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ABSTRACT
Dockless bike-sharing (DBS) is an effective solution to the “first and last mile” problem in 
urban transportation. It can be integrated with urban rail transit (URT) to provide passengers 
with more convenient travel services. This study focuses on the integrated use of DBS and 
URT in Shenzhen, utilising a multi-buffer zone approach to identify DBS data within URT 
station catchment areas. By employing ordinary least squares (OLS), geographically weighted 
regression (GWR) and multiscale geographically weighted regression (MGWR) models, the 
spatiotemporal heterogeneity of integrated use and its relationship with environmental factors 
surrounding URT stations were examined. The empirical findings highlight the superiority 
of the MGWR model in accurately explaining spatial relationships compared to the OLS and 
GWR models. Furthermore, the study reveals that the impact of built environment factors on 
integrated use varies during morning and evening peak periods, as well as in terms of access 
and egress. Specifically, factors such as catering, shopping, companies, residential buildings, 
bus stops, minor roads, transfer stations and population density were found to influence the 
integrated use of DBS and URT. These findings not only contribute to the promotion of the 
DBS-URT integration but also promote the overall development of urban transportation.

KEYWORDS
bike-sharing; urban rail transit; multiscale geographically weighted regression; 
environmental factors.

1. INTRODUCTION
Urban rail transit (URT), as an efficient and fast public transportation mode, has become an important 

component of modern urban transportation construction. It can not only alleviate urban road traffic congestion 
and improve the traffic efficiency, but also reduce the air pollution and noise pollution, and enhance environmental 
quality [1, 2]. However, due to the fixed routes of URT, its coverage is limited, and URT stations are often 
located on urban trunk roads or commercial centre areas, which also leads to the first and last mile problem. 
The problem is particularly prominent in some cities, especially in densely populated city centre [3, 4]. 

To solve this problem, dockless bike-sharing (DBS) has become a popular travel mode. The emergence 
of DBS not only fills the gap between URT and residential areas, but also makes travel more convenient 
for passengers [5]. Dockless bike-sharing, as a convenient short-distance travel mode, has the advantages of 
flexibility, convenience and low cost, which allow users to use them anytime and anywhere. It can not only 
save time and cost, but also provides passengers with a free and fast solution for first and last mile [6, 7].
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Previous studies have shown that environmental factors have significant impacts on the usage of dockless 
bike-sharing [8–12]. And most studies have focused on discussing the usage of bike sharing in the entire 
area rather than around the URT stations. Furthermore, they analysing the factors affecting the DBS-URT 
integration mainly used traditional model regression (e.g., OLS model, GWR model), and rarely consider the 
relationships among different factors at multiple scales. It will lead to a neglect of spatial heterogeneity among 
different factors. Therefore, investigating the impacts of the environment around URT stations on the DBS-
URT integration is important for sustainable development and optimization of transportation systems.

In summary, this study is based on the DBS data in Shenzhen, China in 2021, and employs the multiscale 
geographically weighted regression (MGWR) model to investigate the impact of the surrounding environment 
of URT stations on the DBS-URT integrated use. Specifically, this study addresses three questions: (1) Are 
there differences in the effects of different environmental factors around the station on the integrated use during 
different time periods (e.g. morning peak and evening peak)? (2) How do different environmental factors 
around the station affect the access-/egress-integrated use? (3) How does the impact of different environmental 
factors around the station on integrated use vary spatially? The remaining structure of the study is as follows. 
Section 2 reviews the relevant literature on bike-sharing, bike-sharing-metro integration and influential factors 
on bike-sharing-metro integration. Section 3 describes the study area, data sources and the attachment area of 
the integration. It also introduces theoretical foundations of different models, lists the selected environmental 
variables and conducts spatial autocorrelation analysis. Section 4 presents the spatial heterogeneity between 
environmental factors and the integrated use by different models. Based on the results of the model regression, 
the best model is determined to analyse the spatiotemporal impact of the surrounding environment of URT 
stations on the DBS-URT integration.

2. LITERATURE REVIEW
In this section, we reviewed three aspects and introduced the background, techniques and methods of this 

study. Firstly, we introduced the research progress of bike-sharing in the past. Secondly, we reviewed the 
recent studies on bike-sharing connected to urban rail transit. Lastly, we summarised the least progress in 
studying the impact of the surrounding environment of rail transit on bike-sharing ridership and discussed the 
corresponding research models and methods.

2.1 Bike-sharing
In recent years, bike-sharing has gradually become one of the important transportation modes in cities, 

attracting the attention of numerous scholars, and related research has shown a rapid development trend. 
This includes research on the usage patterns and user characteristics of shared bikes, research on the spatial 
distribution and service range of shared bikes, and research on the factors influencing the demand for shared 
bike travel. For example, Cao et al. [13] extracted the main features of the cycling flow from the origin and 
destination data of shared bicycles based on singular value decomposition. Zhou et al. [14] conducted an 
analysis of the travel characteristics of bike-sharing from four aspects: distribution, spatial features, riding 
features and turnover rate. Lin et al. [15] employed the gradient boosting decision tree model to investigate the 
relationship between environment and dockless bike-sharing demand. The results demonstrated that factors 
including subway ridership, bus ridership, hour, residence density and office density had significant impacts 
on travel demand. Robert et al. [16] examined the determinants of bikeshare station usage using a fine-grained 
approach. Zhang et al. [17] employed a multiple linear regression model to analyse the impact of construction 
environment variables on bicycle demand. Chen et al. [18] proposed an optimization model for the free-floating 
bike-sharing rebalancing problem and improved the NSGA-II algorithm to discuss the rationality of bicycle 
parking areas. Ji et al. [19] applied a binary logistic model to explain the effects of travel characteristics and 
built environment factors on the usage patterns of shared bikes and concluded that work-related, residential 
and transportation-related points of interest promote the usage patterns of the two bike-sharing systems.

2.2 Bike-sharing-metro integration
The integration of urban rail transit and bike-sharing has become one of the important measures to solve 

the last-mile problem in urban transportation. Researchers have extensively studied this integration mode to 
improve the convenience, sustainability and efficiency of urban transportation. Gao et al. [7] proposed a spatio-
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temporal visualization analysis method for the passenger flow of public bicycle rental stations connecting 
with subway systems. Kuang and Wu [8] proposed a new method to establish the attraction area of subway 
stations based on travel origin-destination and a bike clustering method considering subway stations based 
on travel characteristics. Fan and Zheng [20] constructed a framework to distinguish metro-complementing 
and metro-substituting trips based on the difference-in-difference identification strategy, which showed that 
the complementary relationship between metro and bike-sharing is stronger than the substitution. Li et al. 
[21] analysed the temporal usage and the relationship with points of interest of dockless bikes near metro 
stations. Lin et al. [22] proposed methods to process bike trajectories and generate the bike catchment areas 
of metro stations. The results showed that the bike catchment areas are positively associated with metro 
service, frequent morning trips, diverse users and large distances to the city centre and terminal stations, but 
negatively associated with the density of metro stations. Liu et al. [23] developed a photovoltaic gradient 
booster model to investigate the influence of various factors on the demand for two types of electric bicycles 
charging stations in metro stations, promoting the integration of electric bicycles and subway transportation. 
Li et al. [24] analysed the reasons for the imbalance in bike sharing supply by comparing the travel patterns of 
bikes during weekdays and weekends. Liu et al. [25] evaluated the consistency between regional functions and 
mobility characteristics by integrating shared bikes and land use near subway stations, and the research results 
reconfirmed the relationship between land use and mobility characteristics.

2.3 Influential factors on bike-sharing-metro integration
The integrated use of dockless bike-sharing and urban rail transit can provide more efficient and friendly 

travel experiences for users. As a result, many studies have begun to focus on the factors that influence the 
integrated use and explore relevant conclusions through methods such as data analysis and model building. 
For example, Liu et al. [26] used an ordered logistic regression model to examine the significant factors 
that influence groupings of metro-bikeshare passengers. They found that education, individual income, travel 
purpose, travel time on the metro, workplace location and bike lane infrastructure were significant impacts on 
metro-bikeshare passengers. Zhao and Li [27] used a multi-level logistics model to investigate the determinant 
of urban residents’ use of bikes as a transfer mode for the metro and found that the transportation distance 
between the home and the station is the most important factor affecting whether people ride bike-sharing 
bikes. Cheng et al. [28] used quantile regression to explore the relationship between the built environment 
and the integration of free-floating bike-sharing and urban rail transit and revealed temporal differences in the 
relationship between the built environment and integrated use. Gao et al. [29] performed K-means clustering 
on the source-sink network of shared bikes around metro stations and used a geographic detector to explore 
the reasons for spatial differences. Guo and Sylvia [11] evaluated the synergistic effects between dock-less 
bike-sharing and metro commuting and how they are influenced by urban built environment factors, through 
objective and perceptual indicators. Ma et al. [30] used ordinary least squares (OLS) model and spatial error 
model (SEM) to reveal the impact of social population factors, travel-related factors and built environment 
factors on the activity space of dockless bikes around metro stations. They found that the SEM model was 
significantly better than the OLS model in terms of model fitting. Guo et al. [31] developed a multilevel 
negative binomial model to explore the influence of building environment characteristics on the integrated use 
of dockless bike-sharing and metro under different conditions. Li et al. [8] used ordinary least squares (OLS) 
model and geo-graphically weighted regression (GWR) model to investigate how built environment and social 
population characteristics affect the use of dockless bikes and found that the explanatory power of the GWR 
model was higher.

To summarise, previous research on the factors affecting the bike-sharing integration has mainly employed 
ordinary least squares (OLS) model, traditional geographically weighted regression (GWR) model, negative 
binomial regression model and logistic regression model, etc. Although these models have yielded significant 
insights, they still have limitations in addressing the spatial heterogeneity of the independent variables. To 
address these gaps in knowledge, this study aimed to employ the multiscale geographically weighted regression 
(MGWR) model to explore the factors affecting the integration under time-segmented conditions (i.e. access 
and egress in morning and evening peak) in Shenzhen, China. The MGWR model can effectively clarify the 
relationship between independent and dependent variables at different spatial scales and handle the spatial 
autocorrelation among variables. Additionally, it can select the optimal spatial scale to achieve the best fitting 
performance [32–34]. The findings of this study can provide valuable in-sights for optimising the construction 
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of bike-sharing in cities and guiding urban transportation planning and management policies, thereby better 
meeting the travel needs of citizens, promoting sustainable urban economic development and improving their 
quality of life.

3. MATERIALS AND METHODS
3.1 Study area

Shenzhen is one of the four first-tier cities in China and the core of the Guang-dong-Hong Kong-Macau 
Greater Bay Area. Located on the eastern bank of the Pearl River Delta, it shares a river border with Hong Kong. 
As of 2021, Shenzhen had a population of 17.68 million and an area of 1997.47 km2. The study area contains 
nine urban districts (Futian, Luohu, Nanshan, Yantian, Baoan, Longgang, Longhua, Pingshan, Guangming) 
and one functional area, the Dapeng New District, as shown in Figure 1.

Urban rail transit (URT) is the most popular public transportation choice among Shenzhen’s citizens, 
accounting for 40% of public transport trips. Shenzhen URT system comprises 11 operating lines with a total 
length of 419 kilometres and 288 stations, with an average daily passenger flow of 5.97 million in 2021 [28]. 
The URT lines mainly cover the central areas of the city, such as Nanshan, Futian and Luohu, which are 
relatively developed in terms of commercial organization, entertainment facilities and living services.

In December 2011, the first public bicycle transportation system was launched in Shenzhen. It featured 
36,950 announced bicycles and attracted 216,000 registered users, providing citizens with a convenient green 
travel option. However, the introduction of dockless bike-sharing (DBS) in September 2016 had a significant 
impact on the public bicycle market, leading to the suspension of multi-regional public bicycle systems. By 
2021, Shenzhen had installed approximately 390,000 DBS bikes, 27.7 million registered users and an average 
daily cycling volume of 1.38 million [35]. The rapid development of DBS has better met the needs of citizens 
for the last “one-kilometre” connection and short-distance travel, playing a positive role in alleviating urban 
traffic congestion and building a green travel system.

Figure 1 – Study area and the distribution of DBS

3.2 Data source
The DBS data used in this study were provided by the data open platform of Shenzhen municipal government. 

The dataset includes user ID, start time, end time, start location (longitude and latitude) and end location, 
covering 7 days from 31 March to 6 April 2021, with a total of 4,216,172 cycling records, as shown in Table 
1. To obtain more accurate results, we considered the cycling process within 60 seconds to 7200 seconds (2 
hours) as a valid record and eliminated invalid data outside of this time domain. Ultimately, 4,138,494 cycling 
records were obtained. As shown in Figure 1, the DBS origins and destinations were mostly distributed in seven 
districts: Nanshan, Futian, Luohu, Longgang, Longhua, Guangming and Baoan.
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Table 1 – Structure of DBS data

User ID Start time End time Start longitude End longitude Start latitude End latitude

26cd5b18d******** 6:00 6:04 114.1041214 114.1111117 22.56191655 22.56381287

efd6c4e61******** 14:45 14:58 113.9050134 113.8929629 22.56977017 22.57008241

2f3a94fbfa******** 18:45 18:53 114.022614 114.0141847 22.5525833 22.55098779

1d3df34c2******** 23:00 23:04 114.0581909 114.0546952 22.5093104 22.50924813

According to traffic restrictions in Shenzhen and other literature references, the morning peak is defined 
as 7:00–10:00 and the evening peak as 17:00–20:00 [36]. As this study aims to analyse the behaviour of the 
integration of DBS and URT, the period of the DBS data refers to the operating time of Shenzhen URT [37]. It 
means that only DBS data from 6:00 a.m. to 11:00 p.m. are considered. 

The POI data was collected from Amap (also known as Gaode Map) web service in 2022, using the 
application programming interface (API). Amap API provides developers with programmatic access to various 
geographic data services [38]. These data provide 12 categories of locations that may be useful or interesting 
to users, such as catering, shopping, company, residential building, etc.

The road data for different regions within Shenzhen were obtained from Open Street Map (OSM). The 
required road types within the regions were extracted from OSM and were categorised into major and minor 
roads. The lengths of these two types of roads were calculated accordingly. The population density data were 
obtained from the WorldPop dataset (https://www.worldpop.org/), with a spatial resolution of 1 km × 1 km. 
The population data for different age and gender groups within each region of Shenzhen were sourced from the 
7th National Population Census in 2020.

3.3 Measuring the variables
In this study, we classified the variables into dependent and independent variables. The dependent variables 

were categorised into four types based on time periods and access/egress, including the average morning and 
evening DBS-URT access-/egress-integrated use. The average integrated use is formula as follows:

Average integrated use (trips/hour) = Total integrated use (trips) / time period (hour) (1)

Previous studies usually determined the buffer range for connectivity based on the URT station centre, 
which led to lower accuracy in extracting integrated cycling data. In this studay, we created multi-ring circular 
buffer zones with the entries and exits of the URT stations as the centre, increasing the range of circular radius 
from 10 metres to 150 metres in steps, as shown in Figure 2. We extracted and statistically analysed the cycling 
data distributed within each buffer zone and calculated the corresponding increase in cycling frequency in each 
buffer zone. Combined with the catchment range defined in previous studies, we finally selected the 100-metre 
radius buffer zone around the entries and exits of each URT station as the integrated ridership.

Figure 2 – DBS access use with the multi-ring buffer zone around each entry and exit of Cuizhu URT station

URT station
Station entrance/exit
DBS bike cycling
Multi-ring buffer zone
URT line
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The independent variables are divided into five categories, including land use, public transport infrastructure, 
road facilities, dummy variables and socio-economic elements. These variables were extracted within an 
800-meter radius centred on URT stations. The land use variables were integrated using the POI data, including 
12 categories: catering, shopping, company, healthcare, sports & recreation, education, residential building, 
attraction, finance, life service, car service and hotel.

We hypothesise that different land use types will attract more users compared to a single type, leading to a 
higher demand for the integrated cycling [13]. Therefore, we added the entropy index of 12 land use types to 
measure whether the proportion of different land use types has an impact on the integrated use [39, 40]. It can 
be calculated as follows:

1
(( / ) ln ( / ))

ln ( )

n

ij j ij j
i

P P P P
E

n
=

⋅
= −
∑

 
(2)

where E represents land use mix entropy, which ranges from 0 to 1. The value of E is 0 when there is only 
one pattern of land use within an 800 m buffer of the station, and 1 when the proportions of different land use 
patterns are equal; Pij indicates the proportion of the ith land use pattern within the jth station zone; Nj denotes 
the number of land use patterns within the jth station zone.

The variables related to public transportation facilities include the number of bus stops, parking lots and 
URT stations within the buffer zone. Buses, as another mode of transport that connects with URT, compete 
with DBS to some extent. Cars, as the most popular choice for travel, affect the connection of DBS indirectly. 
And if there are multiple URT stations in the buffer zone, users will consider using the line for transfers 
directly, which may result in a decrease in the integration.

Regarding road facilities, we take the length of main and minor roads as two variables into account. In 
Shenzhen, main roads connect the city centre, urban areas, transportation hubs and administrative districts, 
with high traffic capacity and a design speed of over 40km/h. Minor roads are the roads that connect small-
scale areas such as communities and residential areas or branch roads that connect main roads, with poorer 
conditions and a design speed below 40 km/h.

In addition, we also consider two dummy variables: whether a URT station is a transfer station and whether 
it is in the suburbs, as well as three socio-economic factors: population density, gender ratio (percentage of 
males) and age ratio (percentage of people under 35). Transfer stations provide different URT line services, 
resulting in higher passenger flow compared to regular stations. The distribution of URT lines and stations is 
relatively sparse in suburban areas and the supply of surrounding DBS is lower, which will affect the integrated 
use. Population density is one of the important indicators for evaluating the traffic attraction and passenger 
flow of URT stations. It can explore potential integrated use demands. Gender refers to the percentage of males 
in the buffer zone. Age relates to the percentage of people under 35 years old. The descriptive statistics of these 
variables are shown in Table 2.

Table 2 contains 23 independent variables and it is essential to check for multicollinearity among them when 
using the model for regression. To eliminate multicollinearity, we will utilise the variance inflation factor (VIF) 
as a detection indicator. The formula for calculating the indicator is as follows.

2
1

1 i

VIF( i )
R

=
−  

(3)

where 2
iR  is the coefficient of determination of the linear regression model established by taking the ith independent 

variable as the dependent variable and other independent variables as the independent variables. The larger 
the VIF(i), the higher the correlation between the ith independent variable and other independent variables, 
indicating a more severe multicollinearity. If VIF(i)>10, it indicates the presence of a severe multicollinearity 
problem. According to the multicollinearity test results in Table 3, we have excluded these variables from the 
model, namely: life service, education and hotel.
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Table 2 – Descriptive statistics of the variables

Variables Description Mean Std. Min Max

Dependent variables

Morning access-
integrated use (MAU)

Number of access use within URT catchment 
areas at the morning peak (trips/hour) 50.09 42.79 2.75 229.61

Evening access-
integrated use (EAU)

Number of access use within URT catchment 
areas at the evening peak (trips/hour) 58.95 64.19 2.00 454.64

Morning egress-
integrated use (MEU)

Number of egress use within URT catchment 
areas at the morning peak (trips/hour) 59.09 56.69 4.50 386.68

Evening egress-
integrated use (EEU)

Number of egress use within URT catchment 
areas at the evening peak (trips/hour) 49.14 38.36 2.96 207.89

Land use

Entropy index Entropy of land use patterns in the 800 m 
buffer of the station 0.721 0.0620 0.407 0.854

Catering Number of restaurants 450.726 310.852 1 1389

Shopping Number of malls, supermarkets, etc. 613.579 539.826 5 2857

Company Number of companies and enterprises, etc. 318.184 294.243 11 1962

Healthcare Number of hospitals, clinics, etc. 80.853 52.843 0 241

Sports & Recreation Number of sports stadiums 61.437 41.539 0 239

Education Number of universities, libraries, etc. 51.716 45.587 0 271

Residential building Number of buildings, residential houses 110.895 62.013 4 351

Attraction Number of sports stadiums, cinemas, etc. 10.674 14.693 0 130

Finance Number of banks, ATM, etc. 48.963 54.418 1 313

Life Service Number of facilities for life service 312.853 194.858 6 1034

Car Service Number of facilities for car service 57.068 48.752 1 387

Hotel Number of hotels 51.716 45.587 0 271

Public transport infrastructures

Bus stop Number of bus stops 151.068 76.319 4 377

Parking lot Number of parking lots 18.263 7.436 5 48

Metro station Number of metro stations 1.742 0.930 1 5

Road facilities

Major road Length of major roads in the 800 m buffer of 
the station (km) 10.856 6.149 0 29.276

Minor road Length of minor roads in the 800 m buffer of 
the station (km) 17.061 7.672 1.672 49.513

Dummy variables

Transfer station 1 for transfer station, 0 for regular station
20.526% transfer station, 79.474% regular 

station

Suburban 1 for suburban, 0 for downtown 37.368% suburban, 62.632% downtown

Socio-economic elements

Population density Number of people in the 800 m buffer of the 
URT station (thousand people / km2) 28.729 20.993 2.161 115.955

Gender (% male) Percentage of males (%) 53.53% 2.15% 50.95% 58.55%

Age (% under 35 ) Percentage of people under 35 (%) 55.69% 3.37% 49.63% 63.34%

Notes: Std. = standard deviation.
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3.4 Methodology
The Geographically Weighted Regression Model

According to the research conducted by Anselin et al., the global ordinary least squares (OLS) model is 
considered the starting point for spatial regression analysis at a global scale [41]. However, the global OLS 
model fails to provide a clear explanation of the spatial relationship between DBS usage and built environment 
variables. To address this limitation, the Geographically Weighted Regression (GWR) model is introduced 
[42]. GWR is an extension of the global linear regression model that allows for the investigation of spatial 
heterogeneity in geographic variables [33, 43]. The GWR is formulated as follows:

1

k

i ij i i ij i
j

y ( u ,v )xβ ε
=

= +∑
 

(4)

where for the ith location, yi represents the integrated use of DBS, xij denotes the jth independent variables. βij is 
the jth local parameter. The coordinates of the centroid of location i are represents by (ui, vi), and εi denotes the 
error term. The parameter estimator can be presented in matrix form:

1ˆ [ ]T T
i i iX W X X W yβ −=  (5)

where X represents the matrix of independent variables, Y denotes the vector of dependent variables and Wi is 
the weight matrix associated with spatial locations.

Generally, compared with the OLS model, the GWR model has two main advantages. Firstly, the GWR 
model considers the spatial dependence effect of adjacent locations since nearby areas are often more similar. 
When analysing these areas using the GWR model, it violates the assumption of homoscedasticity [44]. 
Secondly, the GWR model can adjust the size of the study area to keep it stationary. If the study area is large, 
different parts of the study area may have different characteristics. The OLS model cannot reflect these non-
stationary conditions since it estimates a fixed set of regression coefficients for the entire study area [45].

The Multiscale Geographically Weighted Regression Model

The Multiscale Geographically Weighted Regression (MGWR) model is an enhanced version of the 
Geographically Weighted Regression (GWR) model, proposed by Fotheringham in 2017 initially [46]. MGWR 
is used to address the relationships among multiple variables in spatial data. Unlike GWR model, which can 
only handle a single response variable, MGWR model is more refined in addressing the relationships among 
multiple variables in spatial data by modelling response variables as a model to better capture the interaction 
relationships between them. The MGWR model can automatically select the optimal bandwidth size based on 
the characteristics of the data, reducing the interference of human factors and improving the accuracy of the 
model [47, 48]. It considers the heterogeneity and autocorrelation characteristics at different scales, enabling 
it to adaptively adjust parameters at different scales. Moreover, it can establish nonlinear relationships by 
introducing kernel functions and other methods to explore the nonlinear relationships in spatial data. This 
makes the MGWR model more capable of modelling complex spatial data relationships and capturing spatial 
heterogeneity. The MGWR model can be mathematically represented as follows:

Table 3 – The multicollinearity test results

Variables p VIF Variables p VIF Variables p VIF

Catering 0.002 8.753 Entropy index 0.490 2.261 Population density 0.447 2.086

Company 0.867 3.390 Major road 0.947 2.288 Gender (% male) 0.439 5.764

Shopping 0.008 5.161 Minor road 0.556 1.448 Age (% under 35 ) 0.104 5.133

Suburban 0.400 6.897 Bus stop 0.005 2.010 Transfer station 0.006 1.302

Finance 0.001 3.465 Parking lot 0.038 2.429 Residential building 0.600 4.342

Attraction 0.342 1.234 Healthcare 0.251 6.883 Sports & Recreation 0.007 5.070

Hotel 0.110 41.047 Metro station 0.228 1.782 Life Service 0.341 19.076

Education 0.061 44.203 Car Service 0.081 1.517
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(6)

where yi is the observed value of the dependent variable, xij,k represents the observed value of the kth independent 
variable at spatial location jth for the ith observation. βjk (ujk) is the coefficient of the kth independent variable at jth 
spatial location, uij is the distance between the ith observation and the jth spatial location and εi is the error term. 
The MGWR model can adjust the coefficients locally at different spatial locations, which allows it to capture 
spatial heterogeneity more accurately in spatial data.

4. RESULTS AND ANALYSIS
4.1 Temporal and spatial variation of DBS-URT use

Figure 3 displays the access-/egress-integrated use of the catchment area of URT stations within a week. 
Overall, it shows a clear peak trend in the morning and evening on weekdays, indicating that the integrated 

a) Access-integrated use

b) Egress-integrated use

Figure 3 – Temporal distribution of DBS use in URT catchment area

Hour

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

35000

30000

25000

20000

15000

10000

5000

0

A
cc

es
s-

in
te

gr
at

ed
 u

se

35103

25145

Evening peak
9442 trips/h

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

35000

30000

25000

20000

15000

10000

5000

0

Eg
re

ss
-in

te
gr

at
ed

 u
se

35739

25883

Evening peak
11320 trips/h

Hour

—— Wednesday     —— Thursday     —— Friday     —— Saturday
—— Sunday     —— Monday     —— Tuesday

Morning peak
11293 trips/h

Morning peak
9594 trips/h



Promet ‒ Traffic&Transportation. 2023;35(6):886-903.  Human – Transport Interaction

895

bikes are mostly used for commuting, which is consistent with previous research [28, 49]. Descriptive results 
show that the average usage of DBS-URT bikes for accessing during the morning peak period is 28.9% higher 
than that during the evening peak period, with the highest level of access usage at around 7:00 a.m., reaching 
3.5103 trips/h. On the other hand, the average usage of DBS-URT bikes for egressing during the morning 
peak period is 7.6% lower than that during the evening peak period, with the highest level of egress usage 
at around 8:00 a.m., reaching 3.5739 trips/h. This suggests that most users arrive at the URT stations at 7:00 
a.m. for transfer behaviour by cycling DBS, and the users who leave the URT stations by transferring to DBS 
at 8:00 a.m. account for a large proportion. However, the usage of integrated bikes reached its maximum for 
both access and egress on Friday, with 22.0633 trips and 22.2427 trips, respectively. This is presumably since 
people tend to stay at home or travel further away on weekends. In contrast, the usage of integrated bikes 
on Monday, as a working day, was relatively low this week. After checking the calendar for 5 April 2021, in 
Shenzhen, we found that it was Tomb-Sweeping Day, which led to the lowest trips this week, reaching 7.5327 
trips.

Figure 4 presents the spatial distribution of the access-/egress-integrated use of DBS within a 100-meter 
buffer zone using kernel density analysis. Based on the statistical analysis, the pattern of DBS usage for access 
and egress is roughly similar. Firstly, the number of bikes in the suburbs is significantly lower than that in the 
central urban areas, such as Luohu and Futian Districts, which have dense URT stations. The density of transfer 
cycling is generally higher in areas with dense URT stations, compared to those in the suburbs with sparse 
URT stations. The lack of URT stations in suburban areas forces residents to ride long distances to reach the 
stations, leading to lower awareness of DBS bikes for transfer. Conversely, the central urban area has a high 
density of URT stations, leading to more DBS-URT transfer and cycling around the stations. Secondly, there 
are hotspots of DBS transfer in non-central urban areas, such as Baoan Station on Line 1, Longhua Station 
on Line 4, and other employment and commercial centres. For instance, Baoan Station is surrounded by the 
Baoan Centre, attracting many office workers who choose to use DBS to travel to the nearest URT station from 
their workplace, thereby improving the utilization rate of DBS in this area. However, in the south of Longhua 
District, where the pressure of high rent in the centre forces more office workers to purchase houses in suburbs 
closer to the city with more convenient transportation, the transfer volume is higher than in other areas.

a) Access-integrated use b) Egress-integrated use

Figure 4 – Kernel density of DBS use in URT catchment area

As of 2021, there were a total of 239 URT stations in Shenzhen. Based on the access-/egress-integrated 
use of DBS in the catchment area in Figure 4, some URT stations, such as the Airport station, Shenyun station 
and other stations located at important transportation hubs or suburban parks, had relatively low daily demand 
using DBS for transfer, with less than 144 vehicles per day. To eliminate errors caused by this data and improve 
the effectiveness of results, these stations were excluded, resulting in a final sample of 190 stations.

4.2 Model comparison
After conducting a thorough review of the literature, we found that commonly used indicators for evaluating 

geographical regression models include goodness of fit, parameter significance, multicollinearity and residual 
analysis. In this study, we utilised three types of indicators to evaluate the performance of the regression 
models: Akaike Information Criterion (AIC), R-squared (R2) and Residual Sum of Squares (RSS) [50, 51]. AIC 
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is used to balance the fit of the model with its complexity, with lower values indicating better performance. R2 
measures the extent to which the model explains the variation in the data, with values closer to 1 indicating 
better explanatory power. RSS is used to measure the fit of the model, with lower values indicating a better fit.

As shown in Table 4, both the GWR and MGWR models outperform the OLS model when analysing the 
usage of DBS in terms of the three indicators. This result is consistent with previous research [33]. The reason 
for this is that the two models account for spatial heterogeneity and spatial autocorrelation, which solves the 
problem of spatial non-stationarity that the OLS model cannot handle, resulting in more accurate regression 
results. The table also indicates that the MGWR model performs better than the single GWR model for the 
four dependent variables, with a proportion of decrease in AIC and RSS values ranging from 11.61% to 

Table 4 – Comparison of the goodness of fit for the proposed models

Model
MAU MEU EAU EEU

AIC R2 RSS AIC R2 RSS AIC R2 RSS AIC R2 RSS

OLS 481.4 0.415 111.2 482.3 0.412 111.7 472.3 0.442 105.9 494.2 0.374 118.9

GWR 411.8 0.718 53.54 383.7 0.759 45.72 373.6 0.777 42.41 450.5 0.591 77.76

MGWR 338.2 0.826 33.11 339.1 0.817 34.68 320.4 0.825 33.18 387.3 0.753 46.95
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17.86% and 21.76% to 39.61%, respectively. In addition, the increase in R2 ranges from 6.18% to 27.41%. 
These findings suggest that the fitting performance of the MGWR model is significantly better than that of the 
single GWR model. The MGWR model can provide an optimal bandwidth for different independent variables 
by considering changes in the scale of the influence between variables, ultimately leading to better results. 
Therefore, subsequent analysis will only present the model results of the MGWR.

Figure 5 reveals that that the bandwidth of independent variables in the GWR model is uniform, indicating 
that the spatial influence scale of each independent variable has not been considered. In contrast, the MGWR 
model considers the spatial heterogeneity of independent variables by adaptively adjusting the bandwidth 
based on the influence scale of each in dependent variable at each spatial location. This approach can better 
capture the spatial relationships among independent variables and improve the fitting performance of the 
MGWR model.

For the four types of dependent variables, namely the number of parking lots, catering and recreation, their 
bandwidths are close to the regional scale, indicating that they have a regional-scale impact on DBS ridership 
within a specific geographic area. The bandwidth of bus stop density is larger and closer to the sample size, 
indicating a relatively uniform and similar spatial influence, which means a smaller spatial heterogeneity.

For morning access-integrated use, the number of transfer stations, healthcare and shopping have relatively 
large bandwidths with small heterogeneity. The bandwidth length of finance density is close to the regional 
scale, indicating its spatial impact is local. For morning egress-integrated use, the number of transfer stations, 
shopping and finance have relatively small bandwidths, indicating that their impacts on DBS usage are more 
localised and specific. Age affects the overall use of bicycles at the regional scale. 

For evening access-integrated use, the number of significant variables is lower than the other three usage 
segments, indicating that the usage during the evening peak period is less affected by surrounding environmental 
factors. For evening egress-integrated use, the number of metro stations, transfer stations, shopping and finance 
have global-scale impacts on DBS integrated use, while gender has a regional-scale impact on DBS integrated 
use.

4.3 Analysis of spatial influence at multiple scales
Table 5 presents the regression results of the MGWR model for the relationship between the integrated use of 

DBS-URT and multiple factors during the two peak periods of station entry and exit. The estimated mean and 
significance of explanatory variables vary with travel purpose and urban spatiotemporal structure for different 
riding behaviours.

Figure 6 displays the regression results of the MGWR model for the relationship between the number of 
catering establishments near URT stations and the integrated use of DBS with URT for commuting during 
the morning and evening peak periods. The results demonstrate a significant positive correlation between 
the number of catering establishments and DBS-URT access integrated use in the morning peak, while a 
significant negative correlation exists between the number of catering establishments and DBS-URT egress 
integrated use in the evening peak. The coefficient distributions for morning access integrated use and evening 
egress integrated use are presented in Figures 6a and 6d, respectively.

The figures reveal that during the morning peak period, high coefficient values for access integrated use 
are concentrated around URT stations in urban areas such as Futian, Luohu and Nanshan. It indicates that the 
presence of numerous catering establishments in these areas prompts individuals to use DBS as a connecting 
mode of transport after having breakfast, facilitating their access to URT. This choice alleviates morning 
commute congestion issues, establishing a positive correlation between access-integrated use and the number of 
catering establishments. Conversely, the coefficient values for evening egress integrated use are comparatively 
lower, indicating a negative correlation. It suggests that during the evening peak period, individuals prefer 
direct homeward travel rather than utilising DBS for transfers at catering establishments near URT stations. 
The availability of various transportation options, such as private cars or direct metro transfers, contributes 
to this preference. Consequently, the negative correlation between egress integrated use and the number of 
catering establishments signifies a tendency towards more direct and diverse commuting options during the 
evening.
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Impacts of urban land use

In the morning peak, there is a positive correlation between residential building and access-integrated use, 
while in the evening peak, there is a positive correlation between residential building and egress-integrated 
use. This suggests that people in areas with a higher proportion of residential land use are more likely to choose 
DBS bikes as their intermodal transportation mode. DBS bikes are widely distributed in this area, relatively 
low in cost and suitable for short-distance travel. Therefore, commuters may choose to ride DBS bikes for 
short trips during the morning rush hour from their residence to the subway station and during the evening rush 
hour from the subway station to their residence.

When there are multiple companies located in the attachment, the results show a negative correlation 
between the number of companies and the access-integrated use in the morning peak. This implies that an 
increase in the number of companies in the attachment leads to a lower usage of DBS by commuters for 
ridership. One reason for this is that areas with a higher concentration of companies are typically focused on 

Table 5 – Modelling results of multiscale geographically weighted regression

Variable

Morning Evening

Access use (MAU) Egress use (MEU) Access use (EAU) Egress use (EEU)

coef. p coef. p coef. p coef. p

Intercept -0.151 0.352 -0.160 0.159 -0.110 0.606 -0.151 0.131

Land use

Entropy index 0.354 0.182 0.208 0.102 0.207 0.328 0.274 0.106

Catering 0.043 0.049** -0.007 0.319 0.084 0.370 -0.034 0.048**

Shopping -0.184 0.185 -0.025 0.457 0.060 0.061* 0.145 0.089*

Company -0.190 0.064* -0.058 0.438 0.049 0.586 -0.246 0.206

Healthcare -0.011 0.311 0.067 0.498 0.049 0.526 0.017 0.222

Sports & Recreation 0.158 0.172 0.049 0.736 0.006 0.741 0.226 0.149

Residential building 0.106 0.083* -0.004 0.714 -0.016 0.644 0.085 0.015**

Attraction -0.079 0.285 0.068 0.406 0.002 0.619 -0.066 0.524

Finance 0.000 0.237 0.048 0.391 0.000 0.752 -0.055 0.535

Car Service 0.094 0.119 0.049 0.322 0.056 0.351 0.048 0.299

Public transport infrastructures

Bus stop -0.050 0.086* -0.055 0.067* -0.051 0.093* -0.078 0.078*

Parking lot 0.158 0.245 0.148 0.196 0.132 0.186 0.193 0.195

Metro station -0.068 0.258 -0.126 0.268 -0.073 0.432 -0.105 0.226

Road facilities

Major road -0.057 0.281 -0.088 0.357 -0.057 0.358 -0.067 0.431

Minor road 0.072 0.063* 0.049 0.141 0.050 0.079* 0.073 0.163

Dummy variables

Transfer station 0.388 0.163 0.473 0.007*** 0.395 0.005*** 0.608 0.002***

Suburban 0.208 0.425 0.275 0.197 0.249 0.096* 0.362 0.113

Socio-economic elements

Population density 0.606 0.372 0.702 0.137 0.752 0.084* 1.101 0.062*

Gender (% male) 0.010 0.256 0.273 0.329 0.180 0.216 0.008 0.103

Age (% under 35) -0.154 0.365 -0.046 0.550 -0.097 0.561 -0.301 0.373

Note: *** p<0.01, ** p<0.05, * p<0.01
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office use, with a lower proportion of residential land. Additionally, some offices are in suburban areas, making 
it inconvenient for most commuters to use DBS bikes to transfer to subway stations during the morning peak. 
As a result, most commuters do not choose to ride DBS bikes to the subway station during this period, which 
contrast with the impact caused by residential building.

For shopping, a positive correlation exists between shopping and access, egress integrated use in the evening 
peak. The URT stations near shopping areas serve as transportation hubs for people to ride DBS bikes around 
the station. On the one hand, consumers can take the metro to stations near the shopping areas and then ride to 
nearby malls. On the other hand, there may be more traffic congestion near shopping areas during the evening 
peak period. So, riding DBS bikes to the URT stations will become a way to avoid congestion and reach the 
URT station quickly, thereby increasing the comprehensive usage.

Impacts of traffic facilities

For public transportation facilities, the number of bus stops around metro stations is negatively correlated 
with the DBS-URT integrated use, indicating that an increase in bus stops may lead to a decrease in the usage 
of integrated DBS bikes. On the one hand, an increase in bus stops around metro stations may spread out 
users who choose DBS bikes as a means of access and egress the metro, making them more likely to choose 
buses instead of bikes. On the other hand, it may lead to an increase in road traffic flow, making cycling more 
dangerous and uncomfortable. In addition, it may also affect the conditions for bike access and egress, for 
example, the setting of bus stops may occupy bike lanes, reducing the convenience and safety of cycling. These 
results are consistent with previous studies [49].

For road facilities, minor roads have a positive impact on the DBS integrated use as a transportation mode 
for metro connections. Main roads are usually the roads with high traffic flow in the city. As a connecting 
transportation mode, DBS bikes travelling on main roads will slow down, leading to an increase in the cost 
of connecting transportation. Furthermore, metro stations are often located on major roads in the urban area 
and passengers can take the metro or bus without using DBS bikes for transfers. However, minor roads can 

 
 

  
a) Morning access-integrated use    b) Morning egress-integrated use 

 

  
c) Evening access-integrated use    d) Evening egress-integrated use 

 
Figure 6 – Spatiotemporal effects of estimated coefficients associated with catering
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provide more convenient cycling conditions for riders, such as smaller traffic flows and lower speed limits, 
which will present a safer and more comfortable cycling experience. When minor roads set efficient bike lanes 
or DBS parking facilities, they can make important conditions and attract more riders to use bikes as a mode 
for transfers.

Impacts of other elements

For other elements, when a metro station is a transfer station, it has a significant positive impact on the 
DBS integrated use (excluding MAU). If that is the case, it usually has more passengers getting on and 
off, meaning more travellers need a mode of transport to reach their destinations or to transfer from other 
locations to the metro station. In this case, DBS bikes become a more attractive option. As shown in Table 4, the 
population density around metro stations in the evening peak is correlated with the integrated use positively. 
The catchments with higher population densities usually have more passengers commuting or travelling in 
short distances, which will increase their likelihood for using DBS bikes to transfer with URT. Besides, high-
density attachments may have more traffic congestion and parking problems, which also make people more 
likely to choose DBS bikes as a metro access mode to avoid these issues.

5. CONCLUSIONS
DBS is a promising mode of transportation for urban sustainable development, which is gaining popularity 

in cities worldwide. Integration of DBS and URT provides new opportunities for sustainable transportation, 
efficiently solving the “last mile” problem and benefiting society. This study, based on DBS data in Shenzhen, 
uses multiple spatial regression models to explore the multiscale spatiotemporal relationships between 
environmental factors around URT stations and integrated use. The main findings of this study can be 
summarised as follows:
1) Temporally, the integration of DBS and URT reaches two peak usage periods during the morning and 

evening rush hours on workdays. During the morning peak period, transfer behaviour for commuting 
purposes is more frequent, with an access use 28.9% higher than that during the evening peak period, and 
an egress use 7.6% lower than that during the evening peak period. Spatially, areas with dense employment 
and commercial centres attract more users to utilise DBS as a transfer tool for URT, while the usage of 
connecting bicycles in remote suburban areas shows a cold spot distribution pattern.

2) The MGWR model and GWR model can both solve the problem of spatial non-stationarity in the OLS 
model. However, the GWR model has limitations in under-standing spatial heterogeneity and multiple 
comparisons. In contrast, the MGWR model considers the effects of spatial heterogeneity and the differences 
of variable scale, which can better characterise spatial relationships and improve prediction accuracy. 
Therefore, the MGWR model is more reliable and effective than the other two models when analysing the 
relationships between the environmental factors and DBS-URT integrated use.

3) The number of catering establishments, residential buildings and minor roads is positively correlated with 
the MAU, while the number of companies and bus stops is negatively correlated. The overall correlation 
between the MEU and environmental factors is relatively weak, with a negative correlation with the 
quantity of bus stops and a significantly positive correlation with whether the station is a transfer station. 
The EAU shows a positive correlation with the quantity of shopping, minor roads, whether the area is 
suburban, whether the station is a transfer station, and population density, but a negative correlation with 
the quantity of bus stops. Factors that are positively correlated with EEU include shopping, residential 
buildings, population density and whether the station is a transfer station, while factors that are negatively 
correlated include catering establishments and bus stops.

The in-depth analysis of multiscale relationship between environmental factors and the integrated use 
can help managers better understand the usage needs and preferences of city residents for DBS as a transfer 
mode between DBS and URT. This can facilitate the development of more precise transportation planning 
and policies, thus improving the efficiency and sustainable development of urban transportation. Additionally, 
since the integrated use can be categorised as access and egress and the usage level varies dynamically between 
peak and off-peak periods, our research results can be used to adjust the DBS supply dynamically according to 
different time periods. Finally, we can allocate DBS bikes according to the characteristics of different facilities 
around URT stations to promote the transfer between DBS and URT and better solve the “first mile” and the 
“last mile” problem.
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This study still has some limitations. The integration data we used were divided into only two time periods: 
the morning and evening peak, without considering the differences between weekdays and weekends. There is 
also room for improvement in the method used to extract connection data, which may result in error that does 
not reflect the use of DBS as a transfer tool. In terms of environmental factor analysis, we did not consider the 
impact of natural factors such as terrain on DBS integration travel. Therefore, future research needs to explore 
further on this basis.
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探究环境因素对无桩共享单车和城市轨道交通综合使用的多尺度影响

摘要：
无桩共享单车（DBS）是城市交通中“最后一公里”问题的有效解决方案。它可以
与城市轨道交通（URT）相结合，为乘客提供更便捷的出行服务。本研究关注深
圳市DBS和URT的综合利用，采用多缓冲区方法在URT站点的覆盖范围内识别DBS数
据。通过采用普通最小二乘（OLS）、地理加权回归（GWR）和多尺度地理加权回归
（MGWR）模型，研究了综合利用的时空异质性及其与URT站点周围环境因素的关系。
实证结果表明，与OLS和GWR模型相比，MGWR模型在准确解释空间关系方面具有优
势。此外，研究揭示了建成环境因素在早晚高峰期以及出入口方面对综合利用的影
响存在差异。具体而言，餐饮、购物、公司、居住建筑、公交车站、次干道、换乘
站和人口密度等因素被发现对DBS和URT的综合利用产生影响。这些发现不仅有助于
促进DBS-URT的综合使用，还促进了城市交通的整体发展。
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