CGRP-induced headache and hemodynamic response for prediction of therapy based on CGRP antagonism

Marjan Zaletel, MD, PhD
University Clinical Centre of Ljubljana, Ljubljana, Slovenia

ABSTRACT:
Migraine is increasingly recognized as a disorder of the calcitonin gene-related peptide (CGRP) pathway. However, other factors are involved in migraine pathophysiology such as vasoactive intestinal peptide (VIP) and PACAP-38. Indeed, the CGRP-test can discriminate migraine from non-migraine and other non-CGRP induced migraine using CGRP-induced headache (CGRP-IH) and cerebral hemodynamic changes. Recent studies support the evidence of CGRP susceptible migraine prone to CGRP antagonism. Therefore, the CGRP-test may have an important role in therapeutic decisions regarding anti-CGRP monoclonal antibodies and gepants. This may improve the clinical effects of CGRP antagonism in migraine patients and increase therapeutic adherence. From the perspective of pain medicine may improve placebo response which can enhance favourable therapeutic outcomes.

KEYWORDS: migraine, calcitonin gene-related peptide (CGRP), transcranial Doppler (TCD), migraine susceptible to CGRP

Citation:
Zaletel M. CGRP-induced headache and hemodynamic response for prediction of therapy based on CGRP antagonism. 559=64-65 (2023): 48-51
DOI: 10.21857/y6zolb6rjm

Conflict of Interest Statement:
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Conflict of Interest Statement:
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 2 November 2023
Accepted: 5 December 2023
Published: 22 December 2023

Copyright (C) 2023 Zaletel M. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Marjan Zaletel, MD, PhD
University Clinical Centre of Ljubljana, Ljubljana, Slovenia

CGRP induced headache and hemodynamic response for prediction of therapy based on CGRP antagonism

SAGETAK:
CGRP om inducirana glavobolja i hemodinamski odgovor kao predskazatelj terapije zasovane na CGRP antagonizmu

Migrene su sve više prepoznate kao poremećaj puta kalcitonin-gen-povezanog peptida (CGRP). Međutim, drugi čimbenici su uključeni u patofiziologiju migrene, poput vazoaktivnog crijevnog peptida (VIP) i PACAP-38. CGRP test može razlikovati migrenu od nemigrenozne glavobolje i drugih migrena koje nisu inducirane CGRP-om pomoću CGRP-om inducirane glavobolje (CGRP-IH) i cerebralnih hemodinamskih promjena. Nedavne studije podržavaju dokaze CGRP osjetljivih migrenama podložnih antagonistima CGRP-a. Stoga, CGRP test može imati važnu ulogu u terapijskim odlukama vezanih za anti-CGRP monoklononska protutijela i gepante. Ovaj test bi mogao poboljšati kliničke učinke CGRP antagonizma u bolesnika s migrenom i povećati adherenciju na terapiju. Iz perspektive analgezije, mogao bi biti poboljšani placebo odgovor koji može pospiješiti povoljne terapijske ishode.

KLUČNE RIJEČI: migrena, kalcitonin-gen povezan peptid (CGRP), transkranijalni dopler, migrena podložna CGRP-u
Introduction
Understanding migraine through calcitonin gene-related peptide represents (CGRP) (1) a great step in our knowledge of functional disorders in pain medicine. Although, the research goes back to the eighties of the last century, clinical applicability has reached in recent years. The role of CGRP in human physiology is not clearly explained. It is supposed that is important in the dangerous physiologic states such as ischemia of the central nervous system. In the peripheral nervous system, it contributes to neurogenic inflammation to decrease damage and initiate healing of the tissue. Nevertheless, CGRP consists of a defense response to actual or potential damage. From the perspective of migraine, we can consider the CGRP as the part of potential damage response because our brain predicts future unsafe situations and can form the response to virtual brain lesions leading to migraine attacks.

Exogenous CGRP
CGRP is an endogenous signaling molecule formed in the neurons in the body's periphery as well as in the central nervous system. It could be detected in the peripheral blood in pico levels. It is elevated after migraine attack and chronic migraine (2, 3). Therefore, we can consider that intracranial structures are an important source of CGRP. It is believed that the trigeminovascular system is an important generator of CGRP. According to current knowledge, the nociceptive activity in migraine originates from a complex consisting of trigeminal ganglia, its peripheral projections, and arteries innervated with them. It is still a mystery what is a primer for increased activity of the trigeminovascular system. Using the human model of migraine (4), CGRP was applied in the form of intravenous infusion. They established the clinical and hemodynamic responses to exogenous CGRP. Indeed, not all migraineurs show responses to exogenous CGRP. It is known that CGRP is not the only agent that can trigger migraine attacks. In a human model, another molecule such as pituitary adenylate cyclase-activating peptide-38 (PACAP-38) and vasoactive intestinal polypeptide (VIP) can evoke the migraine attack (5). This indicates migraine as a heterogeneous and multifactorial brain disorder with different pathways for increasing trigemino-vascular activity. Thus, the response to exogenous CGRP could be useful for determining the therapeutic effect of CGRP antagonism, such as treatment with anti-CGRP monoclonal antibodies.

CGRP-test
CGRP-test appears to discriminate migraine from non-migraine (6). The test includes the clinical response of CGRP-induced headache (CGRP-IH) and hemodynamic responses related to cerebral vascular and systemic cardiovascular responses detected by polymodal monitoring. CGRP-IH is a phenomenon, subject to neurocognitive features of individuals and could be independent of biological reactions to CGRP. On the other hand, hemodynamic responses associated with CGRP should be more biological, specific to the CGRP mechanism. However, the discriminative power of hemodynamic variables such as arterial velocity in a middle cerebral artery (vm MCA) and posterior cerebral arteries (vm PCA) appears to be low (6). Indeed, during the CGRP test, End-tidal carbon dioxide (Et-CO2), besides vm PCA during the exogenous CGRP infusion (6). This is explained by proximal arterial vasodilatation and drop of vm because of constant cerebral blood flow during CGRP infusion. The constancy of cerebral blood flow is provided by an additional drop of Et-CO2 (8). According to the segmental concept of cerebral vasculature...
regulation (9), the distal segment including cerebral arterioles and microcirculation compensates for vasodilatation on a proximal part. Thus, exogenous CGRP induces cerebral vasodilatation of the proximal segment which is evident from experimental studies, (10). From the physiology of cerebral circulation, It is known that partial carbon dioxide in arterial blood has a potent vasoconstrictor effect on cerebral circulation, acting predominantly on the distal segment. That’s why we can consider a change of Et-CO₂ after CGRP infusion as a compensatory response.

On the other side, an enhanced response of vm MCA is observed in migraine with a positive relationship between vm MCA responses and migraine (11). According to the previous explanation, hemodynamic changes in cerebral circulation after CGRP infusion are attributed to an enhanced vasodilatation of proximal large arteries in migraine (12). Thus, the vm MCA can be used for discrimination of migranous susceptible to CGRP from others, migraineurs and non-migranous.

Regarding systemic variables such as mean arterial pressure (MAP) and heart rate (HR). intravenous infusion of exogenous CGRP significantly decreases MAP. The maximal decrease of MAP at the end of the infusion. Changes in HR are significant and in the opposite direction to the changes in MAP (13). However, the study concluded that CGRP does not have direct significant effects on MAP in migraine (11). This is by the finding that blocking CGRP does not affect systemic blood pressure in healthy volunteers (14). In addition, associations were found between MAP and vm MCA, as well as between MAP and vm PCA, which indicates uncoupling between cerebral flow and systemic arterial pressure and therefore normal regulation of cerebral blood flow during CGRP stimulation. Accordingly, MAP and HR can not discriminate between migraineurs who have specific responses to CGRP and others.

For the reasons described in previous paragraphs both, vm MCA and Et-CO₂ can be used as discriminatory factors. In addition, if we use them together, we can get a stronger discriminator and predict the migraineurs susceptible to CGRP antagonism. For this reason, we introduced the product of vm MCA and Et-CO₂ to augment CGRP effects on cerebral circulation and use it for discriminative factors. Analysis of ROC curves for the product vm MCA and Et-CO₂ showed a significant area under the curve of the product migraineurs and non-migraineurs (15). Therefore, hemodynamic parameters of CGRP effects on cerebral circulation might be used to accurately discriminate migraine susceptible to CGRP from non-susceptible CGRP migraineurs and non-migraineurs. Therefore, hemodynamic changes during CGRP provocation might predict the efficiency of CGRP antagonism. CGRP-IH seems to be affected by non-nociceptive factors. However, some authors proposed CGRP-IH as a test for predicting response to anti-CGRP mAb (20), but it has not been tested yet. Nevertheless, the product vm MCA and Et-CO₂ appears as promising, objective discriminator with better sensitivity and specificity compared to CGRP-IH for migraine susceptible to CGRP.

Other possible discriminants for migraine

The current concept considers trigeminovascular reflex (TVR) with CGRP release should be the fundamental generator of migraine headache and source of central sensitization of brain structures. According to this concept, CGRP in plasma should be increased even in the interictal period as was found in chronic migraine (2). On the other hand, increased levels of vasoactive intestinal peptide (VIP) in addition to CGRP were found elevated in plasma interictally (17) It is attributed to activation of not only sensory and parasympathetic arms of the TVS. The infusion of VIP provoked migraine (18), but the effect on cerebral and systemic hemodynamic factors is not known. In addition, intravenous infusions of the neuropeptide PACAP-38 induced delayed migraine-like headaches (19). Nevertheless, the hemodynamic effect of PACAP-38 is not known. Thus, the CGRP mechanism is neither sufficient nor necessary to evoke migraine. Blocking CGRP pathways seems not to be successful in every migraine. This supports the concept of non-CGRP and CGRP susceptible migraine phenotype as suggested previously (20). Accordingly, PACAP-38 and VIP could be useful discriminators for other than CGRP migraine types.

Conclusions

In conclusion, our studies showed that hemodynamic changes during CGRP provocation might predict the efficiency of CGRP antagonism. CGRP-IH seems to be affected by non-nociceptive factors. However, some authors proposed CGRP-IH as a test for predicting response to anti-CGRP mAb (20), but it has not been tested yet. Nevertheless, the product vm MCA and Et-CO₂ appears promising, objective discriminator with better sensitivity and specificity compared to CGRP-IH for migraine susceptible to CGRP.