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ABSTRACT 
The geotectonic environment of Central America provides the region with a high potential for 
harnessing geothermal energy, however, the use of this energy source continues to be scarce due 
to a variety of factors, including limited access to exploration-oriented resources. It is therefore 
a priority to generate information that facilitates the preliminary stages of geothermal projects in 
order to achieve a greater contribution of available renewable sources to the energy matrix. In 
this study, the MaxEnt model was employed to predict locations with geothermal potential in 
Honduras. The model incorporated the coordinates of 177 surface manifestations and utilized 
various predictors, including the distribution of volcanoes, geological formations, faults, 
aquifers, and surface temperature. These predictors were disaggregated into 23 environmental 
variables. A map with an adequate prediction precision (Area Under the Receiver Operating 
Characteristic Curve = 0.868) was generated, showing that except for the eastern central region 
of Honduras, the country has a significant prevalence of surface with high and very high 
probability of occurrence of geothermal manifestations. Among the variables analyzed, the 
occurrence of geothermal manifestations can be primarily attributed to the proximity to 
volcanoes in the region. 

KEYWORDS 
MaxEnt, Volcanoes, Lithology, Faults, Aquifers, Exploration, Geothermal, Honduras. 

INTRODUCTION 
Geothermal energy is heat that by conduction mechanisms through rocks and convective 

processes of water can be found in the subsoil and exploited through direct use or by 
transforming it into other forms of energy. The use of this renewable resource for power 
generation at a commercial level began in Italy at the early 20th century [1], [2], however, only 
approximately 15% of the estimated worldwide potential for geothermal power generation, 
which ranges between 70 to 80 GW, is currently being utilized [3].  

 
* Corresponding author 

mailto:javierg@upnfm.edu.hn
mailto:jcaceres@unah.edu.hn
mailto:eespinoza@upnfm.edu.hn
mailto:elisabeth.espinoza@unah.edu.hn
https://doi.org/10.13044/j.sdewes.d11.0464


García Reynaud, J., Cáceres Coello, J., et al. 
Mapping the Occurrence Probability of Geothermal…  

Year 2023 
Volume 11, Issue 4, 1110464 

 

Journal of Sustainable Development of Energy, Water and Environment Systems 2 

Geothermal energy represented only 0.51% of renewable energy globally in 2021. 
Although the contribution is low, the worldwide generation of geothermal energy increased 
13.9% from 2019 to 2021 [4].  

In Latin America, México has the largest installed capacity in geothermal energy, 
producing 951 MW, which contributes 1.14% of its energy matrix. Chile has incorporated this 
resource into the electricity generation network with 45 MW, which represents 0.17% of its 
installed capacity [5]. Central America, located in the ring of fire, with interaction between the 
Cocos plate subducting into the Caribbean plate, and the Caribbean and North American plates 
moving against each other in a strike-slip fault system; possesses a geotectonic setting that 
provides it with a significant potential for the utilization of geothermal resources, with depths 
ranging from 500 m to 3000 m capable of reaching temperatures of 200 °C to 300 °C [6]. El 
Salvador, Costa Rica, Nicaragua, and Guatemala are on the top 14 countries with the highest 
contribution of geothermal energy to their energy matrix; however, it is only possible to 
produce around 12% of their estimated potential [7]. Honduras had not utilized this resource 
for electricity generation until 2017, when a plant was established contributing 39 MW to the 
national grid. This capacity represents 1.3% of its total installed electricity generation 
capacity [5]. 

Considering the low environmental impact of the exploration, exploitation, generation, and 
distribution of geothermal resources [8], and in order to reduce pollution associated with the 
use of fossil fuels, geothermal energy is being promoted both to maximize its contribution to 
the energy matrix, as in low enthalpy projects aimed at direct uses, however, its inclusion is not 
proving so expeditious. The high exploration costs and the risk associated to unsuccessful 
searching for geothermal sites, the lack of regulatory clarity for the exploration and 
exploitation, and the difficulties of access to economic resources for the development of 
geothermal projects, constitute main limitations for the development of this field [9], [10]. 

In order to carry out a more effective exploration of existing geothermal resources and 
reduce their associated costs, methods have been proposed to improve pre-feasibility studies 
using open-access satellite information. In addition, techniques such as distribution models, 
which were originally developed for other disciplines, are being adapted for this purpose. 
MaxEnt is a machine learning model, commonly used to forecast species distribution [11], 
[12], which is also applicable to general problems in which a probability density function must 
be approximated based on parameters correlated with the presence of a species or the 
occurrence of a phenomenon [13], [14]. 

In recent decades, MaxEnt has become an important tool for diagnosing renewable energies, 
including biomass [15], [16], wind power [17], as well as solar, hydro, ocean, and geothermal 
sources[16], [18]. The use of distribution models for the identification of geothermal sites, 
yielded important benefits, such as the reduction of costs and time in exploratory processes, 
reduction of the risk associated with mining activity, and the generation of inputs for decision 
making. Likewise, global-scale maps have been developed and serve as valuable initial 
resources. However, their precision needs to be evaluated through regional models conducted 
by experts, and their estimations should be tested using various parameters and local data. [19]. 

In this study, MaxEnt was used to identify potential geothermal sites at a national scale in 
Honduras, Central America. For the training of the model, the location of surface 
manifestations of geothermal activity were introduced. The national distribution of aquifers, 
volcanic activity, faults, geological formations, and surface temperature were selected as 
predictor variables. A probability map of geothermal manifestations occurrence was generated 
and subjected to independent validation. This validation involved evaluating whether points 
indicating the presence of geothermal manifestations, which were not used for model training, 
are geographically located in the areas with the highest calculated probability of occurrence. 
The greatest contribution to the prediction of new presence points in the model is attributed to 
the proximity to volcanoes in the region.  
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MATERIALS AND METHODS 
The materials and methods for the modelling, selection of variables, evaluation of model 

performance, and preparation of the probability map are described below. 

Modelling 
Due to the nature of the variables selected for the prediction of geothermal manifestations, 

MaxEnt modeling software (version 3.4; 
https://biodiversityinformatics.amnh.org/open_source/maxent/) [20], [21] was used taking 
into account the following advantages: (1) for the training process of the model, it works with 
only positive examples (model of only presence), which consisted of the national inventory of 
geothermal manifestations [22]; (2) that it is capable of using continuous variables, such as the 
values of surface temperature and proximity to volcanoes and faults, and categorical variables, 
such as the characterization of geological formations and aquifers [23]; and (3) applications on 
a global scale have shown, after the model validation process, the potential to obtain adequate 
predictive power for geothermal manifestation sites [19]. 

Five geographic information layers: (1) hydrogeological map, (2) geological map, (3) 
surface temperature derived from Landsat-8 images, (4) volcanic activity, and (5) regional 
faults were disaggregated into 23 environmental variables. These layers were processed using 
techniques such as reclassification, radiometric calibration, and Euclidean distance in the 
QGIS geographic information system [24] (Figure 1). The resulting environmental variables, 
along with the locations of geothermal manifestations, were inputted into MaxEnt to generate 
the probability map. 

 
Figure 1. MaxEnt model workflow 

The acceptable threshold for model validation, in terms of percentage of data, for precision 
parameterization of MaxEnt has been found to be between 10 and 30% [25]. For this study, out 
of the 222 available points identified in the inventory of geothermal manifestations in the 
Republic of Honduras [22], [26], 177 points were randomly selected for model training, 
resulting in 45 points left out for model validation, representing 25% of the training data to 

https://biodiversityinformatics.amnh.org/open_source/maxent/
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ensure a good spatial representativeness at the national level. The distribution of the training 
and validation points is depicted in the sampling location of the geothermal manifestations map 
(Figure 2). The inventory of geothermal manifestations in the Republic of Honduras has been 
generated by the national energy authority and external collaborators through a comprehensive 
survey covering the entire territory. 

 

 

Figure 2. Sampling location of geothermal manifestations 

A total of six different models were conducted, varying the combination of introduced 
environmental variables and adjusting the parameters of features, iterations, and regularization. 
The aim was to identify the configuration that yielded the best performance, using the AUC 
statistic as the reference value. 

The Cloglog option was selected as output of the model, which provides an estimate of 
probability of occurrence between 0 and 1. 

Selection of variables 
A total of 23 environmental variables (Table 1) were derived from 5 layers of geographic 

information. This disaggregation was conducted to include all available attributes within the 
data for analysis, aiming to maximize entropy, that is, provide MaxEnt with sufficient input to 
determine the contribution of different data dimensions to the occurrence of geothermal 
manifestations. For instance, the geology layer contains not only lithological attributes but also 
information regarding the chronology of formations. Therefore, two distinct variables, 
lithology and chronology, were introduced to the algorithm from a single base GIS layer. 
Below is a description of all 5 layers of geographic information. 

Global Volcanic Activity: Volcanoes were chosen as predictors, considering their 
association with magma chambers, which serve as significant sources of geothermal energy. A 
map of volcanic activity [27] was used, which includes (1) volcanic fields, (2) stratovolcanoes, 
(3) shields, (4) pyroclastic shields, (5) pyroclastic cones, (6) Maar, (7) lava domes, (8) volcanic 
fissures, (9) complex volcanoes, (10) scoria cones, and (11) calderas.  
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Table 1. All environmental variables considered 

Variable 
code 

Geographic data included 
in variable 

Variable 
code 

(continued) 

Geographic data included in variable (continued) 

prstrvlc Volcanic field, 
Stratovolcano, Shield, 
Pyroclastic Shield, 
Pyroclastic cone(s),  Maar, 
Lava dome, Fissure vents, 
Complex volcano, Cinder 
cone, Caldera 

lit_gral Metamorphic; Plutonic; Sedimentary mixed, 
Sedimentary siliclastic, volcanic flow, volcanic 
tuff-pyroclastic 

prstrvlcvf Volcanic field lit_esp Andesitic and rhyolitic pyroclastic rocks, 
volcaniclastics; basalt and andesite flows and sills; 
basalt and andesite flows, pyroclastic rocks; boulders, 
cobbles, gravel, sand, mud; calcareous shales, 
limestones, marls, dolomites; granite, granodiorite, 
diorite, tonalite; heterogeneous redbeds, Jaitique 
limestone; muds with limestones and volcanic ash; 
redbeds with limestone and conglomerate; red-brown 
shales, thin limestones and sandstones; schist, phyllite, 
gneiss, quartzite, marble, quartz veins; shales, 
sandstones, coals; tan shales, sandstones, 
conglomerates; tuffs, andesites, pyroclastic rocks 

prstrvlcsv Stratovolcano crono Cretaceous; Cretaceos-tertiary; Jurassic- cretaceus; 
Quaternary; Quaternary-Tertiary; Tertiary; unknown 
(paleozoic) 

prstrvlcs Shield pclas_fault
 

Normal fault 

prstrvlcps Pyroclastic Shield pclas_fault
 

Inverse fault 

prstrvlcpc Pyroclastic cone(s) pclas_fault
 

Strike slip 

prstrvlcm Maar pcat_fault
 

Existing fault 

prstrvlcld Lava dome pcat_faulti Interpreted fault 

prstrvlcfv Fissure vents pcross_fau
 

Fault crossing 

prstrvlccv Complex volcano fte_tip Extensive and highly productive aquifers (1); Local 
and extensive aquifers, moderately productive (2); 
Local aquifers, moderate to highly productive (3); 
Local and extensive aquifers, poor to moderately 
productive (4) and Rocks with local and limited 
groundwater resources (5). 

prstrvlccc Cinder cone lst NA: Continuous values 

prstrvlcc Caldera     

 
National Geological Map: The geological map of the Republic of Honduras [28], with a 

scale of 1:500,000, provided data on chronology and lithological composition, which were 
considered relevant given their heat trapping role in geothermal systems. Regarding 
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chronology, the map provided the distribution of rocky bodies according to their geological 
period of origin, including formations of the (1) Cretaceous, (2) Cretaceous-Tertiary, (3) 
Jurassic-Cretaceous, (4) Quaternary, (5) Quaternary-Tertiary, (6) Tertiary, and (7) Paleozoic. 
Regarding the general composition of the present lithology, the distribution of (1) 
metamorphic, (2) plutonic, (3) mixed sedimentary, (4) siliciclastic sedimentary, (5) volcanic 
flows, and (6) pyroclastic volcanic tuffs was obtained. Likewise, the distribution of rocks 
according to their specific composition including (1) andestic and rhyolitic pyroclastic rocks, 
volcaniclastics; (2) basalt and andesite flows, and sills, pyroclastics; (3) basalt and andesite 
flows, pyroclastic rocks; (4) boulders, cobbles, gravel, sand, mud; (5) calcareous shales, 
limestones, marls, dolomites; (6) granite, granodiorite, diorite, tonalite; (7) heterogeneous 
redbeds, (8) Jaitique limestone; (9) muds with limestones and volcanic ash; (10) redbeds with 
limestone and conglomerate; red-brown shales, thin limestones, and sandstones; (11) schist, 
phyllite, gneiss, quartzite, marble, quartz veins; (12) shales, sandstones, coals; (13) tan shales, 
sandstones, conglomerates, and (14) tuffs, andesites, pyroclastic rocks. 

Regional Fault Map: Faults are significant geological structures that play a crucial role in 
the utilization of geothermal potential [29]. They can impact the permeability of a site by 
serving as conduits for geothermal water or acting as barriers. Data regarding the location and 
typology of faults were obtained in the global instrumental catalog of earthquakes [30], [31] 
and the Geotectonic Map of the Republic of Honduras [32], which include the distribution of 
(1) normal, (2) inverse, and (3) transformant faults; (1) existing or (2) interpreted, and (1) fault 
crossings. 

National Hydrogeological Map: Aquifers were selected as a predictor variable, taking into 
account their function as heat reservoirs and as communicators of geothermal flows potentially 
associated with surface manifestations. A hydrogeology layer [33] was used, which provided 
the distribution of (1) extensive and highly productive aquifers; (2) local and extensive 
aquifers, moderately productive; (3) local aquifers, moderate to highly productive; (4) local 
and extensive aquifers, poor to moderately productive, and (5) rocks with local and limited 
groundwater resources. 

Land Surface Temperature derived from Landsat-8: There is a correlation between 
anomalies in the surface soil temperature and the presence of sites with geothermal potential 
[34], [35], for which the use of remote sensing data has been especially useful. Open-source 
satellite data was used to generate a national temperature map. The Landsat-8 observation 
satellite is equipped with a thermal infrared sensor that enables the generation of images of the 
Earth's surface temperature. Using Google Earth Engine [36], a surface temperature image was 
created by calculating the median from a time series of 2021 Landsat-8 images. The image 
captured maximum values of 45.51 ºC and minimum values, resulting from the detection of 
temperatures within the clouds, of -11.62 ºC 

Model performance 
To evaluate the preliminary models, threshold-dependent tests were performed as a signal 

of the prediction accuracy of each geothermal potential map. The model was evaluated using 
the jackknife analysis [37] to verify if the precision of the model improved when less important 
variables were removed. 

To compare the prediction accuracy among models, the area under the curve (AUC) of the 
receiver operating characteristic (ROC) plot [38] was calculated until the optimal performance 
was achieved. 

For the AUC calculation, an independent validation was performed using 45 locations of 
geothermal manifestations that were not entered for model training. The validation was carried 
out using the probability map generated by MaxEnt and the points selected for validation 
(Figure 3). From this combination, ROC and AUC curves were generated to measure the 
performance of the model. 
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Figure 3. Model validation workflow 

The contribution of the variables given by the jackknife analysis was assessed, removing 
those with less contribution and re-running the model to observe differences in its 
performance. Based on this criterion, 6 different models were created, whose configurations 
are detailed in Table 2. 

 
Table 2. Parameters for each model 

Model Features Iterations Regularization Variables 

R01 Linear, Quadratic, 
Product. 

500 3 All 

R02 Linear, Quadratic, 
Product, Hinge 

500 2 All 

R03 All 900 1 All 

R04 All 900 1 All except pclas_faultss, prstrvlcld, prstrvlcpc, 
prstrvlcps, prstrvlcfv 

R05 All 900 1 All except pclas_faultss, prstrvlcld, prstrvlcpc, 
prstrvlcps, prstrvlcfv, prstrvlcs 

R06 All 900 1 Just crono, fte_tip, lit_esp, lit_gral, lst, pfault, 
prstvlc 

 

Preparation of probability map 
Once the model with the best performance was selected, a map depicting the probability of 

occurrence of geothermal manifestations was created. to enhance readability, the values 
generated by the Cloglog output of the model (0 to 1) were reclassified into five qualitative 
categories of equal ranges (Table 3). 
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Table 3. Probability values reclassification into qualitative probability categories 

Value 0 - 0.2 0.21 - 0.4 0.41 - 0.6 0.61 - 0.8 0.81 - 1 

Category assigned Very low Low Medium High Very high 
 

RESULTS AND DISCUSSION 
The results of the jackknife analysis (Figure 4) demonstrate that the environmental 

variable with the highest individual contribution to the model is prstrvlc (proximity to all types 
of volcanoes). The larger size of the blue bar indicates the contribution to the model if that 
particular variable were considered alone. 

 

 
 

Figure 4. Jackknife of regularized training gain for model R03 

On the other hand, lst (Land Surface Temperature) is the variable that has the greatest 
impact on the model, as removing it would decrease its efficiency. The smallest cyan bar 
represents the improvement gained by the model after suppressing the variable. 

Calderas, pyroclastic cones, pyroclastic shields, and volcanic fields are variables that 
individually generate a low contribution (Figure 4), but when suppressed in R04, they resulted 
in a decrease in the overall performance of the model. In addition to these variables, when other 
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variables with low individual contribution were suppressed, such as the shields in R05, and all 
individual types of volcanism and faulting in R06, the observed performance was 
progressively lower (Table 4), highlighting the importance of all variables used in this study. 

 
Table 4. AUC values for MaxEnt model predictions and independent validation for the performed 

runs 

  R01 R02 R03 R04 R05 R06 

MaxEnt model 0.803 0.831 0.868 0.864 0.861 0.819 

Independent validation 0.789 0.823 0.863 0.857 0.856 0.804 

 
The omission rate (Figure 5a) represents the similarity between the prediction of the 

omission error in the occurrence of geothermal manifestations and the presence data entered 
into the model. The proximity between the omission line in training samples and the predicted 
omission diagonal is an indicator of the accuracy of the model. 

The ROC curve (Figure 5b) indicates the probability that a randomly selected point of 
presence of geothermal manifestations is located in a pixel with a higher probability value of 
presence prediction calculated by the model, than a point where no manifestations have been 
registered. The greater the separation of the ROC curve from the diagonal, the higher the 
predictive power of the model. 
 

 
(a) (b) 

Figure 5. Omission rate (a); and ROC curve (b) 

 
Of the 6 runs performed, R03 achieved the maximum AUC values: 0.868 for the MaxEnt 

model and 0.863 for the independent validation (Table 4). The AUC is a probabilistic metric 
that measures the performance of a binary classification model based on the true positive rate 
against the false positive rate. The AUC value ranges from 0 to 1. A value of 0 indicates that the 
model's predictions are entirely incorrect, while a value of 0.5 suggests that the model's 
predictions are no better than random chance. An AUC of 1 indicates that the model has perfect 
performance, being able to accurately distinguish between positive and negative instances 
[39], [40]. Specifically, AUC values between 0.5 and 0.7 indicate poor performance, while 
values between 0.7 and 0.9 suggest moderate performance. AUC values greater than 0.9 denote 
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excelent model performance [39]. According to Swets [41], an AUC value greater than 0.8 
indicates a model with a good fit. 

A probability map of geothermal manifestations was generated (Figure 6). 
 

 
 

Figure 6. Geothermal manifestations probability map for the Republic of Honduras 
 

CONCLUSIONS 
Considering the limited availability of information regarding the abundance and 

distribution of geothermal resources in the region, it is anticipated that the probability map of 
geothermal manifestations for the Republic of Honduras will contribute to enhancing the 
understanding of Honduras' energy potential. This knowledge can be utilized as a valuable 
input in geothermal exploration projects, particularly during the initial stages of pre-feasibility 
and feasibility assessments. Furthermore, the methodology presented in this study, which relies 
on open-access data and free software, can be readily adopted to create probability maps for the 
Central American region and other areas where there is an interest in exploring this renewable 
energy source. 

The results of this study show that the variable that most contributes to the increase in the 
probability of occurrence of geothermal manifestations in Honduras is the proximity to 
volcanoes. At first, this fact could seem surprising taking into account that there are currently 
no active volcanoes in Honduras; however, active volcanoes near to the study area in El 
Salvador and Nicaragua were considered. This puts into perspective the influence of the 
resources of neighboring countries for the use of the renewable energy potential in the region. 
The geothermal manifestations probability map for the Republic of Honduras (Figure 6) 
shows that the highest probability of geothermal manifestations occurrence is associated with 
the subduction zone between the Cocos Plate and the Caribbean Plate, as well as the interaction 
of the Caribbean Plate and the North American Plate. On the other hand, inactive volcanoes do 
not contribute significantly. 

Future work in geothermal potential prediction should include new layers of information 
through a multidisciplinary approach that incorporates additional variables from different 
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fields of specialization. This approach aims to potentially enhance the performance of the 
model. Future predictions that integrate data such as carbon dioxide concentration, seismic 
activity values, and distance to rivers—similar to those selected in previous research [19], 
[42]—could be particularly valuable for regions that lack proximity to volcanic activity. While 
volcanic activity has demonstrated its effectiveness as a strong predictor of geothermal 
manifestations in this study, it is not the only factor to consider. Furthermore, the inclusion of 
new data currently being generated at the national level pertaining to hydrological, tectonic, 
and climatic aspects should be considered for a subsequent study conducted on a more local 
scale. 

The map generated in this study reveals that, with the exception of the eastern central 
region of Honduras, the country exhibits a significant prevalence of surfaces with a high and 
very high probability of geothermal manifestations occurring. The potential for utilizing 
energy resources through geothermal manifestations presents a particularly valuable 
opportunity at both the private and public levels. This is especially significant considering the 
historically low exploitation of this renewable source, which has notable economic, social, and 
environmental implications. 
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NOMENCLATURE 

Abbreviations 
AUC Area Under the Curve 
GW Gigawatt 
GIS Geographic Information System 
MW Megawatt 
ROC Receiver Operating Characteristic 
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