SPLITNESS OF THE VERONESEAN DUAL HYPEROVALS: A QUICK PROOF

ULRICH DEMPWOLFF

Technical University Kaiserslautern

Dedicated to the memory of Zvonimir Janko

ABSTRACT. Satoshi Yoshiara shows in [7] that the Veronesean dual hyperovals over \mathbb{F}_2 are of split type. So far there exists no published proof that a Veronesean dual hyperoval over any finite field of even characteristic is of split type. In this note we give a quick proof of this fact.

1. INTRODUCTION

Let $n \geq 2$. A set \mathcal{A} of *n*-dimensional subspaces of a finite \mathbb{F}_q -vector space U is called a *dimensional dual arc of rank* n (we will use in the sequel the abbreviation DA), if:

- (1) dim $X_1 \cap X_2 = 1$ for every two $X_1, X_2 \in \mathcal{A}$.
- (2) dim $X_1 \cap X_2 \cap X_3 = 0$ for every three $X_1, X_2, X_3 \in \mathcal{A}$.
- (3) The set \mathcal{A} generates U.

The space $U = U(\mathcal{A})$ is called the *ambient space* of the DA. The axioms of a DA imply $|\mathcal{A}| \leq (q^n - 1)/(q - 1) + 1$. The DA of rank *n* over \mathbb{F}_q is called a *dimensional dual hyperoval* (we use the abbreviation DHO) if $|\mathcal{A}| = (q^n - 1)/(q - 1) + 1$. The DA splits over the subspace Y, if $U = X \oplus Y$ for all $X \in \mathcal{A}$. We also say that Y is a *complement* of \mathcal{A} and \mathcal{A} is splitting or of split type.¹

²⁰²⁰ Mathematics Subject Classification. 51A45, 05B25.

Key words and phrases. Dimensional dimensional dual hyperoval.

¹Often the terminology of projective geometry is used and a DA of rank n is called an (n-1)-dimensional dual arc. For background information on dimensional dual arcs and hyperovals we refer to Yoshiara's survey [5].

³²⁷

Let S and \mathcal{T} be DAs over \mathbb{F}_q of the same rank. A semilinear epimorphism $\phi: U(S) \to U(\mathcal{T})$ is a covering map if $\mathcal{T} = S\phi = \{X\phi \mid X \in S\}$. One calls \mathcal{T} a quotient of S and S a cover of \mathcal{T} .

Let q be a prime power. Let V be a n-dimensional \mathbb{F}_q -space, $n \geq 2$ and $U = S^2(V)$ the symmetric square of V. For $0 \neq e \in V$ define $X(e) = \{x \cdot e \mid x \in V\}$. Note, that $X(e) = X(\alpha e)$ for $0 \neq \alpha \in \mathbb{F}_q$. Then

$$\mathcal{VA}_n(q) = \{ X(e) \mid 0 \neq e \in V \}$$

is a DA, the Veronesean DA over \mathbb{F}_q of rank n (see [5, Section 5.2]). If q is a 2-power the set $X(\infty) = \{x^2 \mid x \in V\}$ is a subspace of $S^2(V)$ and

$$\mathcal{V}_n(q) = \{X(\infty)\} \cup \mathcal{V}\mathcal{A}_n(q)$$

is even a DHO, the Veronesean DHO over \mathbb{F}_q of rank n. We shall prove the following.

THEOREM 1.1. For every integer $n \geq 2$ and every prime power q the Veronesean DA $\mathcal{VA}_n(q)$ is of split type. Let q be a 2-power. Then Veronesean DHO $\mathcal{V}_n(q)$ is of split type.

2. The proof

We need the following observation.

LEMMA 2.1. Let $\phi: U(S) \to U(T)$ be covering map of the DA S onto the DA T. Let T be of split type. Then S is of split type too.

PROOF. Assume that \mathcal{T} splits over the subspace Y of $U(\mathcal{T})$ and let Y' be the pre-image of Y with respect to ϕ . By definition of a covering map ϕ is injective on each $X \in \mathcal{S}$ and so on $X \cap Y'$. Since $(X \cap Y')\phi = X\phi \cap Y = 0$ we get $X \cap Y' = 0$, i.e. \mathcal{S} splits over Y' as $U(\mathcal{S}) = X + Y'$ is the pre-image of $U(\mathcal{T}) = X\phi \oplus Y$ with respect to ϕ .

With the help of this Lemma the splitness of the Veronesean DHOs can be deduced from previous work of Taniguchi [3] and Yoshiara [6]. Our proof of Theorem 1.1 includes a simplified, self-contained account of necessary material from [3] and [6]. We use the following lemma.

LEMMA 2.2. Let $n \geq 2$, V be a \mathbb{F}_q -space of rank n and S, $|S| = (q^n - 1)/(q-1)$ a DA with ambient space U = U(S). Let $\sigma : V \times V \to U$ be a symmetric, \mathbb{F}_q -bilinear mapping such that $S = \{S(e) \mid 0 \neq e \in V\}$ where $S(e) = \{\sigma(x, e) \mid x \in V\}$. Then S is a quotient of $\mathcal{VA}_n(q)$.

PROOF. By the universal property of $S^2(V)$ there exist an epimorphism $\phi : S^2(V) \to U$ with $(x \cdot y)\phi = \sigma(x, y)$. This shows $X(e)\phi = S(e)$, i.e. $\mathcal{VA}_n(q)\phi = \mathcal{S}$.

Let q be a 2-power and \mathcal{D} a DHO such that there exists $S_{\infty} \in \mathcal{D}$ such that $\mathcal{S} = \mathcal{D} - \{S_{\infty}\}$ satisfies the assumptions of Lemma 2.2. Then \mathcal{D} is a quotient of $\mathcal{V}_n(q)$: for $0 \neq e \in V$ we see that $\mathbb{F}_q \sigma(e, e) - \{0\} = S(e) - \bigcup_{f \in V - \mathbb{F}_q e} (S(e) \cap S(f))$ (as $\mathbb{F}_q \sigma(e, f) \subseteq S(e) \cap S(f)$). This implies $S_{\infty} = \bigcup_{0 \neq e \in V} \mathbb{F}_q \sigma(e, e)$ and forces $X(\infty)\phi = S_{\infty}$. The claim follows.

PROOF OF THEOREM 1.1. The following construction of a DA (a DHO) is a special case of Taniguchi's construction [3]. Let q be a prime power and γ be a generator of $\operatorname{Gal}(\mathbb{F}_{q^n} : \mathbb{F}_q)$. Define a set of n-spaces S over \mathbb{F}_q in $U = U(S) = \mathbb{F}_{q^n} \times \mathbb{F}_{q^n}$ by $S = \{X(e) \mid 0 \neq e \in \mathbb{F}_{q^n}\}$ where for $0 \neq e \in \mathbb{F}_{q^n}$ one sets $S(e) = \{(xe, xe^{\gamma} + x^{\gamma}e) \mid x \in \mathbb{F}_{q^n}\}$. If q is a 2-power we set $S(\infty) = \{(x^2, 0) \mid x \in \mathbb{F}_{q^n}\}$ and $\mathcal{D} = \{S(\infty)\} \cup S$. Then S is a DA and \mathcal{D} even a DHO. Indeed, it is easy to see that $S(e) \cap S(f) = \mathbb{F}_q(ef, ef^{\gamma} + e^{\gamma}f)$ for $\mathbb{F}_q e \neq \mathbb{F}_q f$, $e \neq 0 \neq f$ and $S(\infty) \cap S(e) = \mathbb{F}_q(e^2, 0)$. Clearly, S as well as \mathcal{D} split over $0 \times \mathbb{F}_{q^n}$. The mapping $\sigma : \mathbb{F}_{q^n} \times \mathbb{F}_{q^n} \to U$ defined by $\sigma(x, e) = (xe, xe^{\gamma} + x^{\gamma}e)$ is symmetric and bilinear. Then by Lemma 2.2 S is a quotient of $\mathcal{V}\mathcal{A}_n(q)$ and the subsequent remark implies for q even that \mathcal{D} is a quotient of $\mathcal{V}_n(q)$. This is observed already by Yoshiara in [6, Proposition 1]. Lemma 2.1 then forces that $\mathcal{V}\mathcal{A}_n(q)$ and $\mathcal{V}_n(q)$ are of split type.

REMARK 2.3. (a) Our proof is a mere existence proof for complements. Yoshiara [7, Corollary 3] does more. He establishes a oneto-one correspondence between the complements of $\mathcal{V}_n(2)$ with classes of commutative pre-semifields of order 2^n .

- (b) Lemma 2.1 becomes wrong if one interchanges the roles of S and T: computer computations [2] used for [1] show that (the split DHO) $\mathcal{V}_5(2)$ has quotients which are not of split type.
- (c) The splitness proof for the Taniguchi DHOs in [7] is not easy. Unfortunately Lemma 2.1 appears to be not helpful since the splitness question for the known quotients of the Taniguchi DHOs [4] seems to be difficult too.

References

- U. Dempwolff and Y. Edel, The radical of binary dimensional dual hyperovals, Finite Fields Appl. 91 (2023), paper no. 102257.
- [2] U. Dempwolff and Y. Edel, The webpage associated with [1], http://www.mathi. uni-heidelberg.de/~yves/Papers/radical.html
- [3] H. Taniguchi, On a family of dual hyperovals over GF(q) with q even, European J. Combin. 26 (2005), 195–199.
- [4] H. Taniguchi, Quotients of the deformation of Veronesean dual hyperoval in PG(3d, 2), Discrete Math. 312 (2012), 498–508.
- [5] S. Yoshiara, Dimensional dual arcs-a survey, in Finite geometries, groups and computation, Walter de Gruyter GmbH & Co. KG, Berlin, 2006, pp. 247–266.
- [6] S. Yoshiara, Notes on Taniguchi's dimensional dual hyperovals, European J. Combin. 28 (2007), 674–684.

U. DEMPWOLFF

[7] S. Yoshiara, Splitness of the Veronesean and the Taniguchi dual hyperovals, Discrete Math. 342 (2019), 844–854.

U. Dempwolff Department of Mathematics Technical University Kaiserslautern 67653 Kaiserslautern Germany *E-mail*: dempwolff@mathematik.uni-kl.de *Received*: 10.11.2022.

330