z(G) cannot be cyclic, otherwise G would be abelian again. Thus, $G/Z(G) \cong E_{p^2}$ (the elementary abelian group of order p^2). Since the Frattini subgroup is the smallest subgroup such that its factor group is elementary abelian, we get $\Phi(G) \leq Z(G)$. If $\Phi(G) < Z(G)$, there is some maximal subgroup M such that $Z(G) \nleq M$. Hence, M must be abelian, since otherwise, we would be able to find some $g \in Z(G) \setminus M$, leading further to $g \in C_G(M)$, which is a contradiction since $G \in CZ_p$. Therefore, MZ(G) = G and G is abelian, which is a contradiction again. So, $|G: Z(G)| \ge p^3$ and $|G| \ge p^4$ (since $|Z(G)| \ge p$). If $|G| = p^4$, then |Z(G)| = p and $Z(G) \le \Phi(G)$. This implies that any maximal subgroup of G is minimally nonabelian, thus G is a minimal CZ group, from which follows that $|G| \ge p^5$ (as it was proved in [5]). This is a contradiction. Therefore, the only remaining option is $|G| \ge p^5$.

LEMMA 1.2. Let $G \in CZ_p$ and M < G, $M \in CZ_p$. Then $|G : Z(G)| \ge p^4$ and $|G| \ge p^5$.

PROOF. Lemma 1.1 states that $|G : Z(G)| \ge p^3$. Let $M \in CZ_p$ and M < G. Then again by Lemma 1.1, $|M : Z(M)| \ge p^3$. It was proved in [5] that $Z(G) \le Z(M)$. Thus $|G : Z(G)| > |M : Z(G)| \ge |M : Z(M)| \ge p^3$. Therefore, $|G : Z(G)| \ge p^4$ and $|G| \ge p^5$.

The following statement establishes a connection between CZ_p -groups and the maximality of class. THEOREM 1.3. Let $G \in CZ_p$ and B < G be a nonabelian group of order p^3 . Then G is a group of maximal class.

PROOF. Let B < G, where $|B| = p^3$ and B nonabelian. Then $C_G(B) < B$. Therefore, $Z(G) \le Z(B)$. Clearly, |Z(B)| = p and Z(G) = Z(B).

It is known that if $H \in Syl_p(Aut(B))$ (a Sylow *p*-group), then $|H| = p^3$ and *H* is nonabelian. Therefore, $N_G(B)/C_G(B) \leq Aut(B)$ is a *p*-group. Also, $N_G(B) > B$ and $C_G(B) = Z(B)$. Therefore, $|N_G(B)/C_G(B)| \geq p^3$ since $|N_G(B) : C_G(B)| = |N_G(B) : B| \cdot |B : Z(B)| \geq p \cdot p^2 = p^3$. Thus, it is necessary that $N_G(B)/Z(G) \cong H \in Syl_p(Aut(B))$. Also, $N_G(B)/Z(G) < G/Z(G)$ (since |Z(G)| = p and $|G| \geq p^5$ and *H* nonabelian of order p^3).

Obviously $C_G(N_G(B)/Z(G)) \leq N_G(B)/Z(G)$. Inductively, G/Z(G) is of maximal class, where |Z(G)| = p. From here we deduce that G is of maximal class.

2. CZ-groups with nonabelian G-invariant subgroup $N \leq \Phi(G)$ of order p^4

Let us now we introduce the main assumption. We will assume further that G is a CZ_p group possessing a subgroup $N \leq \Phi(G)$ which is a nonabelian G-invariant subgroup of order p^4 . The nilpotency class of a group G will be denoted by cl(G). If the class is maximal, we will put cl(G) = max, otherwise cl(G) < max. If the group is generated by at least k elements, we shall say that it is a k-generated group and write d(G) = k.

We will make use of the following result. Its proof can be found in [1, Lemma 1.4.].

LEMMA 2.1. Let G be a p-group for p > 2 and $N \leq G$. If N has no abelian G-invariant subgroups of type (p, p), then N is cyclic.

The structure of a p-subgroup N satisfying the properties mentioned above is partially described in the following result.

LEMMA 2.2. Let $G \in CZ_p$ where p > 2 and cl(G) < max. Let $N \leq \Phi(G)$ be a G-invariant nonabelian group of order p^4 . Then $\Phi(N) = Z(N) \cong E_{p^2}$ and N is a 2-generated group of exponent p^2 .

PROOF. Assume that Z(N) is cyclic. Let $A \leq G$ and $A \leq N$ of order p^2 . Then $|N_G(A)/C_G(A)| = |G/C_G(A)| \leq |Aut(A)|_p = p$, where $|Aut(A)|_p$ is the maximal power of p that divides |Aut(A)|. Hence, $N \leq \Phi(G) \leq C_G(A)$ and $A \leq C_G(A)$. Thus, $A \leq Z(\Phi(G)) \cap N$ and $A \leq Z(N)$ (since $N \leq \Phi(G)$). Therefore, A is cyclic. Then, according to Lemma 2.1, N must be cyclic, which is a contradiction. Therefore, Z(N) is not cyclic. If $d(Z(N)) \geq 3$, then $|Z(N)| \geq p^3$ and $|N : Z(N)| \leq p$. This would imply that N is abelian. Therefore, d(Z(N)) = 2 and $Z(N) \cong E_{p^2}$. Clearly, $d(N) \geq 2$. Assume that d(N) = 4. Then $N/\Phi(N) \cong E_{p^4}$ and $\Phi(N) = 1$. On the other hand, $\Phi(N) = N'\mho_1(N)$ and N' = 1. This is a contradiction. Thus, $d(N) \leq 3$.

If d(N) = 3, then $\Phi(N) \cong C_p$ and $1 < N' \leq \Phi(N)$. Thus, $\Phi(N) = N'$. Clearly, $N' \cap Z(N) > 1$ since $N' \leq N$. Put $Z(N) = \langle x \rangle \times \langle y \rangle \cong C_p \times C_p$ such that $N' = \langle x \rangle$. Thus, there is $y \in Z(N) - \Phi(N)$.

Thus, y is a generator of N and the order of y is p. Then there is some maximal subgroup M < N such that $y \notin M$. Therefore, $N = \langle M, y \rangle = M \times \langle y \rangle$. If $w^p = y$ for some w, then $y \in \mathcal{O}_1(N) \leq \Phi(N)$. This is a contradiction since y is a generator. Because N is nonabelian, M must be nonabelian, otherwise $N = M \times \langle y \rangle$ would be abelian. Therefore, M' > 1 and $|M| = p^3$. Then, according to the Theorem 1.3, the class of the group G is maximal. This is a contradiction with our assumption. Therefore, d(N) = 2 and $N/\Phi(N) \cong E_{p^2}$ where $|\Phi(N)| = p^2$. If $Z(N) \nleq \Phi(N)$, then there is some maximal $M \triangleleft_p N$ such that $Z(N) \nleq M$ then M' = 1. Otherwise, by Theorem 1.3 we would get cl(G) = max. Thus, it is necessary that $Z(N) \leq \Phi(N)$. Since both groups have order p^2 , we get $Z(N) = \Phi(N)$.

Let exp(G) = p. Then $|\mathcal{O}_1(G)| = 1$ and $\Phi(N) = N'\mathcal{O}_1(N) = N' \cong C_p \times C_p$. Since N has a maximal abelian subgroup, then $p^4 = |N| = p \cdot |N'| \cdot |Z(N)| = p \cdot p^2 \cdot p^2$. This is a contradiction. Thus, exp(N) > p.

If $exp(N) = p^3$, then $N \cong M_{p^4}$, where M_{p^4} is a minimal nonabelian group with a maximal cyclic subgroup. Then, there is some $w \in N$ of order p^3 . Hence $\mathcal{O}_1(N) = \langle w^p \rangle \cong C_{p^2}$ and $\mathcal{O}_1(N) = \Phi(N) = Z(N)$ and d(N) = 1. Again, this is a contradiction. Thus, the only remaining option is $exp(N) = p^2$.

The following result shows the uniqueness of the nonabelian G-invariant subgroup $N \leq \Phi(G)$, where cl(G) < max, $G \in CZ_p$ and $|N| = p^4$.

LEMMA 2.3. Let $G \in CZ_p$, p > 2 and cl(G) < max. Let $N \leq \Phi(G)$ be a *G*-invariant nonabelian subgroup of order p^4 . Then N is uniquely determined by its generators and relations with $N = \langle x, y | x^{p^2} = y^{p^2} = 1, x^y = x^{1+p} \rangle$.

PROOF. From Lemma 2.2 we have $Z(N) = \Phi(N) \cong E_{p^2}$. Also, $exp(N) = p^2$. If $M \triangleleft N$ is maximal, then Z(N) < M and M' = 1. Thus, $|N| = p \cdot |N'||Z(N)|$. Hence, |N'| = p. We can put $Z(N) = \langle a \rangle \times \langle b \rangle$. We can assume $N' = \langle a \rangle$. There are $x, y \in N$ such that $x^p = a$, $y^p = b$. Otherwise, $a \notin \Phi(N) = N'\mathcal{O}_1(N)$ and $b \notin \Phi(N)$. Now, take $[x, y] = a = x^{-1}y^{-1}xy = x^{-1}x^y = x^p$. This gives us $x^y = x^{1+p}$.

LEMMA 2.4. Let the group N be defined as $N = \langle x, y \mid x^{p^2} = y^{p^2} = 1$, $x^y = x^{1+p}\rangle$. Let $z^{-1} = x^p$. Then for all integers i, j, n the following relations hold: $y^j x = xy^j z^j$, $y^j x^i = x^i y^j z^{ij}$. Furthermore, $(x^i y^j)^n = x^{ni} y^{nj} z^{\binom{n}{2}ij}_2$ and the order $o(g) = p^2$, for all $g \in N - \Phi(N)$. The subgroup $\langle x^i y^{pj} \rangle \leq N$ is normal in N.

PROOF. Since $z^{-1} = x^p \in Z(N)$, it follows $x^y = xz^{-1}$ and xyz = yx. Then, $y^j x = y^{j-1}(yx) = y^{j-1}(xy)z = y^{j-2}(yx)yz = y^{j-2}(xy)yz^2 = y^{j-2}xy^2z^2 = \cdots = xy^jz^j$. We have $y^j x^i = y^j xx^{i-1} = xy^jx^{i-1}z^j = xy^jx^{i-1}z^j$ $xy^j xx^{i-2}z^j = xxy^j x^{i-2}z^{2j} = \cdots = x^i y^j z^{ij}$. We will use induction to prove the claim about $(x^i y^j)^n$. For n = 1 the claim is trivial. Assume that $(x^i y^j)^n = x^{ni} y^{nj} z^{\binom{n}{2}ij}$. Now we proceed with the induction step by computing

$$(x^{i}y^{j})^{n+1} = x^{ni}y^{nj}z^{\binom{n}{2}ij}x^{i}y^{j} = x^{ni}y^{nj}x^{i}y^{j}z^{\binom{n}{2}ij} = x^{ni}x^{i}y^{nj}y^{j}z^{nij}z^{\binom{n}{2}ij}$$
$$= x^{(n+1)i}y^{(n+1)j}z^{\binom{n+1}{2}ij}.$$

Let $g \notin \Phi(N)$. Then $g = x^i y^j$, where either *i* or *j* is not divisible by *p*. Otherwise, $g \in \langle x^p, y^p \rangle = \Phi(N) = Z(N)$, (see Lemma 2.2). Since $z^p = 1$ and $p \mid \binom{p}{2}$, we obtain $(x^i y^j)^p = x^{pi} y^{pj} z^{\binom{p}{2}ij} = x^{pi} y^{pj}$. If $g^p = 1$, then $x^{pi} = y^{-pj} \in \langle x \rangle \cap \langle y \rangle$, which implies $x^{pi} = 1$ and $i \equiv 0 \pmod{p}$. In the other case $j \equiv 0 \pmod{p}$. This is a contradiction. Therefore $o(g) = p^2$.

Look now at $x^i y^{pj}$, where *i* and *j* are not divisible by *p*. Since $y^p \in Z(N)$, it follows $(x^i y^{pj})^x = x^i y^{pj}$. Let us assume that there is some integer *n* such that $(x^i y^{pj})^y = (x^i y^{pj})^n$. This would imply $\langle x^i y^{pj} \rangle \leq N$. If such an *n* exists, this would imply $(xz^{-1})^i y^{pj} = (x^i y^{pj})^n$. Then, $x^i y^{pj} z^{-i} = x^{ni} y^{npj}$ and $y^{npj-pj} \in \langle x \rangle$. Thus $pj(n-1) \equiv 0 \pmod{p^2}$ and $n-1 \equiv 0 \pmod{p}$ since $j \not\equiv 0 \pmod{p}$. Let n = 1 + mp, for some integer *m*. Then $x^{i(1-n)} = z^i$ and $x^{-mpi} = z^i$. Therefore, $z^{mi} = z^i$. Take m = 1 and n = 1 + p. We conclude, such *n* exists and $\langle x^i y^{pj} \rangle \leq N$.

LEMMA 2.5. Let $G \in CZ_p$, p > 2 and cl(G) < max. Let $N \leq G$ and $N \leq \Phi(G)$ be nonabelian of order p^4 . Then G/Z(N) is isomorphic to some subgroup of Aut(N).

PROOF. Since $N_G(N) = G$ and $C_G(N) \leq N$, we get $C_G(N) = Z(N)$. Then by the N/C-theorem, $N_G(N)/C_G(N) \leq Aut(N)$.

The following results is from [4, Theorem 12.2.2, page 178].

THEOREM 2.6. Let $|G| = p^n$ and d(G) = d. Then |Aut(G)| divides $|Aut(E_{n^d}) \times \Phi(G)^d|$.

The following result establishes an upper bound for the order of a group G with conditions we are studying here.

THEOREM 2.7. Let $G \in CZ_p$, cl(G) < max and let $N \leq \Phi(G)$ be a normal nonabelian subgroup of G of order p^4 . Then $|G| \leq p^7$.

PROOF. According to Lemma 2.2 and Lemma 2.3, $\Phi(N) = Z(N) \cong E_{p^2}$ and N is uniquely determined by $N = \langle x, y \mid x^{p^2} = y^{p^2} = 1$, $x^y = x^{1+p} \rangle$. Applying Lemma 2.5 and Theorem 2.6, we have $G/Z(N) \lesssim Aut(N)$ and $|G/Z(N)|_p$ divides $|Aut(E_{p^2}) \times \Phi(N)^2|_p = |(p^2 - 1)(p^2 - p) \cdot p^4|_p = p^5$. Since $|Z(N)| = p^2$, we get $|G| \leq p^7$. COROLLARY 2.8. Let $G \in CZ_p$, cl(G) < max and $N \leq \Phi(G)$ a normal nonabelian subgroup of order p^4 . Then $|G| \in \{p^5, p^6, p^7\}$.

We conclude this section with a technical result that we shall need.

LEMMA 2.9. Let $\langle x \rangle \cong C_{p^2}$, p > 2 and let $\varphi \in Aut(\langle x \rangle)$ be an automorphism of $\langle x \rangle$ of order p. Then, there is some $m \in \mathbb{N}$ such that $x^{\varphi} = x^{1+mp}$.

3. The case $|G| = p^6$ and cl(G) < max

We shall continue with the same assumption that G possesses a nonabelian subgroup $N \leq \Phi(G)$ of order p^4 . Additionally, we shall assume that G is **not of maximal class**. By Corollary 2.8, the order of G is at least p^5 . If $|G| = p^5$, then $|G : \Phi(G)| = p$ and G is cyclic. Therefore, from this moment on, we can assume that $|G| \geq p^6$. If $|G| = p^6$, then $|G : \Phi(G)| = p^2$ and G is a 2-generated group.

We now prove additional results about the structure of the group N.

PROOF. From $(x^p)^y = (x^y)^p = (x^{1+p})^p = x^p$ and $[x, x^p] = 1$ we have $x^p \in Z(N)$. Furthermore, $x^{y^p} = x^{(1+p)^p} = x^p$ (since $(1+p)^p \equiv p \pmod{p^2}$). Therefore, $\langle x^p, y^p \rangle \leq Z(N)$. Since $|N : Z(N)| \geq p^2$ and $\langle x^p \rangle \cap \langle y^p \rangle = 1$, we have $Z(N) = \langle x^p, y^p \rangle$. Since N is 2-generated and $N/Z(N) \cong E_{p^2}$, it follows that $Z(N) = \Phi(N)$.

Now we shall prove the second claim. We firstly use the following: $(y^{pi+1})^x = (y^x)^{pi+1} = (yx^{-p})^{pi+1} = y^{pi+1}(x^{-p})^{pi+1} = y^{pi+1}x^{-p}$. If $\langle y^{pi+1} \rangle$ is *N*-invariant, then $y^{pi+1}x^{-p} \in \langle y^{pi+1} \rangle$. This implies $x^{-p} \in \langle y^{pi+1} \rangle \leq \langle y \rangle$ and $\langle x \rangle \cap \langle y \rangle > 1$, which is a contradiction. Therefore, $\langle y^{pi+1} \rangle \not \leq N$.

The following two results were proved in [1]. We shall present them here with slightly different proofs. We will use the following notation: if H is a normal subgroup of index p^i of G, then we shall write this as $H \triangleleft_{p^i} G$.

THEOREM 3.2. Let G be a p-group and let $K \leq G$ contain a abelian maximal subgroup. Then K contains a maximal abelian subgroup that is G-invariant.

PROOF. If G is an abelian group, the claim is true. Let G be a nonabelian group, and let $A \triangleleft_p K \trianglelefteq G$, where A is an abelian subgroup. If $\{T \mid T \triangleleft_p K, T' = 1\} = \{A\}$, then $A^g \triangleleft_p K^g = K$ for all $g \in G$ (A^g is abelian as well). Therefore, $A^g = A$ for all $g \in G$. This implies that A is G-invariant.

Now assume that A_1 and A_2 are distinct maximal abelian subgroups of K. Then $A_i \triangleleft K$ and $A_1A_2 = K$. Since $A_1 \cap A_2 \triangleleft_p A_i$, we have $A_1 \cap A_2 \leq C_K(A_1) \cap C_K(A_2)$. This implies $A_1 \cap A_2 \leq Z(K)$. Let K be a nonabelian group. Then $K/Z(K) \cong E_{p^2}$. There is a subgroup $C \leq K$ such that $C/Z(K) \cong C_p$. Then $C/Z(K) \triangleleft K/Z(K)$. There is a one-to-one map between $\{C/Z(K) \mid C/Z(K) \triangleleft K/Z(K)\}$ and $\{C/Z(K) \mid Z(K) \triangleleft_p C \triangleleft_p K\}$. Note that

$$|\{C/Z(K) \mid C/Z(K) \lhd_p K/Z(K)\}| = \begin{bmatrix} 2\\1 \end{bmatrix}_p = \frac{p^2 - 1}{p - 1} = p + 1.$$

This implies that K has p + 1 abelian maximal subgroups. The group G acts via conjugation on p + 1 maximal abelian subgroups of K. Orbits of this action have lengths $\equiv 0 \pmod{p}$. This implies that there is at least one fixed subgroup and that one is G-invariant. The proof is identical in the case when K' = 1.

THEOREM 3.3. Let $N \leq G$ and $|N| > p^3$, where G is a p-group. Then there is some abelian D < N of order p^3 such that $D \leq G$.

PROOF. There is a composition series that goes through each normal subgroup of G. It implies that there is a G-invariant subgroup M < N of order p^4 . Let A < M be of order p^2 . Then, A is abelian and $|M : A| = p^2$. By Theorem 3.2, there is a $B \leq M$ of order p^2 . Note that B is abelian as well. Since $|Aut(B)_p| = p$, it is necessary that $|N_M(B) : C_M(B)| \leq p$, where $N_M(B) = M$. If $M = C_M(B)$, then $B \leq Z(M)$. This implies that there is $g \in M - B$ such that $g^p \in B$ and $\langle B, g \rangle < M$ is an abelian group of order p^3 . If $C_M(B) \triangleleft_p M$, then $C_M(B)$ is abelian of order p^3 . Thus, we can always find an abelian M-invariant subgroup of M the order of which is p^3 . The

claim follows from Theorem 3.2. PROPOSITION 3.4. Let $G \in CZ_p$ be a 2-generated group of order p^6 . Let $\Phi(G) = N = \langle x, y \mid x^{p^2} = y^{p^2} = 1, x^y = x^{1+p} \rangle$ and $exp(G) \leq p^2$. Then

 $\begin{aligned} &\mathcal{U}(G) = N - \langle x, y + x \rangle - y \rangle = 1, \ x = x \rangle \text{ and } \operatorname{Cap}(G) \leq p \text{ . Incl.} \\ &\mathcal{U}_1(G) = \mathcal{U}_1(N) = \langle x^p, y^p \rangle \text{ and } |G'| \geq p^3. \end{aligned}$ $\begin{aligned} &\operatorname{PROOF. From Lemma 3.1 the center of N is } Z(N) = \langle x^p, y^p \rangle = \Phi(N). \end{aligned}$ $\begin{aligned} &\operatorname{Therefore,} \ \langle x^p, y^p \rangle < \mathcal{U}_1(N) < \Phi(N) = \langle x^p, y^p \rangle. \end{aligned}$ $\begin{aligned} &\operatorname{This implies } \mathcal{U}_1(N) = \langle x^p, y^p \rangle. \end{aligned}$

Therefore, $\langle x^p, y^p \rangle \leq \mathfrak{V}_1(N) \leq \Phi(N) = \langle x^p, y^p \rangle$. This implies $\mathfrak{V}_1(N) = \langle x^p, y^p \rangle$. Thus, $\langle x^p, y^p \rangle \leq \mathfrak{V}_1(G)$. Since $exp(G) = p^2$, there is $x \in G$ and $o(g) = p^2$. Furthermore, $g^p \in \Phi(G) = N$ and $o(g^p) = p$. By Lemma 2.4, it follows that if $t \in N \setminus \Phi(N)$, then $o(t) = p^2$. Therefore, $g^p \in \Phi(N) = \langle x^p, y^p \rangle$. Thus, $\mathfrak{V}_1(G) \leq \langle x^p, y^p \rangle$ and finally $\mathfrak{V}_1(G) = \langle x^p, y^p \rangle$.

Since $\langle x^p \rangle = N' \leq G'$ and $\langle x^p \rangle \leq \mathcal{O}_1(G)$, we have $|\mathcal{O}_1(G) \cap G'| \geq p$ and

$$p \le |\mathcal{O}_1(G) \cap G'| = \frac{|\mathcal{O}_1(G)||G'|}{|\mathcal{O}_1(G)G'|} = \frac{p^2|G'|}{|\Phi(G)|} = \frac{|G'|}{p^2},$$

yielding $|G'| \ge p^3$.

THEOREM 3.5. Let $G \in CZ_p$ be of order p^6 and $\Phi(G) = N = \langle x, y \mid x^{p^2} = y^{p^2} = 1$, $x^y = x^{1+p} \rangle$. Let $exp(G) = p^2$ and $|G'| = p^4$. Then $Z(G) = \langle x^p \rangle$ and $Z_2(G) = Z(N) = \langle x^p, y^p \rangle$.

PROOF. By Proposition 3.4, $|G'| \geq p^3$. Since $|G : G'| \leq p^2$, the only options are $|G'| = p^3$ or $|G'| = p^4$. Let $|G'| = p^4$. Since $G' \leq \Phi(G) = U_1(G)G'$, we have G' = N. By Grünn's theorem (see [1]), we have $[G' : Z_2(G)] = 1$. Therefore, $[N, Z_2(G)] = 1$. Since $G \in CZ_p$, we have $Z_2(G) \leq C_G(N) = Z(N) = \langle x^p, y^p \rangle$ (see Lemma 3.1). This implies $Z_2(G)/Z_1(G) = Z(G/Z_1(G)) > 1$. Therefore, $Z_2(G) > Z_1(G) > 1$. Since $|Z_2(G)| = |\langle x^p, y^p \rangle| = p^2$, we have $|Z_1(G)| = |Z(G)| = p$. Note that $N' = \langle x^p \rangle$ is a characteristic subgroup of N, and N is a characteristic subgroup of G. It follows know that $N' \leq G$ is of order p. Therefore, $|N' \cap Z(G)| > 1$ and $N' = Z(G) = \langle x^p \rangle$.

THEOREM 3.6. Let $G \in CZ_p$ be a group of order p^6 . Let $\Phi(G) = N = \langle x, y | x^{p^2} = y^{p^2} = 1, x^y = x^{1+p} \rangle$ and $exp(G) \leq p^2$. If $|G'| = p^4$, then G is a group of maximal class.

PROOF. If we assume that cl(G) < max, then, by Theorem 3.3, there is a *G*-invariant, abelian subgroup $A \leq N$ of order p^3 . This implies $Z(N) = \langle x^p, y^p \rangle \leq A$. Otherwise, N would be an abelian group. Note that $\mathcal{O}_1(N) = Z(N) \leq A$. Since $\mathcal{O}_1(N)$ is a characteristic subgroup of A, we have $\langle x^p, y^p \rangle \triangleleft G$. We know that $|G : \Phi(G)| = p^2$ and $G = \langle a, b \rangle$ for some $a, b \in G$. By Theorem 3.5, we have $Z(G) = \langle x^p \rangle$. This yields $[x^p, a] = [x^p, b] = 1$. If $(y^p)^a = (y^p)^b = y^p$, then $y^p \in Z(G) = \langle x^p \rangle$, which is a contradiction. Therefore, we have $(y^p)^a \neq y^p$. Since $\langle x^p, y^p \rangle \triangleleft G$, we have $(y^p)^a \in \langle x^p, y^p \rangle$. Also, $o(a^p) \leq p$ and $a^p \in N$. Therefore, $a^p \in \Omega_1(N) = \langle x^p, y^p \rangle$. It follows that $\langle x^p, y^p, a \rangle$ is a nonabelian group of order p^3 and by Theorem 1.3 we have cl(G) = max. This is the final contradiction which proves the theorem.

THEOREM 3.7. Let $G \in CZ_p$, cl(G) < max, $exp(G) \le p^2$ and let $N \le \Phi(G)$ be a nonabelian G-invariant subgroup of order p^4 . Then $|G| = p^7$.

PROOF. By Corollary 2.8, we have $p^5 \leq |G| \leq p^7$. Since $|\Phi(G)| \geq p^4$, it follows $|G| \geq p^6$ (since otherwise d(G) = 1). By Lemma 2.3, we know the structure of the group N.

Let $|G| = p^6$. By Proposition 3.4, we have $|G'| \ge p^3$. Since $|G| = p^6$ and d(G) = 2, it follows that $G' \le \Phi(G)$ and $|G'| \le p^4$. If $|G'| = p^4$, then by Theorem 3.6, the class of G would be maximal, contradicting the assumption. Hence $|G'| = p^3$. By Proposition 3.4, we have $\mathcal{O}_1(G) = \mathcal{O}_1(N) = Z(N) = \langle x^p, y^p \rangle = \Phi(N)$. Since $|G'| = p^3$, we have $G' \le N = \Phi(G)$. On the other hand, G' is a maximal subgroup of N. Therefore $Z(N) = \mathcal{O}_1(G) = \Phi(N) \le G'$. This implies $\Phi(G) = \mathcal{O}_1(G)G' = G' < N = \Phi(G)$. This is a contradiction. So, the only remaining possibility is $|G| = p^7$. 4. The case $|G| = p^7$ and cl(G) < max

We shall continue with the same assumption that there is a nonabelian $N \leq \Phi(G)$ of order p^4 . Additionally, we shall assume that G is **not of max**imal class and $|G| = p^7$, $exp(G) = p^2$. Note that $exp(G) \le p^3$. We begin with the following result on the size of G'.

LEMMA 4.1. Let $G \in CZ_p$ be a group of order p^7 and $exp(G) = p^2$ where $N = \Phi(G) = \langle x, y \mid x^{p^2} = y^{p^2} = 1, x^y = x^{1+p} \rangle$. Then $\mathcal{O}_1(G) = \mathcal{O}_1(N) = \mathcal{O}_1(N)$ $\langle x^p, y^p \rangle$ and $|G'| \ge p^3$.

PROOF. Notice that $\mathcal{O}_1(N) \leq \mathcal{O}_1(G)$ and $exp(\mathcal{O}_1(G)) = p$. By Lemma 3.1, we have $\mathfrak{V}_1(N) = \Phi(N) = \langle x^p, y^p \rangle$. We also have $\mathfrak{V}_1(G) \leq \mathfrak{V}_1(G)$ $\Phi(G) = N$. Then $\mathfrak{V}_1(G) \leq \Phi(N) = \mathfrak{V}_1(N)$. This implies $\mathfrak{V}_1(G) = \mathfrak{V}_1(N) = \mathfrak{V}_1(N)$ $\langle x^p, y^p \rangle.$

By Lemma 3.4, we have $\langle x^p \rangle = N' \leq G' \cap \mathcal{O}_1(G)$. Therefore

$$p \le |\mathcal{O}_1(G) \cap G'| = \frac{|\mathcal{O}_1(G)| \cdot |G'|}{|\mathcal{O}_1(G) \cdot G'|} = \frac{p^2 \cdot |G'|}{|\Phi(G)|} = \frac{|G'|}{p^2}.$$

This yields $|G'| \ge p^3$.

THEOREM 4.2. Let $G \in CZ_p$ be a group of order p^7 with $exp(G) = p^2$ where $N = \Phi(G) = \langle x, y \mid x^{p^2} = y^{p^2} = 1, x^y = x^{1+p} \rangle$. If $|G'| = p^4$, then $Z(G) = \langle x^p \rangle$ and $Z_2(G) = Z(N) = \langle x^p, y^p \rangle$.

PROOF. By Lemma 4.1, we have $|G'| \ge p^3$. Since $G' \le \Phi(G) = N$, it follows $|G'| \leq p^4$. The rest of the proof follows the proof of Theorem 3.5. \Box

Now we shall present the main result.

THEOREM 4.3. Let $G \in CZ_p$ be of exponent p^2 , where cl(G) < max. Let $N \leq \Phi(G)$ be a G-invariant nonabelian subgroup of order p^4 . Then $|G| = p^7$ and $N = \langle x, y \mid x^{p^2} = y^{p^2} = 1$, $x^y = x^{1+p} \rangle$ is of index p in $\Phi(G)$.

PROOF. Assume that $N = \Phi(G)$ and $|G'| = p^4$. As in Theorem 3.5, we have $Z(G) = \langle x^p \rangle$ and $Z_2(G) = Z(N) = \langle x^p, y^p \rangle$. By Theorem 3.3, there is an abelian group $A \trianglelefteq G$ such that $A \le N$ and $|A| = p^3$. Therefore $Z(N) \le A$, since otherwise AZ(N) = N and N would be an abelian group. By Lemma 4.1, we have $\mathfrak{V}_1(G) = \mathfrak{V}_1(N) = \langle x^p, y^p \rangle \leq A$. Note that $\mathfrak{V}_1(N) = Z(N)$. By Lemma 3.1, we have $Z(N) = \Phi(N) = \langle x^p, y^p \rangle \leq G$ (since $\mathfrak{O}_1(G) = \langle x^p, y^p \rangle$ is a characteristic subgroup of G). From $G/\Phi(G) \cong E_{p^3}$, we have $G = \langle a, b, c \rangle$ for some generators $a, b, c \in G$. Since $x^p \in Z(G)$, it follows $[x^p, a] = [x^p, b] =$ $[x^p, c].$

If $(y^p)^a = (y^p)^b = (y^p)^c = y^p$, then $y^p \in Z(G)$. This is a contradiction. Thus, we may assume $(y^p)^a \neq y^p$. Furthermore, $o(a^p) \leq p$ (since $exp(G) = p^2$) and $a^p \mathcal{O}_1(G) = \langle x^p, y^p \rangle$. This implies that $\langle x^p, y^p, a \rangle$ is a nonabelian group of order p^3 and by Theorem 1.3 the group G has maximal class. This is a contradiction. Therefore, by Lemma 4.1, we have $|G'| = p^3$. By Lemma 4.1, it follows that $\mathcal{O}_1(G) = \mathcal{O}_1(N) = Z(N) = \Phi(N) = \langle x^p, y^p \rangle$. From $|G'| = p^3$, we have $G' \leq N = G'\Phi(G)$. Since G' is maximal in N, it implies $\Phi(N) < G'$. Since $\mathcal{O}_1(G) = \mathcal{O}_1(N) = \Phi(N) < G'$, it follows that $\Phi(G) = \mathcal{O}_1(G)G' \leq G' < N$. This yields now $\Phi(G) < N = \Phi(G)$, which is a contradiction. By Theorem 3.7, we have $|G| = p^7$. It follows $N < \Phi(G)$. The description of the group N is given by Lemma 2.3. Since $|G : \Phi(G)| \geq p^2$, we have $|\Phi(G) : N| = p$.

ACKNOWLEDGEMENTS.

This work has been fully supported by Croatian Science Foundation under the projects 6732 and 9752.

References

- Y. Berkovich, Groups of prime power order. Vol. 1, Walter de Gruyter, Berlin–New York, 2008.
- [2] Y. Berkovich, Z. Janko, Groups of prime power order. Vol. 2, Walter de Gruyter, Berlin–New York, 2008.
- [3] Y. Berkovich and Z. Janko, Groups of prime power order. Vol. 3, Walter de Gruyter, Berlin–New York, 2010.
- [4] M. Hall, Jr., Theory of groups, The Macmillan Company, New York, 1959.
- [5] M. O. Pavčević, and K. Tabak, *CZ-groups*, Glas. Mat. Ser. III **51(71)** (2016), 345– 358.

M.O. Pavčević Department of applied mathematics Faculty of Electrical Engineering and Computing University of Zagreb 10000 Zagreb Croatia *E-mail:* mario.pavcevic@fer.hr

K. Tabak Rochester Institute of Technology Zagreb Campus D.T. Gavrana 15, 10000 Zagreb Croatia *E-mail*: kxtcad@rit.edu

Received: 31.8.2022. Revised: 3.12.2022.