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Approximate calculation of circular reinforced concrete columns with 
nomograms

Calculating the reinforcement of circular reinforced concrete (RC) columns involves not 
only the dual nonlinearity of the geometry and material but also the nonlinearity of the 
section width. Accurate solutions require iterative calculations. To develop the calculation 
method manually, the model column method was proposed to compute the second-order 
effect of the columns, and the strain method was used to calculate the ultimate strength 
of the sections analytically. The nomograms required to calculate the reinforcing steel 
content of the columns without iterations were obtained. The nomogram for calculating 
the section bearing capacity and reinforcing steel has three parameters (axial force, 
bending moment, and mechanical ratio of the reinforcing steel). Further, the nomogram 
for calculating the column bearing capacity and reinforcing steel has five parameters 
(axial force, bending moment, curvature, slenderness ratio, and mechanical ratio of the 
reinforcing steel), and the relationship between the five parameters can be expressed 
in a plan, which makes the application convenient. Finally, the calculation results of the 
nomograph were compared with those of the existing approximate calculation formulas 
and exact numerical methods, and the accuracy of the nomograms was verified.
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Prethodno priopćenje

Li Lu, Zhou Dong-hua, Shuang Chao

Približni proračun kružnih AB stupova uz pomoć nomograma

Proračun armature kružnih AB stupova uključuje ne samo dualnu nelinearnost geometrije 
i materijala, već i nelinearnost širine presjeka. Precizna rješenja zahtijevaju iterativne 
proračune. Da bi se ručno izradila metoda proračuna, predložena je metoda modela stupa 
kako bi se izračunao učinak drugog reda stupova, a metoda deformacije primijenjena 
je kako bi se analitički izračunala granična nosivost presjeka. Dobiveni su nomogrami 
potrebni za proračun količine armature u stupovima bez iteracije. Nomogram za proračun 
kapaciteta nosivosti presjeka i količine armature ima tri parametra (uzdužnu silu, moment 
savijanja i mehanički koeficijent armiranja). Nadalje, nomogram za proračun kapaciteta 
nosivosti stupa i količine armature ima pet parametara (uzdužnu silu, moment savijanja, 
zakrivljenost, koeficijent vitkosti i mehanički koeficijent armiranja), a odnos između tih 
pet parametara može se izraziti nacrtom zbog čega je ta primjena prikladna. Naposljetku, 
rezultati proračuna koje prikazuje nomograf uspoređeni su s onima koji su dobiveni 
postojećim formulama za približan proračun te s onima koji su dobiveni točnim numeričkim 
metodama, pa je tako potvrđena točnost nomograma.

Ključne riječi:

kružni AB stup, učinak drugog reda, elementi izloženi tlaku i savijanju, proračun armature, nomogram
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1. Introduction 

To compute the resistance of circular RC sections, a widespread 
practical approach for analyzing and designing sections is based on 
using an interaction diagram [1]. The circular RC section resistance 
calculation using the simplified formulae in EC2 requires iterations 
[2]. Interaction diagrams and formulas are constructed using 
computer-aided numerical programs [3]. A closed-form compact 
formulation does not require a numerical solution of the proposed 
equilibrium equation [4]. Without considering the second-order 
effect, calculating the strength of a circular RC section becomes 
extremely complicated. The second-order effect of columns 
subjected to a combined bending moment and axial force cannot be 
ignored because the slenderness ratio increases and bearing capacity 
of the columns decreases [5]. Therefore, two methods based on the 
nominal stiffness and curvature were suggested [2, 6]. Moreover, 
several methods have been proposed for calculating the ultimate 
resistance and ductility of rectangular RC columns [5, 7-16], and a 
simplified analytical relationship between the bending moment and 
curvature of circular RC cross sections has been proposed [17, 18].
This study aimed to provide calculations for circular RC columns 
without computer iterative and numerical calculations. The 
strain method adopted in this study [19], that is, the stress and 
resistance, can be calculated according to the known strain and 
constitutive relationship of concrete and reinforcing steel without 
any simplified or iterative calculations. In addition, the exact 
relationship between the bending moment and curvature can be 
computed, and the deflection and ductility of the columns can 
be determined from the strain of the cross-sections. Hence, it 
calculates the reinforcing steel and second-order bending moment 
of circular RC columns manually, possibly because the internal 
cross-sectional resistance is associated with the external load 
action. A comparative analysis was performed using approximate 
formulas [4] for the resistance of the sections. Using concrete 
examples, the resistance calculation method (nomogram) for 
circular RC columns considering the second-order effect was 
compared with the exact numerical method, and the accuracy of 
the nomogram was verified. The proposed nomogram effectively 
determined the initial section of the columns at the preliminary 
design stage and verified the section at the verification stage. 
In this study, the first-order calculation of the sections exhibits 
some similarities with the calculation methods in references 
[19-21], and the second-order calculation of the columns 
exhibits some similarities with [22].

2. �Calculation of second-order deflection and 
second-order bending moment of columns 

2.1. Model column that considers the second-order 
effect

As shown in the method based on the nominal stiffness in EC2, 
the key to calculating the deformation is to determine the change 
in the section stiffness (EI). The section parameters, such as 

depth, width, and reinforcing steel, must be known to calculate 
the section stiffness, and the reinforcing steel of the section 
is an unknown quantity. Therefore, the key to calculating the 
section stiffness is to determine the distribution and magnitude 
of the curvature. Therefore, a cantilever column was selected 
as the representative model column for the calculations (model 
column shown in Figure 1).

Figure 1. �Column calculation diagram (model column: a cantilever 
column)

As shown in Figure 1, M2 is the total bending moment at the 
fixed end of the column, M1 is the first-order bending moment, 
∆M is the second-order bending moment, and e1, De and e2 
refer to the first-order, second-order, and total eccentricities, 
respectively.
Assuming that the curvature distribution curve along the length 
of the column is a parabola and that the curvature of the section 
at the fixed end of the column is Φ, the calculation formula is 
shown in Eq. (4). Using the bending moment area method, ∆e 
can be computed as follows:

	 (1)

Then, M2 at the fixed end of the column can be computed as 
follows:

	 (2)

The actual length of the cantilever column is replaced by the 
effective length l0, e.g. (l0 = 2l), because any column can be 
isolated from structures [23], and it becomes an independent 
single column base on the equal effective length l0. Eq. (2) can 
be used to calculate the second-order deflection and second-
order bending moment caused by the P-Δ (sway frame) and P-Δ 
(non-sway frame) effects of any column in the structure and the 
magnitude of the P-Δ and P-δ effects is therefore determined 
by the effective length l0. 
The total bending moment M2 can be obtained using Eq. (2), and 
the dimensionless bending moment m2 is computed as follows:

	 (3)

In Eq. (3): m2 = m1+∆m, φ = Φd. Eq. (3) is a linear equation with 
the dimensionless curvature φ as the independent variable; its 
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intercept is m1 (dimensionless first-order bending moment), and 
its slope is -0,104 · n · (l0/d)2, as shown in Figure 2. If an additional 
coordinate axis of  · l0/d is added to the right side of Fig. 2, 
the slope can be directly determined using  · l0/d. Figure 2 
shows part of the reinforcing steel calculation diagram. 

Figure 2. Second-order eccentric distance of external effect

As shown in Figure 2, if m1 and  · l0/d are known, an oblique 
straight line can be determined. The dimensionless second-
order bending moment ∆m equals to the increment of the 
oblique line, which increases with the dimensionless curvature 
φ. However, φ cannot exceed the dimensionless ultimate 
curvature φu and φu varies with M2, N and reinforcing steel of the 
section. In summary, ∆m is controlled by φu of the section.

3. �Calculation of ultimate curvature and 
resistance of sections

3.1. Strain distributions of concrete and reinforcing steel

Based on the geometric relationship between the strain shown 
in Figure 3 and plane hypothesis, the section curvature Φ can be 
computed as follows:

	 (4)

After making Φ in Eq. (4) to be dimensionless, we obtain:

	 (5)

where εc1, εc2 and d are the upper edge strain, lower edge 
strain, and diameter of the sections, respectively, as shown in 
Figure 3.
The section resistance and dimensionless ultimate curvature φu 
of the sections are computed using the known section ultimate 
strains. According to EC2, the ultimate compressive strain of 
concrete and tensile strain of reinforcing steel is -3.5 ‰ and 
20 ‰, respectively. Therefore, all the strain distributions in the 
section can be determined and divided into five zones. In each 
zone, at least one fiber in the section depth reached the ultimate 

compressive strain of the concrete or the ultimate tensile strain 
of the reinforcing steel (Figure 3).

Figure 3. �Circular reinforced concrete cross-section: geometry and 
ultimate strain distributions

Zone 1 (Rotation around point A)
The neutral axis falls from infinity above the section to the upper 
edge of the section. The stress state transitions from uniform 
tension to tension with small eccentricity. At the left boundary 
of the region, the strain distribution represents uniform tension, 
at which the reinforcing steel strain on both edges of the section 
reaches the value of es = 20 ‰.

Zone 2 (rotation around point A) and Zones 3 and 4 (rotation 
around point B)
Part of the section was under compression, and the neutral 
axis moved gradually from the upper edge to the lower edge 
of the section. The load cases transitioned from tension with 
low eccentricity to tension with high eccentricity, pure bending, 
compression with high eccentricity, and compression with low 
eccentricity.

Zone 5 (rotation around Point C) 
This is a swept region where the right boundary line of region 4 
is rotated counterclockwise around point C to a vertical position 
(point C can be calculated from the geometric relationship 
between the top- and bottom-edge strains). The entire section 
was under compression, and the neutral axis moved from the 
bottom of the section to infinity below the section. The load 
cases in the region may be compressed with a small eccentricity 
and uniform compression.

The strain changed continuously from zone 1 to zone 5, and the 
corresponding load cases also gradually transitioned. 

3.2. Constitutive relationship

According to the constitutive relationship of RC in EC 2, the 
parabola-rectangular strain–stress relationship was adopted 
for the compression concrete, and the elastic–perfectly plastic 
strain–stress relationship was applied to the reinforcing steel 
(Figure 4). This study focused on concrete with a cylindrical 
characteristic strength fck less than or equal to 50 MPa, and the 
tensile strength of the concrete was neglected.
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Figure 4. �Constitutive relation of materials: a) concrete; b) reinforcing 
steel 

The mathematical expressions for the constitutive relationship 
between reinforcing steel and concrete in EC 2 are as follows:

	 (6)

	 (7)

In Eq. (6) and Eq. (7), εc, σc, fcd, εs, σs, εyd, fyd and Es are the 
compressive strain and stress, design compressive strength of 
the concrete, strain and stress of the reinforcing steel, design 
yield strength and yield strain of the reinforcing steel, and 
elastic modulus of the reinforcing steel, respectively. 

3.3. Stress and resistance of concrete

After determining the ultimate strain distribution of the section, 
the section resistance was calculated using the known strain.

Figure 5. �Circular reinforced concrete cross-section: geometry and strains

The strain at any depth within the cross-section can be 
calculated as: 

	 (8)

Substituting the value of εci from Eq. (8) into Eq. (7), the concrete 
stress σci at any fibre within the cross-section can be calculated, 
and the axial force and bending moment of concrete can be 
computed by the integration of stress over the cross-section.

	 (9)

Eq. (9) is a function of the strain at any depth within the cross-
section (εci). To obtain a more general dimensionless expression, 
the axial compression ratio nc and dimensionless bending 
moment mc of concrete can be computed as follows:

	 (10)

3.4. Stress and resistance of reinforcing steel

Assuming that the reinforcement is uniformly distributed at a 
distance rs from the center of gravity of the concrete section, the 
reinforcement area per unit radian is

	 (11)

The strain of the reinforcing steel bar can be easily obtained 
from the strain relationship shown in Figure 5. The strain of 
the reinforcing steel at any fiber in the cross section can be 
calculated as:

	 (12)

Substituting the value of εsi (ϕ) from Eq. (12) into Eq. (6), the 
stress of the reinforcing steel of σsi (ϕ) at any fibre of cross-
section can be computed, and the axial force and the bending 
moment of the reinforcing steel can be obtained by integration.

	 (13)

Eq. (14) for dimensionless proceedings is established as follows. 
The compression ratio ns and dimensionless bending moment 
ms of the reinforcing steel can be obtained as:

	 (14)

In Eq. (14), ω (the mechanical ratio of the reinforcing steel) is 
defined as follows:

	 (15)

3.5. Resistance of the full section

The dimensionless resistance of the section is the sum of the 
dimensionless resistances of concrete and reinforcing steel. 
The strain εci and εsi at any depth in the cross-section can 
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be determined using the section strain εc1 and εc2. The axial 
compression force ratio n and dimensionless bending moment 
m of the section can be expressed by εc1, εc2 and ω:

	 (16)

The two equations in the Eq. (16) are nonlinear, and each 
equation contains three independent variables: εc1, εc2 and ω. 
When calculating the cross-section resistance, the values of εc1 
and εc2 can be obtained according to Figure 3. 

3.6. �Interaction between dimensionless moment, 
normal force, and reinforcing steel

Figure 6 can be adopted to compute the reinforcing steel of 
circular RC sections. When ω and n are known, the ultimate 
strains εc1 and εc2 can be obtained from the first equation of 
Eq. (16) and ultimate strain distribution of sections shown 
in Figure 3. The dimensionless ultimate bending moment 
mu can be calculated using the second equation of Eq. (16). 
The corresponding relationship between n, ω, εc1, εc2 and mu 
is obtained. Therefore, considering ω a constant value, n the 
abscissa, and the dimensionless ultimate bending moment mu 

the ordinate, all curves shown in Figure 6 are drawn.

Figure 6. �Relationship between the ultimate dimensionless bending-
moment and reinforcing steel ratio

Figure 6 shows that the calculation method used in this study 
is very close to the approximate formula calculation results [4], 
which verifies the correctness of the calculation method used 
herein. Figure 6 shows a part of the nomogram adopted to 
calculate the reinforcing steel of the circular RC columns. The 
ordinate m in Figure 6 represents the resistance of the sections, 
which corresponds to the effect of the action shown in Figure 2.

3.7. �Interaction between dimensionless normal 
force, ultimate curvature, and reinforcing steel

When the mechanical ratio of the reinforcing steel ω is known, the 

ultimate deformation capacity (dimensionless ultimate curvature 
φu) varies with axial compression force ratio n. Therefore, the 
relationship between n and φu must be considered. 
Given the limit strains εc1 and εc2, in accordance with Figure 3, Eqs. 
(5) and Eq. (16) can be used to compute φu, n and m, and analyze 
their relationships. By setting n as the ordinate and φu as the 
abscissa, the curves of the exact relationship between φu and n 
can be drawn, as shown in Figure 7. The results calculated using 
the simplified calculation formulas for EC2 are shown in Figure 7.

Figure 7. �Relationship of axis force ratio and dimensionless ultimate 
curvature

In Figure 7, the exact relationship between φu and n is nonlinear; 
however, the equations in EC2 are linear and significantly 
different from the exact results.

3.8. �Interaction between dimensionless moment, 
ultimate curvature and normal force

According to the relationship between φu, n, mu and ω in Figure 7, 
the abscissa in Figure 7 is replaced with φu that calculated using 
Eq. (5), as shown in Fig. 8.

Figure 8. �Relationship between the dimensionless total eccentricity 
and dimensionless ultimate curvature
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The following points can be obtained from Figure 8:
-- When n is fixed, m is increases proportionally by φu.
-- When ω is a constant, such as ω = 2, the larger the n, the 

smaller the mu and φu. This implies the deformation capacity 
and bending capacity of sections become smaller.

4. �Calculation of the mechanical ratio of reinforcing 
steel considering the second-order effects of 
columns

4.1. �Nomogram for the reinforcing steel calculation 
of columns 

First, Figure 8 and 2 overlap in the plan view because their 
two axes are the same. Knowing n, m1 and l0/d, the oblique line 
in Figure 2 can be used to represent the effect of the action, 
and the intersection point of the oblique line and the n curves 
in Figure 8 can be located by the given n. The ordinate of the 
intersecting points is the ultimate bending moment of the 
section mu, and the abscissa is the dimensionless ultimate 
curvature φu of the sections. In addition, the required mechanical 
ratio ω of the reinforcing steel can be determined using Figure 
6 because the figure has the same ordinate axis as Figure 2 
and 8. Figure 9 was drawn by combining three figures (Figure 
2, 6, and 8) to calculate the reinforcing steel and resistance of 
the columns, considering the second-order effect directly. The 
general application of Figure 9 is as follows:
-- Connect the origin and l0/d ·  to get line 1. 

-- From m1, draw line 2 parallel to line 1. 
-- From the intersection of n curve and line 2, draw a horizontal 

line 3.
-- m2 is obtained at the ordinate of line 3. 
-- From the abscissa of n, draw a vertical line 4 to meet line 3 to 

get an intersection, which is ω.
In addition, the effects of concrete shrinkage and creep were 
ignored in the analysis to avoid numerous nomograms that 
would depend on concrete shrinkage and creep.

4.2. Specifical examples for the nomogram (Figure9)

To determine the quantity of reinforcing steel required in a 
reinforced concrete circular column with dimensions of d = 600 
mm, rs = 270 mm and l0 = 18 m to resist the compressive force 
of N = -3200 kN and the first-order bending moment M1 = 300 
kN, where the second-order effect is to be considered. The 
design values of the concrete and reinforcing steel are: C30/37, 
fck = 30 N/mm2, fcd = 20 N/mm2, B500B, fyk = 500 N/mm2 and fyd 
= 435 N/mm2. First order dimensionless bending moment m1 is 
given by:

n is computed as:

Figure 9. Reinforcing steel and resistance calculation nomogram of circular RC columns

B500B
(fyd = 435 N/mm2)

rs / r = 0,9

Concrete fyd / fcd

C16/20 40,8

C20/25 32,6

C25/30 26,1

C30/37 21,8

C35/45 18,6

C40/50 16,3

C45/55 14,5

C50/60 13,1
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As shown in Figure 9, the origin and l0/d ·  = 22.570 are 
connected to obtain line 1. Based on m1 = 0.088, line 2 parallel 
to line 1 can be drawn. Line 3 is obtained by drawing a horizontal 
line through the intersection of n = -0.566 curve and line 2. The 
total dimensionless bending moment m2 = 0.419 can be found 
by the ordinate of line 3. Line 4 is obtained by drawing a vertical 
line through the intersection of line 3 and curves of the 
relationship between m and n. Then, ω can be obtained and the 
area of the reinforcing steel can be computed as:

 = 16174 mm2

The total bending moment is:

 = 1422 kNm

4.3. �Examples for comparing the nomogram and 
exact solution

The nomogram for RC columns with circular cross sections was 
further validated by comparison with the exact solution. This 

comparison confirmed the satisfactory accuracy of the 
nomograms. The maximum absolute errors  of the nomograms 
are shown in Figure 10. These results confirmed that the 
nomogram provided an excellent approximation of the exact 
method.

5. Conclusions

Based on the strain method, an analytical formula for calculating 
the reinforcement and bearing capacity of the circular section 
was derived, and the corresponding nomograms were as 
follows:
--  (first-order) interaction diagrams of the three parameters 

(n–m1–ω), from which the reinforcement ratio ω can be 
calculated from n and m1.

--  (second-order) interaction diagrams of the four parameters 
(n–m1–l0–ω), from which the second-order moment m2 and 
corresponding mechanical reinforcement ratio ω can be 
calculated from n, m1, and l0.

The greatest advantage of the method in this study is that the 
nonlinear calculation problem can be solved without iteration; 

Figure 10. �Comparison between the exact (dashed line) and nomogram (solid line) interaction diagrams for some RC columns with circular cross-
section: rs/r = 0,9, fyd = 435 N/mm2 
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that is, after providing the cross-section of the concrete and 
rebar, the stresses and internal forces can be computed from 
the strains, and all solutions in the entire ultimate strain range 
can be obtained.
All nomograms have a dimensionless form, which can be used 
for any diameter of the circular cross section and concrete 
strength classes of C50/60 and below, and exhibit strong 

practicability. The principle of this method can also be applied to 
high-strength concrete or fiber concrete.
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