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This research addresses the challenges faced by mo-
bile robots in efficiently navigating complex environ-
ments. A novel approach is proposed, leveraging deep 
learning techniques, and introducing the Neo model. 
The method combines Split Attention with the Res-
NeSt50 network to enhance the recognition accuracy 
of key features in the observed images. Furthermore, 
improvements have been made in the loss calcula-
tion method to improve navigation accuracy across 
different scenarios. Evaluations conducted on AI2-
THOR and active vision datasets demonstrate that the 
improved model achieves higher average navigation 
accuracy (92.3%) in scene 4 compared to other meth-
ods. The success rate of navigation reached 36.8%, 
accompanied by a 50% reduction in ballistic length. 
Additionally, compared to HAUSR and LSTM-Nav, 
this technology significantly reduced collision rates 
to 0.01 and reduced time consumption by over 8 sec-
onds. The research methodology addresses navigation 
model accuracy, speed, and generalization issues, thus 
making significant advancements for intelligent au-
tonomous robots.
ACM CCS (2012) Classification: Computing meth-
odologies → Machine learning → Machine learning 
algorithms
Artificial intelligence → Computer vision → Vision 
for robotics
Keywords: deep learning, Neo-model, mobile robots, 
visual navigation, split attention, ResNet

1. Introduction

In recent years, mobile robot technology has 
been extensively applied in various fields with 
visual navigation being a vital research area 
[1–2]. Visual navigation for mobile robots en-
compasses the process of capturing environ-
mental data using visual sensors like cameras,  

using this information for decision-making and 
path planning, and enabling autonomous navi-
gation in complex environments. 
Conventional visual navigation algorithms pri-
marily rely on manually created features and 
rules that are limited by feature representation 
and rule constraints, thus performing poorly in 
dynamic and complex environments [3]. Tradi-
tional sensor-based navigation methods are un-
able to handle sudden problems in unknown en-
vironments, weak in perceiving and analyzing 
the surrounding environment, and have limited 
emergency handling capabilities. These con-
straints collectively impede the development of 
robot navigation technology [4]. 
However, deep learning techniques provide 
a new possibility for addressing these issues. 
Deep learning is a subfield of machine learning 
that leverages artificial neural networks to at-
tain data abstraction and representation through 
multi-level neural network structures [5–6]. It 
aims to learn advanced data representations via 
multi-level nonlinear transformations, enabling 
it to solve complex pattern recognition and de-
cision-making problems. During training, raw 
data is fed into a neural network via an input 
layer, and features are extracted, abstracted, and 
transformed via hidden layers. The output layer 
generates predictions or classification results. 
Despite its numerous benefits, deep learning 
presents some challenges. It requires massive 
amounts of data and computational resourc-
es, necessitates high-quality data, and requires 
substantial storage. Deep learning models are 
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average pooling. It can adaptively adjust the 
weights of different spatial positions to extract 
more important spatial information. This helps 
the network to better focus on areas of interest, 
thereby improving the perception ability [13]. 
Conversely, the channel attention module, de-
picted in Figure 1(b), learns the importance 
weights of channel features through global av-
erage pooling and fully connected layers and 
can adaptively adjust the weights of different 
channels to extract more important features. 
This helps the network to better focus on key 
features, thereby improving the expression 
ability of features. 
By combining the channel attention module 
and spatial attention module, the CBAM mod-
ule can simultaneously extract channel and spa-
tial attention information, thereby enhancing 
the network's ability to perceive important fea-
tures [14]. The structure of the CBAM module 
is shown in Figure 2.

mation in machine learning and deep learning 
tasks [9–10]. It simulates the human attention 
mechanism, allowing the system to focus on 
input parts related to the current task and ig-
nore other irrelevant information. Through the 
attention mechanism, the model can selectively 
focus on useful input information and dynam-
ically adjust the level of attention to different 
positions, thereby improving the model's per-
formance and generalization ability. 
The Convolutional Block Attention Module 
(CBAM) is an attention mechanism used to en-
hance the performance of convolutional neu-
ral networks, consisting of two sub-modules: 
the Channel Attention Module (CAM) and the 
Spatial Attention Module (SAE) [11–12]. The 
structure of the two attention mechanisms is 
shown in Figure 1.
The spatial attention module, as depicted in 
Figure 1(a), learns the importance weights of 
feature maps by using maximum pooling and 

often intricate, making them less interpretable, 
prone to overfitting, and potentially leading to 
poor performance on new data. Moreover, deep 
learning is less reliant on human knowledge, 
meaning it may ignore crucial features, result-
ing in inaccurate model predictions.
In order to tackle the challenges faced by tra-
ditional autonomous robot navigation meth-
ods, Zhao et al. developed a path-planning 
navigation system for mobile robots based on 
panoramic vision [7]. The system aimed to ad-
dress the issues of high computational cost and 
complex external environments. It employed a 
panoramic vision sensor and utilized a breadth-
first search method with recurrent neural net-
works for path planning. Experimental results 
demonstrated that the system achieved a path 
length reduction ranging from 20.7% to 35.9%, 
thereby showing promising practical applica-
tion effects. 
To address the existing limitations in mobile 
robot navigation performance, Fang et al. 
proposed a novel approach combining imita-
tion learning and deep reinforcement learn-
ing frameworks [8]. This approach leveraged 
surrounding images as observation points and 
employed template-matching methods for de-
termining stop actions. Experimental compar-
isons indicated that this method outperformed 
end-to-end deep reinforcement learning ap-
proaches and exhibited stronger practicality.
Despite the notable achievements of exist-
ing algorithms in specific scenarios, there are 
still limitations that need to be addressed. No-
tably, these algorithms tend to be sensitive to 
environmental changes and interferences, re-
sulting in decreased performance in complex 
environments. Additionally, the computational 
resources and runtime requirements of these al-
gorithms are typically high, which hinders the 
real-time navigation capability of mobile ro-
bots. To overcome these challenges, this study 
adopts an attention mechanism that emulates 
the functioning of the human visual system 
[9]. A visual navigation model is constructed 
by integrating the proposed Neo model. Fur-
ther enhancements are made through the utili-
zation of cross-stage partial networks and split 
attention, aiming to improve the effectiveness 
of visual navigation for mobile robots. In or-
der to address the issue of decreased navigation 

accuracy in deep reinforcement learning-based 
visual navigation algorithms caused by scene 
changes, a novel visual navigation model is 
proposed. This model combines the attention 
mechanism with the next expected observations 
(Neo). Building upon the original Neo model, 
split-attention and cross-connected ResNeSt50 
network components are introduced to enhance 
the recognition accuracy of key features in the 
current observation image. Additionally, im-
provements are made to the calculation method 
of loss, thereby enhancing the navigation ac-
curacy of the model across different scenarios. 
Furthermore, by integrating deep learning tech-
nology with mobile robot visual navigation, 
this research aims to achieve a more intelligent, 
accurate, and efficient mobile robot navigation 
system. The objective is to generate precise 
navigation decisions, thereby improving navi-
gation effectiveness and robustness.
The article is divided into four sections. The 
first section covers the research background 
and current status of the combination of visual 
navigation algorithms and deep learning tech-
nology for mobile robots. The second section 
introduces the attention mechanism and pro-
poses a visual navigation network based on 
the Neo model. Subsequently, the third section 
presents the improved version of the visual nav-
igation model by introducing split attention and 
a cross-stage partial network to further enhance 
its performance. In the fourth section, the effec-
tiveness of the proposed navigation algorithm 
is evaluated, including performance testing 
and analysis of actual application effects. Fi-
nally, the paper concludes with a summary of 
key findings and outlines prospective future re-
search directions. 

2. Research Method

2.1. Navigation Framework Design Based 
on the Neo Model

This study presents the construction of a visual 
navigation model based on the attention mech-
anism and the proposed Neo model. The atten-
tion mechanism is a technique that mimics the 
working principles of the human visual system 
and is used to selectively process input infor-

Figure 1. Channel attention module and spatial attention module.

Figure 2. CBAM module structure.
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After resizing the image input to a resolution 
of 64*64, a potential variable vector with a di-
mension of 400 is derived from 2048-D fea-
ture vectors via a multi-layer perceptron. In 
this step, minimizing the KL divergence loss 
is vital, as it ensures a closer alignment with 
the prior estimation of potential variable dis-
tribution. 
The Neo generation module includes a 5-layer 
convolutional network and a 2-layer multi-lay-

er perceptron, which can obtain the Neo model 
of the front view from potential vectors [17]. 
The action prediction module includes four 
layers of multi-layer perceptrons, which can 
concatenate and map the last layer features, 
previously extracted features, and current ob-
served features of the generation module to the 
next action and train the parameters of the self 
network through ground real actions. The nav-
igation framework based on the Neo model is 
shown in Figure 4.

For the visual navigation network based on the 
Neo model proposed in this paper, the intelli-
gent agent optimizes its navigation by taking 
the minimum steps required to navigate to the 
target location – thus considering it as the pur-
suit direction. This approach allows the agent to 
navigate effectively in new scenarios, thereby 
validating the model generalization ability [15]. 
In scenarios where the current observation ob-
ject X is known, the research methodology does 
not need to directly predict the optimal action 
corresponding to the next moment. On the con-
trary, it sets the best action at the next moment 
to be known and the state to have been execut-
ed, thereby generating a model to obtain the ex-
pected observation value at the next moment, 
which is calculated using equation (1).

( ) ( ) ( ), | , | | ,p x z x a p x z p z x aθ θ θ=
    

 (1)

In equation (1), a represents the next action, z
represents the potential variable, x  represents 
the expected observation at the next moment, x
corresponds to the next observation, ( ), | ,p x z x aθ

represents the parameter model composed of 
the joint distribution of the potential variable 
and the expected observation. 
In order to effectively train the generated mod-
el, it is necessary to maximize the marginal
logarithmic likelihood ( )log | ,p x x aθ . However,
there is a certain degree of complexity in solv-
ing marginal likelihood, which can easily in-
crease the difficulty of neural network param-
eterization [16]. At the same time, in essence, 
the goal g plays a decisive role in the next best 
action, yet it remains unknown a priori. To ad-
dress this, edge similarity is optimized by em-
ploying variational reasoning and introducing
a posterior probability ( )| ,p z x aθ  of the inference
network with parameter λ, as shown in equation 
(2).
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In equation (2), ( )| ,p z x aθ  represents a posterior
probability and ( )| ,q z x gλ  represents the
inference network with the introduced parame-
ter. The objective function formed by this lower 
bound is represented by equation (3).
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In equation (3), KL is the KL divergence (Kull 
back Leibler Divergence). In the case where a 
mixed prior is imposed on a potential distri-
bution due to real ground actions and current 
observations, ( )| ,p z x aθ  can be estimated as a 
Gaussian distribution. 
To achieve the goal of robot navigation, the 
proposed Neo model can train a navigation 
action classifier that predicts the next best ac-
tion based on current observations, previous
actions, and generated x. Taking action predic-
tion into account, the objective function is ob-
tained as shown in equation (4).
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In equation (4), 
( )| , ,q a x x aϕ  represents the

generated navigation action classifier, β and γ  
are hyper parameters, with corresponding set 
values of 0.01, 0.0001, and 1, respectively. The 
probability graph of the navigation model is 
shown in Figure 3.
Within the proposed Neo model-based navi-
gation framework, the input of the variational 
inference module comprises the current robot 
position and the target point view. These in-
puts undergo feature extraction via ResNet-50, 
resulting in and the 2048-D feature vectors. Figure 4. Navigation framework based on the Neo model.

Figure 3. Probability Graph Model of Navigation Model.
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In Figure 6, the input of the k cardinality group 
is calculated using equation (6).
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In equation (6), Uk represents the input of the 
cardinality group. Under the cross spatial glob-
al average pooling operation, global context 
information can be fully collected. Meanwhile, 
the channel weight statistics of the input feature 
map can be calculated. Among them, the c com-
ponent is obtained by equation (7).
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In equation (7), H and W respectively represent 
the height and width dimensions of the chan-
nel, while sc

k represents the global average 
pooling result of the c component. The weights 
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function are shown in equation (8).

( )( )
( )( )

( )( )

0

exp
if 1

( )
1 if 1

exp

c k
i

R
c k

ik
ji

c k
i

s
R

wxp s
a c

R
s

δ

δ

δ

=


 >

= 

 =
 −

∑

     

 (8)

Then the output of each Cardinal obtained is 
concatenated, and the final output is obtained 
as shown in equation (9).

{ }1 2, , ..., KV Concat V V V=            (9)

Finally, the ResNeSt block is stacked in the 
form of ResNet50 to obtain the proposed Res-
NeSt50. Compared to ResNet50, ResNeSt50 

2.2. Optimization Method of Neo Model 
Visual Navigation Based on Split 
Attention and Cross-connection

Using the proposed Neo model for visual navi-
gation requires addressing the issue of general-
ization, which relates to the trained navigation 
model's ability to maintain its original perfor-
mance in new application scenarios. Therefore, 
further research has been conducted to improve 
the ability of intelligent agents to extract the 
main information of input images and enhance 
their adaptability to new scenarios by splitting 
attention, cross-connection methods, and loss 
functions. 
In this study, the ResNet50 network from the 
original model is replaced by ResNeSt50 with 
a Split Attention structure, which includes sev-
eral Split Attention blocks stacked in ResNet 
style. Meanwhile, the improved ResNet50 can 
span different feature maps during the use of 
attention, resulting in a relatively low model 
complexity and better transfer conditions for 
the algorithm model. The proposed ResNeSt 
block network structure is shown in Figure 5.

In Figure 5, the Split Attention block calcula-
tion unit mainly consists of two parts, namely 
split attention and feature map group. Here, the 
number of feature map groups depends on the 
hyper parameter k, and the number of cardinal-
ity group splits depends on the parameter R. 
Therefore, the total number of feature groups is 
calculated as shown in equation (5).

( ) ( ) ( ), | , | | ,p x z x a p x z p z x aθ θ θ=       (5)

In equation (5), G represents the total number of 
feature groups. The input feature map is first di-
vided into base arrays, and then all main groups 
are split into R parts, and each part is merged into 
the split attention module under convolution op-
eration of 1*1 and 3*3. Building upon this, fea-
ture concatenation operations are performed on 
the output features from the K base arrays while 
maintaining consistent input and output sizes. 
The split attention blocks integrate the mecha-
nism of channel attention, assigning weights to 
different channels, and describing the impor-
tance of each channel [18]. The basic structure 
of splitting attention blocks is shown in Figure 6.

Figure 5. The proposed ResNeSt block network structure.

Figure 6. The Basic Structure of Split Attention Blocks.
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gation requires addressing the issue of general-
ization, which relates to the trained navigation 
model's ability to maintain its original perfor-
mance in new application scenarios. Therefore, 
further research has been conducted to improve 
the ability of intelligent agents to extract the 
main information of input images and enhance 
their adaptability to new scenarios by splitting 
attention, cross-connection methods, and loss 
functions. 
In this study, the ResNet50 network from the 
original model is replaced by ResNeSt50 with 
a Split Attention structure, which includes sev-
eral Split Attention blocks stacked in ResNet 
style. Meanwhile, the improved ResNet50 can 
span different feature maps during the use of 
attention, resulting in a relatively low model 
complexity and better transfer conditions for 
the algorithm model. The proposed ResNeSt 
block network structure is shown in Figure 5.

In Figure 5, the Split Attention block calcula-
tion unit mainly consists of two parts, namely 
split attention and feature map group. Here, the 
number of feature map groups depends on the 
hyper parameter k, and the number of cardinal-
ity group splits depends on the parameter R. 
Therefore, the total number of feature groups is 
calculated as shown in equation (5).
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In equation (5), G represents the total number of 
feature groups. The input feature map is first di-
vided into base arrays, and then all main groups 
are split into R parts, and each part is merged into 
the split attention module under convolution op-
eration of 1*1 and 3*3. Building upon this, fea-
ture concatenation operations are performed on 
the output features from the K base arrays while 
maintaining consistent input and output sizes. 
The split attention blocks integrate the mecha-
nism of channel attention, assigning weights to 
different channels, and describing the impor-
tance of each channel [18]. The basic structure 
of splitting attention blocks is shown in Figure 6.

Figure 5. The proposed ResNeSt block network structure.

Figure 6. The Basic Structure of Split Attention Blocks.
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distributions [22–23]. This results in the updat-
ed expression of the objective function in the 
entire visual navigation network as shown in 
equation (11), where J represents the objective 
function value.
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3. Results

To verify the effectiveness of the proposed vi-
sual navigation intelligent agent, the Tensor-
Flow deep learning framework is employed on 
an NVIDIA 2080 Ti GPU. Experiments were 
conducted on Ubuntu 16.04. 
The dataset used for the experiments is the 
Allen Institute for Artistic Intelligence For 
Object Recognition (AI2-THOR), which is a 
three-dimensional visual and physical simula-
tion environment for machine intelligence and 
reasoning ability [24]. This dataset aims to pro-
vide training and evaluation benchmarks for 
machine learning algorithms for tasks such as 
visual perception, semantic understanding, and 
inference, providing a virtual indoor scene that 
includes various home environments, furni-
ture, objects, and sensors [25]. The AI2-THOR 
simulation environment includes four layouts: 

kitchen, living room, bedroom, and bathroom, 
each divided into 30 scenes. The study used the 
first 20 scenarios of all layout types to form a 
training set, and the remaining 10 scenarios be-
came a testing set. The navigation accuracy of 
each method was compared, and the results are 
shown in Table 1.
The data presented in Table 1 clearly demon-
strates that the improved model outperforms 
other methods with an average navigation ac-
curacy of 92.3% across all four scenes. Com-
pared to RW, TD-A3C, GLA3C and NeoNav, 
the navigation accuracy is 13.7%, 13.3%, 
10.6% and 8.1% higher than the average of 
RW, TD-A3C, GLA3C, and NEONAV in the 
four medium scenarios, respectively. Figure 8 
shows the ablation experimental results of the 
research method. A, B, C and D represent the 
visual navigation model, the Neo model-based 
visual navigation model, and the research mod-
el, respectively.
In Figure 8(a), the AUC value of the research 
model is 27.3%, 13.9%, 10.4% and 9.5% higher 
than that of classical navigation algorithms RW, 
TD-A3C, GLA3C, and NEONAV, respectively. 
In Figure 8(b), the AUC value of simple visual 
navigation is only 64.8%. After adding the Neo 
model, the AUC value is 78.3%. The research 
model builds on this, adding split at-tention and 
cross-connections, and has a higher AUC value 
of 92.1%. This shows that the improved model 
has some advantages.

can achieve better results by increasing parame-
ters while maintaining the same computational 
complexity. 
In order to further reduce the complexity of 
the model, and achieve a lightweight design, a 
cross stage partial network (CSPNet) is studied 
to optimize ResNeSt50 and design a CSP-Res-
NeSt50 feature extraction network that inte-
grates CSPNet. 
After inputting the feature map, the network 
uses channel segmentation to obtain two seg-
ments: one represents the ResNeSt module that 
has gone through multiple stages, while the 
other represents the ResNeSt module that has 
passed through half of the number of channels 
[19]. After performing convolution and filtering 
operations, the first and second segments com-
plete feature merging, resulting in a total chan-
nel count of 3c/2. In this process, the gradient 
flow is truncated without excessive duplicate 
gradients, and the migration and deployment 
conditions of the visual navigation model are 
more favorable. The designed CSP-ResNeSt50 
feature extraction network structure is shown in 
Figure 7.
Next, the loss calculation method is improved. 
To measure the difference in probability dis-
tribution between inference networks and true 
posterior probabilities, the proposed Neo model 

adopts the KL divergence measurement meth-
od, which is an indicator used to measure the 
difference between two probability distribu-
tions and is calculated using equation (10).
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However, the KL divergence does not satisfy 
symmetry, and when comparing the differenc-
es between two probability distributions, the 
results will depend on the selected benchmark 
distribution. Meanwhile, the calculation of KL 
divergence depends on the distribution of data 
samples. When the sample size is small or not 
representative, the calculated KL divergence 
may be biased or misleading [20–21]. In this 
case, in order to ensure that the predicted and 
actual observation values in the visual naviga-
tion of mobile robots do not change based on 
changes in reference metrics, this study utilizes 
the optimal transmission idea to improve and 
calculate the loss through Sinkhorn distance. 
The optimal transmission theory takes the ba-
sic metric space as the consideration object and 
can provide a method for comparing degenerate 

Table 1. Comparison of Navigation Performance of Various Models in AI2-THOR Environment.

Model type Kitchen (%) Living (%) Bed (%) Bath (%) Avg (%)

RW 76.1 72.4 82.6 83.3 78.6

TD-A3C 78.3 74.2 79.2 84.3 79.0

GLA3C 81.4 77.3 80.5 87.6 81.7

NeoNav 83.2 79.7 83.6 90.3 84.2

Improved model 92.9 89.8 91.6 94.9 92.3
Figure 7. CSP-ResNeSt50 Feature Extraction Network Structure.
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distributions [22–23]. This results in the updat-
ed expression of the objective function in the 
entire visual navigation network as shown in 
equation (11), where J represents the objective 
function value.
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3. Results

To verify the effectiveness of the proposed vi-
sual navigation intelligent agent, the Tensor-
Flow deep learning framework is employed on 
an NVIDIA 2080 Ti GPU. Experiments were 
conducted on Ubuntu 16.04. 
The dataset used for the experiments is the 
Allen Institute for Artistic Intelligence For 
Object Recognition (AI2-THOR), which is a 
three-dimensional visual and physical simula-
tion environment for machine intelligence and 
reasoning ability [24]. This dataset aims to pro-
vide training and evaluation benchmarks for 
machine learning algorithms for tasks such as 
visual perception, semantic understanding, and 
inference, providing a virtual indoor scene that 
includes various home environments, furni-
ture, objects, and sensors [25]. The AI2-THOR 
simulation environment includes four layouts: 

kitchen, living room, bedroom, and bathroom, 
each divided into 30 scenes. The study used the 
first 20 scenarios of all layout types to form a 
training set, and the remaining 10 scenarios be-
came a testing set. The navigation accuracy of 
each method was compared, and the results are 
shown in Table 1.
The data presented in Table 1 clearly demon-
strates that the improved model outperforms 
other methods with an average navigation ac-
curacy of 92.3% across all four scenes. Com-
pared to RW, TD-A3C, GLA3C and NeoNav, 
the navigation accuracy is 13.7%, 13.3%, 
10.6% and 8.1% higher than the average of 
RW, TD-A3C, GLA3C, and NEONAV in the 
four medium scenarios, respectively. Figure 8 
shows the ablation experimental results of the 
research method. A, B, C and D represent the 
visual navigation model, the Neo model-based 
visual navigation model, and the research mod-
el, respectively.
In Figure 8(a), the AUC value of the research 
model is 27.3%, 13.9%, 10.4% and 9.5% higher 
than that of classical navigation algorithms RW, 
TD-A3C, GLA3C, and NEONAV, respectively. 
In Figure 8(b), the AUC value of simple visual 
navigation is only 64.8%. After adding the Neo 
model, the AUC value is 78.3%. The research 
model builds on this, adding split at-tention and 
cross-connections, and has a higher AUC value 
of 92.1%. This shows that the improved model 
has some advantages.

can achieve better results by increasing parame-
ters while maintaining the same computational 
complexity. 
In order to further reduce the complexity of 
the model, and achieve a lightweight design, a 
cross stage partial network (CSPNet) is studied 
to optimize ResNeSt50 and design a CSP-Res-
NeSt50 feature extraction network that inte-
grates CSPNet. 
After inputting the feature map, the network 
uses channel segmentation to obtain two seg-
ments: one represents the ResNeSt module that 
has gone through multiple stages, while the 
other represents the ResNeSt module that has 
passed through half of the number of channels 
[19]. After performing convolution and filtering 
operations, the first and second segments com-
plete feature merging, resulting in a total chan-
nel count of 3c/2. In this process, the gradient 
flow is truncated without excessive duplicate 
gradients, and the migration and deployment 
conditions of the visual navigation model are 
more favorable. The designed CSP-ResNeSt50 
feature extraction network structure is shown in 
Figure 7.
Next, the loss calculation method is improved. 
To measure the difference in probability dis-
tribution between inference networks and true 
posterior probabilities, the proposed Neo model 

adopts the KL divergence measurement meth-
od, which is an indicator used to measure the 
difference between two probability distribu-
tions and is calculated using equation (10).

( ) ( )( )

( ) ( )
( )

| , || | ,

| ,
| , ln ( )

| ,

KLD p z x a q z x g

p z x a
p z x a d x

q z x g

θ λ

θ
θ

λ

∞

−∞

=

∫
     

 (10)

However, the KL divergence does not satisfy 
symmetry, and when comparing the differenc-
es between two probability distributions, the 
results will depend on the selected benchmark 
distribution. Meanwhile, the calculation of KL 
divergence depends on the distribution of data 
samples. When the sample size is small or not 
representative, the calculated KL divergence 
may be biased or misleading [20–21]. In this 
case, in order to ensure that the predicted and 
actual observation values in the visual naviga-
tion of mobile robots do not change based on 
changes in reference metrics, this study utilizes 
the optimal transmission idea to improve and 
calculate the loss through Sinkhorn distance. 
The optimal transmission theory takes the ba-
sic metric space as the consideration object and 
can provide a method for comparing degenerate 

Table 1. Comparison of Navigation Performance of Various Models in AI2-THOR Environment.

Model type Kitchen (%) Living (%) Bed (%) Bath (%) Avg (%)

RW 76.1 72.4 82.6 83.3 78.6

TD-A3C 78.3 74.2 79.2 84.3 79.0

GLA3C 81.4 77.3 80.5 87.6 81.7

NeoNav 83.2 79.7 83.6 90.3 84.2

Improved model 92.9 89.8 91.6 94.9 92.3
Figure 7. CSP-ResNeSt50 Feature Extraction Network Structure.
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length. The results obtained from the improved 
model before and after the improvement are 
shown in Figure 10. From Figure 10(a), it can 
be observed that, with the exception of the Bath-
room 02 scenario, which converges at around 
5 million training frames, the other three sce-
narios in the improved model all converge at 
9 million training frames. Moreover, there are 
differences in the corresponding convergence 
average trajectory lengths for the four scenari-
os. Figure 10(b) shows that the convergence of 
the improved model in all four scenarios occurs 
around 5 million training frames, and the aver-
age trajectory length converges around 10 steps 
[27]. In comparison, it is evident that the im-

proved model converges faster, and the average 
trajectory length can converge to a better level, 
reducing it by about approximately 50%.
To further validate the effectiveness of the im-
proved model, it was compared with the Base-
line model, Long Short-Term Memory Navi-
gation Model (LSTM Nav), and Hierarchical 
Asynchronous Universal Successor Represen-
tations (HAUSR) combined with hierarchical 
asynchronous universal subsequent feature rep-
resentation [28]. The average trajectory length 
and average reward test results for the four 
models in the remaining 20 scenarios are shown 
in Figure 11. 

ident that prior to the improvement, the maxi-
mum loss value obtained from the proposed in-
telligent agent testing was 2.2. After 15 rounds 
of self-training, the loss function curve of the 
intelligent agent testing converged, approxi-
mately 0.3. Figure 9(b) shows that during the 
testing process, there has been a significant 
convergence trend near the fifth round of the 
improved agent, with a corresponding loss val-
ue of only 0.1. This indicates that the improved 
performance of the intelligent agent has been 
significantly improved, proving the effective-
ness of the improved method [26].
For evaluation using the AI2-THOR dataset, 
four scenarios were selected: kitchen-02, liv-
ing-08, bathroom-02, and bedroom-04. The 
evaluation index was the average trajectory 

In Table 2, the navigation Success rate (SR) and 
the success rate weighted by path length (SPL) 
of each model in the KITTI dataset are com-
pared. These results show that after training and 
testing on the active visual dataset KITTI, the 
SR of the improved model is slightly lower than 
NeoNav in the Living scenario, and significant-
ly improved in the other two scenarios, while 
the average value of the four scenarios has a 
partial improvement compared with Ne-oNav, 
with an increase of about 3%. With respect to 
the SPL, the improved model performed better 
than NeoNav in all four scenarios, improving 
by about 6%.
The results of the loss values of the two types of 
agents before and after improvement are shown 
in Figure 9. As depicted in Figure 9(a), it is ev-

Figure 8. AUC values and ablation results of each model.

Table 2. Comparison of SR and SPL of each model in KITTI data set.

Model type Kitchen Living Bed Bath Avg

RW 7.0/3.5 1.8/1.0 2.6/1.5 17.9/ 8.0. 7.3/3.5

TD-A3C 11.4/1.6 5.6/0.4 5.3 / 0.7 24.3/2.3 11.7/1.3

GLA3C 13.1/3.2 4.9/1.1 5.1/1.2 19.3/7.9 10.6/3.4

NeoNav 19.8/10.6 11.5/5.3 13.6/5.9 21 9/9.6 16.7/7.9

Improved model 20.7/11.1 11.2/55 14.8/7.0 22.6/10.1 17325/8.5

Figure 9. The loss value changes of the two models before and after improvement.

Figure 10. Test results of the model before and after improvement in four scenarios.
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length. The results obtained from the improved 
model before and after the improvement are 
shown in Figure 10. From Figure 10(a), it can 
be observed that, with the exception of the Bath-
room 02 scenario, which converges at around 
5 million training frames, the other three sce-
narios in the improved model all converge at 
9 million training frames. Moreover, there are 
differences in the corresponding convergence 
average trajectory lengths for the four scenari-
os. Figure 10(b) shows that the convergence of 
the improved model in all four scenarios occurs 
around 5 million training frames, and the aver-
age trajectory length converges around 10 steps 
[27]. In comparison, it is evident that the im-

proved model converges faster, and the average 
trajectory length can converge to a better level, 
reducing it by about approximately 50%.
To further validate the effectiveness of the im-
proved model, it was compared with the Base-
line model, Long Short-Term Memory Navi-
gation Model (LSTM Nav), and Hierarchical 
Asynchronous Universal Successor Represen-
tations (HAUSR) combined with hierarchical 
asynchronous universal subsequent feature rep-
resentation [28]. The average trajectory length 
and average reward test results for the four 
models in the remaining 20 scenarios are shown 
in Figure 11. 

ident that prior to the improvement, the maxi-
mum loss value obtained from the proposed in-
telligent agent testing was 2.2. After 15 rounds 
of self-training, the loss function curve of the 
intelligent agent testing converged, approxi-
mately 0.3. Figure 9(b) shows that during the 
testing process, there has been a significant 
convergence trend near the fifth round of the 
improved agent, with a corresponding loss val-
ue of only 0.1. This indicates that the improved 
performance of the intelligent agent has been 
significantly improved, proving the effective-
ness of the improved method [26].
For evaluation using the AI2-THOR dataset, 
four scenarios were selected: kitchen-02, liv-
ing-08, bathroom-02, and bedroom-04. The 
evaluation index was the average trajectory 

In Table 2, the navigation Success rate (SR) and 
the success rate weighted by path length (SPL) 
of each model in the KITTI dataset are com-
pared. These results show that after training and 
testing on the active visual dataset KITTI, the 
SR of the improved model is slightly lower than 
NeoNav in the Living scenario, and significant-
ly improved in the other two scenarios, while 
the average value of the four scenarios has a 
partial improvement compared with Ne-oNav, 
with an increase of about 3%. With respect to 
the SPL, the improved model performed better 
than NeoNav in all four scenarios, improving 
by about 6%.
The results of the loss values of the two types of 
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To further verify the superiority of the proposed 
model, simulation experiments were carried out 
in more diverse environments and over longer 
periods of time. The comparison results with 
other models, conducted within 1000 steps, are 
presented in Table 4.
From the data given in Table 4, it is evident that 
the SR of the improved model is slightly lower 
than NeoNav for three of the objectives, while it 
significantly outperforms NeoNav for the other 
two objectives. The average SR over 1000 steps 
is improved by about 3% compared to NeoNav. 
SPL, on the other hand, is better than NeoNav in 
each target navigation process, with an improve-
ment of about 7% compared to NeoNav in 1000 
steps, which proves that the improved model can 
have better generalization ability when navigat-
ing to different targets, taking into account the 
success rate and the length of the path trajectory. 

NeoNav, which has better navigation perfor-
mance among the three models, was compared 
with the improved model. Figure  13 shows the 
navigation test results displayed in the first-per-
son perspective and top view for four category 
scenarios. From Figure 13, it can be seen that 
within the time steps 1 to 8, the actions and 
routes of the mobile robot in the NeoNav model 
and the improved model are basically the same. 
In the 8th to 9th time steps, the NeoNav mod-
el waits in place for one time step before start-
ing to move upwards, and due to its position 
against the wall, it is difficult to move forward 
and needs to turn to the right front to complete. 
Overall, the improved model navigation omit-
ted two time steps and had fewer issues with 
collision steering,  resulting in significantly bet-
ter navigation performance.

From Figure 11(a), it can be observed that in 
the comparison of average trajectory lengths, 
the four models in the Bathroom02scenario are 
very similar. In the remaining scenarios, com-
pared with Baseline, LSTM Nav, and HAUSR, 
the improved model has an average improve-
ment of 8%, 5%, and 6%, showing better gen-
eralization performance. From Figure 11(b), it 
can be seen that in the comparison of average 
rewards, the improved model has varying de-
grees of leadership compared to the other three 
models. Among them, in the kitchen02 scenar-
io, the improved model achieved a maximum 
improvement of about 0.4%, proving the good 
performance of the model.
Subsequently, the Active Vision Dataset (AVD) 
was selected for testing, which encompasses a 
large number of indoor scene images, including 
different rooms and scenes such as bedrooms, 
living rooms, kitchens, etc. These images were 
collected in a real-world settings, reflecting 
real-world objects and scenes. Additionally, a 
Gated Long Short Term Memory Asynchro-
nous Advantage Actor Critic (GLA3C) visual 
navigation model combining Gated LSTM and 
A3C algorithms was added, and compared with 
HAUSR, NeoNav, and improved models [29]. 
The selected evaluation indicators are Nav-
igation Success Rate (SR) and Path Length 
Weighted Success Rate (SPL), and the results 
are presented in Table 3. As indicated in Table 3, 

the success rates of the improved model in the 
four navigation goals of Exit, Refrigerator, Ta-
ble, and Couch are 32.3%, 36.8%, 14.8%, and 
12.6%, respectively. Moreover, the SPL indi-
cator has improved by about 8% compared to 
NeoNav, indicating better generalization ability.
Finally, four scene categories, namely Bedroom, 
Bathroom, Living room, and Kitchen, were se-
lected to compare the average collision rate and 
average consumption time of the four models. 
The results are shown in Figure 12. In Figure 
12, the left side of the dashed line represents the 
collision rate, and the right side of the dashed 
line represents the time spent. From Figure 12, 
it can be observed that the collision rates of 
the four models in the Living room and Kitch-
en scenarios are all higher. Among them, the 
HAUSR model is as high as 0.33, the GLA3C 
model is around 0.25, and NeoNav is around 
0.20. The highest value of the improved mod-
el is only 0.16, which is relatively low. Mean-
while, in the Bedroom and Bathroom scenarios, 
the collision rates of the other three models were 
all above 0.05, while the improved model had 
the lowest collision rate of only 0.01, indicating 
significantly better navigation performance. In 
terms of time consumption comparison, Living 
room and Kitchen scenes are longer, Bed-room 
and Bathroom scenes are shorter. The improved 
model takes up to 17 seconds and the shortest 
is about 8 seconds, which is more efficient and 
superior to the other three methods.

Figure 11. The average trajectory length and average reward test results of the four models in 
the remaining 20 scenarios.

Table 3. Comparison of SR and SPL of variant models in the AVD dataset.

Model type Exit Refrigerator Table Couch Avg 

HAUSR 21.4/8.6 7.2/1.0 12.6/6.1 14.2/1.5 13.35/1.75 

GLA3C 15.5/4.3 14.5/3.3 6.4/1.5 8.4/1.4 10.57/2.35 

NeoNav 29.7/8.6 32.7/12.0 13.7/3.6 11.8/3.2 21.13/8.87 

Improved model 32.3/9.5 36.8/13.25 14.8/3.9 12.6/3.4 21.89/6.22

Figure 12. Comparison of consolidation rates and time consumption among four models.
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To further verify the superiority of the proposed 
model, simulation experiments were carried out 
in more diverse environments and over longer 
periods of time. The comparison results with 
other models, conducted within 1000 steps, are 
presented in Table 4.
From the data given in Table 4, it is evident that 
the SR of the improved model is slightly lower 
than NeoNav for three of the objectives, while it 
significantly outperforms NeoNav for the other 
two objectives. The average SR over 1000 steps 
is improved by about 3% compared to NeoNav. 
SPL, on the other hand, is better than NeoNav in 
each target navigation process, with an improve-
ment of about 7% compared to NeoNav in 1000 
steps, which proves that the improved model can 
have better generalization ability when navigat-
ing to different targets, taking into account the 
success rate and the length of the path trajectory. 

NeoNav, which has better navigation perfor-
mance among the three models, was compared 
with the improved model. Figure  13 shows the 
navigation test results displayed in the first-per-
son perspective and top view for four category 
scenarios. From Figure 13, it can be seen that 
within the time steps 1 to 8, the actions and 
routes of the mobile robot in the NeoNav model 
and the improved model are basically the same. 
In the 8th to 9th time steps, the NeoNav mod-
el waits in place for one time step before start-
ing to move upwards, and due to its position 
against the wall, it is difficult to move forward 
and needs to turn to the right front to complete. 
Overall, the improved model navigation omit-
ted two time steps and had fewer issues with 
collision steering,  resulting in significantly bet-
ter navigation performance.

From Figure 11(a), it can be observed that in 
the comparison of average trajectory lengths, 
the four models in the Bathroom02scenario are 
very similar. In the remaining scenarios, com-
pared with Baseline, LSTM Nav, and HAUSR, 
the improved model has an average improve-
ment of 8%, 5%, and 6%, showing better gen-
eralization performance. From Figure 11(b), it 
can be seen that in the comparison of average 
rewards, the improved model has varying de-
grees of leadership compared to the other three 
models. Among them, in the kitchen02 scenar-
io, the improved model achieved a maximum 
improvement of about 0.4%, proving the good 
performance of the model.
Subsequently, the Active Vision Dataset (AVD) 
was selected for testing, which encompasses a 
large number of indoor scene images, including 
different rooms and scenes such as bedrooms, 
living rooms, kitchens, etc. These images were 
collected in a real-world settings, reflecting 
real-world objects and scenes. Additionally, a 
Gated Long Short Term Memory Asynchro-
nous Advantage Actor Critic (GLA3C) visual 
navigation model combining Gated LSTM and 
A3C algorithms was added, and compared with 
HAUSR, NeoNav, and improved models [29]. 
The selected evaluation indicators are Nav-
igation Success Rate (SR) and Path Length 
Weighted Success Rate (SPL), and the results 
are presented in Table 3. As indicated in Table 3, 

the success rates of the improved model in the 
four navigation goals of Exit, Refrigerator, Ta-
ble, and Couch are 32.3%, 36.8%, 14.8%, and 
12.6%, respectively. Moreover, the SPL indi-
cator has improved by about 8% compared to 
NeoNav, indicating better generalization ability.
Finally, four scene categories, namely Bedroom, 
Bathroom, Living room, and Kitchen, were se-
lected to compare the average collision rate and 
average consumption time of the four models. 
The results are shown in Figure 12. In Figure 
12, the left side of the dashed line represents the 
collision rate, and the right side of the dashed 
line represents the time spent. From Figure 12, 
it can be observed that the collision rates of 
the four models in the Living room and Kitch-
en scenarios are all higher. Among them, the 
HAUSR model is as high as 0.33, the GLA3C 
model is around 0.25, and NeoNav is around 
0.20. The highest value of the improved mod-
el is only 0.16, which is relatively low. Mean-
while, in the Bedroom and Bathroom scenarios, 
the collision rates of the other three models were 
all above 0.05, while the improved model had 
the lowest collision rate of only 0.01, indicating 
significantly better navigation performance. In 
terms of time consumption comparison, Living 
room and Kitchen scenes are longer, Bed-room 
and Bathroom scenes are shorter. The improved 
model takes up to 17 seconds and the shortest 
is about 8 seconds, which is more efficient and 
superior to the other three methods.

Figure 11. The average trajectory length and average reward test results of the four models in 
the remaining 20 scenarios.

Table 3. Comparison of SR and SPL of variant models in the AVD dataset.

Model type Exit Refrigerator Table Couch Avg 

HAUSR 21.4/8.6 7.2/1.0 12.6/6.1 14.2/1.5 13.35/1.75 

GLA3C 15.5/4.3 14.5/3.3 6.4/1.5 8.4/1.4 10.57/2.35 

NeoNav 29.7/8.6 32.7/12.0 13.7/3.6 11.8/3.2 21.13/8.87 

Improved model 32.3/9.5 36.8/13.25 14.8/3.9 12.6/3.4 21.89/6.22

Figure 12. Comparison of consolidation rates and time consumption among four models.
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model reduces the residual module of the basic 
network, utilizes shallow target feature infor-
mation, and increases the network's receptive 
field. This helps to overcome the limitations of 
loss asymmetry caused by the reference frame, 
thus bringing the inference network closer to a 
true posterior. Additionally, the proposed meth-
od enables agents to make optimal decisions 
in the current environment, enhancing the net-
work's performance and robustness.

5. Conclusion

The widespread application of intelligent ro-
bots in industries, services, and other fields un-
derscores the critical need for these robots to 
efficiently and accurately navigate in dynamic 
environments. This study aims to enhance the 
visual navigation ability of mobile robots by 
constructing a visual navigation network based 
on the Neo model. This approach incorporates 
advancements in split-attention, cross-connec-
tion methods, and loss functions, enabling in-
telligent agents to extract essential information 
from input images. 
The results show that in case of average tra-
jectory length, the improved model exhibits a 
notably faster convergence rate in all four sce-
narios, reaching convergence at approximate-
ly 5 million training frames, with an average 
trajectory length of appoximately 10 steps. 
This marks a substantial reduction of around 
50% compared to the pre-improvement state. 
When compared to Baseline, LSTM Nav, and 
HAUSR, the improved model has an average 
improvement of 8%, 5%, and 6%, respectively, 
showing superior generalization performance. 
In terms of average rewards, compared with 
the other three models, the improved model 
has varying degrees of success. In the kitch-
en02 scenario, the improved model achieved a 
maximum improvement of about 0.4%, prov-
ing the good performance of the model. In the 
AVD dataset, the success rates of the improved 
model in the four navigation targets of Exit, 
Refrigerator, Table, and Couch were 32.3%, 
36.8%, 14.8%, and 12.6%, respectively. 
Notably, during real-world testing, the Neo Nav 
model and the improved model exhibit similar 
actions and routes for mobile robots. Howev-

er, the improved model achieves a reduction 
of two time steps for navigation and has fewer 
issues with collision and turning. This demon-
strates the effectiveness and better performance 
of the proposed method in the visual navigation 
of mobile robots. 
The research methodology involves a reduction 
in the residual module within the original basic 
network and the adoption of a novel cross-con-
nection method. These modifications enhance 
the network's capacity to leverage shallower 
target feature information, thereby increasing 
the network receptive field. Additionally, the 
method of loss calculation is improved to ad-
dress the issue of loss asymmetry, which can 
be influenced by the reference frame. This ad-
justment brings the inference network closer to 
the real posterior, enabling the agent to make 
optimal decisions in the current environment. 
This improved performance extends to various 
scenes, bolstering the development of visual 
navigation technology.
At present, the main difficulty of goal-driv-
en visual navigation lies in the generalization 
problem, which needs to be solved by making 
the agent understand the context relationship 
between the current environment and the tar-
get, transforming it into general knowledge. In 
dealing with some similar problems, past expe-
rience can be used, and in terms of information, 
the multi-modal fusion information can be used 
to extract the state of the current environment 
in order to perform navigation tasks more accu-
rately. In the future, the application of the visual 
navigation algorithms within real-world robot 
systems will be considered, with an emphasis 
on modifying the model to adapt to the changes 
in the scene, and to also improve portability and 
universality of the model.
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Experimental results show that the proposed 
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and 12.6%, respectively. The proposed research 
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model reduces the residual module of the basic 
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field. This helps to overcome the limitations of 
loss asymmetry caused by the reference frame, 
thus bringing the inference network closer to a 
true posterior. Additionally, the proposed meth-
od enables agents to make optimal decisions 
in the current environment, enhancing the net-
work's performance and robustness.

5. Conclusion

The widespread application of intelligent ro-
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derscores the critical need for these robots to 
efficiently and accurately navigate in dynamic 
environments. This study aims to enhance the 
visual navigation ability of mobile robots by 
constructing a visual navigation network based 
on the Neo model. This approach incorporates 
advancements in split-attention, cross-connec-
tion methods, and loss functions, enabling in-
telligent agents to extract essential information 
from input images. 
The results show that in case of average tra-
jectory length, the improved model exhibits a 
notably faster convergence rate in all four sce-
narios, reaching convergence at approximate-
ly 5 million training frames, with an average 
trajectory length of appoximately 10 steps. 
This marks a substantial reduction of around 
50% compared to the pre-improvement state. 
When compared to Baseline, LSTM Nav, and 
HAUSR, the improved model has an average 
improvement of 8%, 5%, and 6%, respectively, 
showing superior generalization performance. 
In terms of average rewards, compared with 
the other three models, the improved model 
has varying degrees of success. In the kitch-
en02 scenario, the improved model achieved a 
maximum improvement of about 0.4%, prov-
ing the good performance of the model. In the 
AVD dataset, the success rates of the improved 
model in the four navigation targets of Exit, 
Refrigerator, Table, and Couch were 32.3%, 
36.8%, 14.8%, and 12.6%, respectively. 
Notably, during real-world testing, the Neo Nav 
model and the improved model exhibit similar 
actions and routes for mobile robots. Howev-

er, the improved model achieves a reduction 
of two time steps for navigation and has fewer 
issues with collision and turning. This demon-
strates the effectiveness and better performance 
of the proposed method in the visual navigation 
of mobile robots. 
The research methodology involves a reduction 
in the residual module within the original basic 
network and the adoption of a novel cross-con-
nection method. These modifications enhance 
the network's capacity to leverage shallower 
target feature information, thereby increasing 
the network receptive field. Additionally, the 
method of loss calculation is improved to ad-
dress the issue of loss asymmetry, which can 
be influenced by the reference frame. This ad-
justment brings the inference network closer to 
the real posterior, enabling the agent to make 
optimal decisions in the current environment. 
This improved performance extends to various 
scenes, bolstering the development of visual 
navigation technology.
At present, the main difficulty of goal-driv-
en visual navigation lies in the generalization 
problem, which needs to be solved by making 
the agent understand the context relationship 
between the current environment and the tar-
get, transforming it into general knowledge. In 
dealing with some similar problems, past expe-
rience can be used, and in terms of information, 
the multi-modal fusion information can be used 
to extract the state of the current environment 
in order to perform navigation tasks more accu-
rately. In the future, the application of the visual 
navigation algorithms within real-world robot 
systems will be considered, with an emphasis 
on modifying the model to adapt to the changes 
in the scene, and to also improve portability and 
universality of the model.
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loss calculation method is also enhanced to im-
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Experimental results show that the proposed 
model achieved a maximum improvement of 
approximately 0.4% in the kitchen02 scenario, 
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in the AVD dataset, the success rates of the im-
proved model in navigating Exit, Fridge, Table, 
and Couch targets are 32.3%, 36.8%, 14.8%, 
and 12.6%, respectively. The proposed research 
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