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Abstract – Early identification of pancreatic ductal adenocarcinoma (PDAC) improves prognosis. Still, it is difficult since lesions are 
generally smaller and difficult to define on contrast-enhanced computed tomography images (CE-CT). Ineffective PDAC diagnosis 
has recently been achieved using deep learning models, but the output localized and identified images are of poor quality. This 
research focuses on small lesions and presents a new, efficient automatic deep-learning network model for PDAC detection. The 
Improved Deep Residual Convolutional Neural Network (IDRCNN) detects PDAC. The hyperparameter is optimized using the Tunicate 
Swarm Optimization Algorithm (TSOA) algorithm. A better diagnosis is made due to segmenting the surrounding anatomy structure 
effects, such as PD. We train a proposed IDRCNN model for segmenting and detecting lesions automatically using CE-CT images. 
Two more IDRCNN models are trained with the aim of investigating the effects of anatomy integration: (i) segmentation of tumor 
and pancreas (IDRCNN_TP), and (ii) segmentation of pancreatic Duct (IDRCNN_PD). The three networks' performance was assessed 
using an external, publicly available test set. Due to its effective classification results, the proposed method produces improved 
identification results for automated preliminary diagnosis of PDAC in cervical cancer clinics and hospitals. The performance of the 
proposed method is evaluated using a publicly assessable CT image dataset. It outperforms the existing state-of-the-art methods and 
achieved 98.67% accuracy, 97.26% recall, 98.52% precision, 97.65% sensitivity, and 98.45% specificity for pancreatic tumor detection.

Keywords: computed tomography, deep learning, surrounding anatomy, and PDAC detection

1.		 INTRODUCTION

The most prevalent kind of pancreatic cancer is pan-
creatic ductal adenocarcinoma (PDAC). It has the poor-
est prognosis among all cancers globally [1, 2]. Pancre-
atic cancer is becoming more common, and by 2030, 
it is anticipated to surpass lung carcinoma as the sec-
ond-most common reason for cancer-related deaths 
in Western societies. [3, 4]. Patients with early disease 
stages have a significantly higher 3-year survival rate 
(82%) than other patient groups [5]. At the time of di-
agnosis, about 80–85% of patients had either metastat-
ic or resectable disease since early detection of tumors 

is extremely rare [6, 7]. These facts clearly show that im-
proving patient outcomes requires the early identifica-
tion of PDAC [8, 9].

Early PDAC detection is difficult because most pa-
tients exhibit particular symptoms in the late stages of 
the illness, and a general population screening is pro-
hibitively expensive with currently available technol-
ogy [10]. Additionally, PDAC tumors are challenging to 
see on CT scans, the preferred method for early diagno-
sis, as the lesions have asymmetrical shapes and ill-de-
fined margins [11]. This presents a considerably greater 
issue in the disease's early stages because lesions are 
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frequently iso-attenuating and tiny (2 cm), making 
them readily missed even by seasoned radiologists [12, 
13]. According to a new study that tracked the course 
of pre-diagnostic PDAs' CT alterations, suspicious ab-
normalities could have been noticed 18 to 12 months 
earlier [14]. However, just 44% of patients were referred 
for additional study by radiologists because they were 
ineffective at spotting those alterations [15].

By utilizing large volumes of imaging data, artificial 
intelligence (AI) can help radiologists discover PDAC 
early [16]. CNNs are a subgroup especially effective at 
analyzing images among deep learning models. Using 
images has proven to be accurate in detecting numer-
ous types of cancer [17]. The significant features of the 
images are extracted by using CNN after completing 
the process of a series of convolution and pooling for 
diagnosis [18].

In the input image, clinically useful computer-aided 
diagnostic tools should be able to locate the lesion and, 
if cancer is present, determine its existence with rela-
tively little user involvement [19]. Deep learning meth-
ods are now being researched in diagnosing PDAC au-
tomatically [20]. However, several investigations only 
accomplish the binary classification without associated 
lesion location. We developed a more effective deep-
learning model for accurate PDAC lesion detection and 
localization in this research. We provide a completely 
automated deep-learning method; it produces highly 
accurate segmented tumor images in the result using 
abdominal CE-CT images. Additionally, we investigate 
the effects of integrating the surrounding anatomy.

The main contribution of the research is

•	 A segmentation-oriented approach is proposed in 
the present research on the process of PDAC diag-
nosis. The diagnosis and segmentation of PDAC are 
made using a new, effective deep learning-based 
IDRCNN model.

•	 For the detection and localization of PDAC, three 
distinct IDRCNN models were trained in this re-
search: (1) Tumor segmentation (IDRCNN_T), (2) Tu-
mor and Pancreas segmentation (IDRCNN_TP), and 
(3) Pancreatic Duct segmentation (IDRCNN _PD).

•	 The hyper-parameters of the networks are opti-
mized by using TSOA. The hyper-parameters of the 
proposed network model, such as the number of 
iterations, position angle, wide angle, population 
size, and end condition, are effectively updated by 
this optimization algorithm. This proposed network 
produced results with greater accuracy in the diag-
nosis of PDAC.

•	 The proposed method is evaluated on publicly ac-
cessible datasets. The experiments are performed 
on the Python platform. According to the experi-
mental data, the proposed approach outperforms 
the state efficiency concerning all other approaches.

The structure of the presented research is as follows: 
related prior research is shown and discussed in Sec-

tion 2. Section 3 provides a detailed explanation of the 
proposed methodology. The experimental findings 
and discussions are presented in Section 4. Finally, Sec-
tion 5 provides conclusions of the present research.

2.	  RELATED PRIOR WORKS

For PDAC detection, we review some recent deep-
learning models in this section. For the segmentation 
of pancreatic histopathological images, the first deep 
convolutional neural network architecture was devel-
oped by Fu et al. [21]. The two stages, including the WSI 
level and patch level, are used for the training process, 
and it is built on a two-step framework based on vari-
ous recognizing objects. The hidden features for the 
patch-level classification are extracted from the train-
ing set using the CNN model. The cancer regions are 
predicted and located using the U-Net for patch-level 
segmentation.

A new model was created by Qureshi et al. [22] to cat-
egorize people at high risk for PDAC by automatically 
recognizing pre-diagnostic CT images. Using radiomic 
analysis of images from the internal dataset, numerous 
characteristics that could be used as PDAC predictors 
were discovered. The identified predictors were then 
used to train the Nave Bayes classifier, automatically 
classifying CT scans into groups of healthy controls or 
pre-diagnostic individuals.

For PDAC mass and surrounding vessel segmenta-
tion in CT images, an approach based on CNN was pre-
sented by Mahmoudi et al. [23] while also integrating 
potent traditional features. Using the original image’s 
3D Local Binary Pattern (LBP) map, the pancreas re-
gion is first localized from the entire CT volume. Then, 
Texture Attention U-Net (TAU-Net) is used to segment 
PDAC mass. The benefits of both networks are then 
added together using a 3D-CNN ensemble model.

Transfer learning was utilized by Zhang et al. [24] 
to develop a CNN model for feature extraction from 
CT images. According to this study, most radiomics 
and transfer learning features show only marginally 
positive linear associations, indicating that these two 
feature sets may be complementary. Additionally, we 
evaluated feature fusion techniques to examine their 
predictive ability for overall survival.

A PDAC resection specimen's discrete cellularity re-
gions were examined by Jungmann et al. [25] using 
standard histopathology procedures. Iodine concen-
trations and regional tumor cellularity were matched, 
as were Hounsfield Units obtained from CT scans. 
The association between various levels of cellularity 
in traditional iodine map reconstructions and virtual 
monoenergetic is assessed using one-way ANOVA and 
pairwise t-tests. 

For high-accuracy automatic pancreatic segmenta-
tion, a different two-phase method was developed by 
Dogan et al. [26] using CT images. The developed ap-
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proach involves two steps: (1) Pancreas Localization, 
where The Mask R-CNN model is used to identify the 
approximate pancreatic location on the 2D CT slice, 
and (2) Pancreas Segmentation, where the candidate 
pancreatic area is further refined with 3D U-Net on the 
2D sub-CT slices created in the first stage to produce 
the segmented pancreas region.

To detect key characteristics and malignant growths 
in the pancreas in the CT images, Dinesh et al. [27] de-
veloped a deep learning-based approach for predict-
ing pancreatic cancer at an early stage. CNN and YOLO 
model-based CNN (YCNN) are developed in this paper. 
Images of pancreatic cancer are predicted using the 
CNN model. Additionally, to help with classification, 
we employ the CNN (YCNN) built on the YOLO con-
cept. The threshold parameters booked as markers are 
used for predicting the proportion of pancreatic cancer 
feasts and key CT scan characteristics.

Most of the existing research on PDAC detection 
and segmentation produces better results. However, it 
has some difficulties such as (i) Due to the enormous 
number of images needed for model training, a lot of 
computer memory is needed to prevent model crashes 
when the memory load is exceeded, (ii) additional time 
for training and highly complex process, and (iii) The 
segmented image quality is poor. To overcome these 
difficulties, we propose a new, effective hybrid deep 
learning network model in this research.

3.	 PROPOSED METHODOLOGY

3.1.	 Dataset Description

Model testing was conducted using two accessible 
abdominal CE-CT datasets that combined images from 
the portal venous phase: (1) From Memorial Sloan 
Kettering Cancer Centre in Manhattan, New York, the 
training set is created for "The Medical Segmentation 
Decathlon" pancreatic dataset. It has pancreas and 
lesion voxel-level annotations as well as 281 patients 
with pancreatic malignancies [32], and (2) From the 

Clinical Centre at the National Institutes of Health in the 
US, 80 people with a healthy pancreas are included in 
the "Cancer Imaging Archive" dataset, along with cor-
responding voxel-level annotations [33].

3.2.	 Image Acquisition and Labeling

Five scanners were used to get the CE-CT scans. The 
available image sizes were 1024 x 1024 pixels (10 imag-
es) or 512 x 512 pixels (232 images), and the slice thick-
ness ranged from 1.0 to 5.0 mm. Images with a reso-
lution of 1024 x 1024 were downscaled to 512 x 512 
before being used in the model creation. With 17 years 
of experience, a pancreatic radiologist in abdominal 
radiology evaluated and corrected all segmentations. 
The pancreatic duct, pancreas parenchyma, and tumor 
were all segmented in the annotations.

3.3.	 Automatic PDAC Detection 
	 Framework

For automatic PDAC diagnosis and localization, this 
work employs a segmentation-oriented method. In the 
proposed pipeline, the cutting-edge, effective auto-
matic medical image segmentation network known as 
IDRCNN is used to develop the proposed model. The in-
ference pipeline is depicted schematically in Fig. 1 from 
the initial picture input to the tumor.

For the non-PDAC and PDAC cohorts, pancreas-re-
lated manually extracted regions of interest (ROIs) are 
identified from the other anatomical features, training 
the anatomy segmentation network for separating the 
pancreas with the help of the PDAC cohort's recon-
structed ROIs from images. From the non-PDAC cohort, 
ROIs are automatically annotated by this network. With 
the manually annotated PDAC cohort, these non-PDAC 
cohorts are subsequently combined for training the 
three different IDRCNN models in the process of PDAC 
detection. The three different networks are (1) segmen-
tation of tumor only (IDRCNN_T), (2) segmentation of 
tumor and pancreas (IDRCNN_TP), and (3) segmenta-
tion of Pancreatic Duct (IDRCNN _PD). 

Fig. 1. An illustration of the proposed architecture for automatic PDAC detection
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The models were produced for each configuration us-
ing identical splits using five-fold cross-validation from 
these networks. The cross-entropy loss function is bet-
ter suited for segmentation-oriented detection tasks. It 
is chosen by default in the IDRCNN framework; it was 
employed for the PDAC detection networks. Addition-
ally, From the PDAC cohort, a low-resolution pancreatic 
segmentation network was trained using the complete 
CE-CT images that had been down-sampled to 256 × 
256. This was subsequently used during inference for 
extracting the pancreatic ROI automatically from hidden 
images. The segmented tumor images produced using 
models like IDRCNN_T, IDRCNN_TP, and IDRCNN_PD for 
PDAC detection display the image regions.

3.4.	 IDRCNN-TSOA based on training and 
	classification

In this research, the IDRCNN is applied for training 
and classifying data. The IDRCNN is often very effective 
at enhancing the classification process's reliability and 
accuracy. Several researchers have used CNN to recog-
nize PDAC from the provided images. This shows how 
CNN has made considerable progress in image process-
ing. One deep learning method that permits weights 
and biases to various elements of images is CNN. CNN 
performs better at classification and can extract the 
features automatically. In the area of computer vision, 
CNN offers more accurate classification. An advanced 
level of depth occurs due to the residual connection 
being established as the neural network gets deeper. 

Deep residual networks address the difficulties of 
network degradation, vanishing gradients, and explor-
ing gradients. To detect and localize PDAC lesions on 
CE-CT scans, IDRCNN is preferred. A loss function is pro-
duced during the IDRCNN process, and it can poten-
tially reduce the detection's performance. The hyper-

parameters should be modified for loss function reduc-
tion. The TSO algorithm is combined with the IDRCNN 
approach to adjust the hyperparameters. 

A residual network's usual design consists of various 
techniques and arranges the fundamental components, 
such as normalization of pooling, non-linear mapping, 
and convolution sequentially. As a result, the IDRCNN’s 
mathematical observation is considered as H(x). For fit-
ting the residual mapping, the residual function learned 
is known as F(x) and is shown in the equation below.

(1)

The output of a conventional CNN has been used to 
represent the final mapping’s residual learning. In Eq. 
(2), the convolutional method of calculation can be ex-
pressed;

(2)
The convolutional kernel size is represented as H1-1 

& W1-1, the number of keyframes is represented as m, 
the maximum number of iterations is described as (i&j), 
and the linear coefficient is represented by k and b.

Each image must train a convolution kernel before 
performing convolution processing. In general, accu-
racy and over-fitting issues affect the entire network 
due to the network's calculation efficiency and train-
ing speed. Different feature extraction algorithms are 
used for obtaining high-level features, which are more 
accurate due to the deep network structure. Batch nor-
malization (BN), which successfully eliminates gradient 
explosion and vanishing gradient, is added after each 
convolution layer. After a network has been modified 
to include a residual structure more suitable for solv-
ing these problems, the gradient is propagated more 
readily and effectively due to shortcuts. The IDRCNN 
network's structure is also shown in Fig. 2.

Fig. 2. The structure of the IDRCNN model
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Internal parameters of the IDRCNN are optimized, 
and each layer's weight values are assigned to it. An-
other challenge in the network is the selection of hy-
per-parameters.

The selection domains ∧1, ∧2,..∧n of each hyperparam-
eter are used to choose the assumed hyperparameters 
λ1, λ2, λ3,...λn. The model's domain space for selecting its 
hyper-parameters is then defined as ∧=∧1*∧2*..*∧n. Eq. 
(3) describes the hyperparameter optimization process;

(3)

Where a loss of function is represented L(.) , the train-
ing set is depicted as Dtrain, and the validation set is de-
picted as Dvalid. Manual and grid search (violent search) 
are the two most used hyperparameter optimization 
techniques. However, optimizing for hyper-parameters 
has always been laborious since they could be more ef-
ficient. Because of how they are structured in a search 
area intended for automatic modification, hyper-pa-
rameters must be manually initialized. The images are 
finally divided into various classes using the Softmax 
classifier. This classifier works well for multi-class clas-
sification issues in general. The expression presented 
below defines the function of the Softmax layer.

(4)

Where Vi represents the classifier's output value for 
class I, the number of classes is represented by c, and 
relative probability is defined by Si. The method deter-
mines the relative likelihood of each type's output re-
sult, and the class's most significant relative probability 
group determines the classification outcomes.

3.5.	 Hyperparameter Optimization 
	 Using TSOA

TSO completed adjusting the IDRCNN's hyperparam-
eter following the training and classification of data. 
The performance of the training approach is signifi-
cantly impacted by the hyper-parameters, which are 
crucial for influencing the training approach's behav-
ior. Due to the hyperparameter tuning, it was simpler 
to maintain a more significant number of experiments, 
and a better selection of hyperparameters resulted in a 
more efficient algorithm. In this suggested work, TSO is 
hybridized with IDRCNN to adjust the hyper-parame-
ters of the classification algorithm. The TSO algorithm is 
one of the metaheuristic optimization algorithms with 
a bio-inspired design. During foraging and navigating, 
this algorithm simulates the actions of the swarm and 
jet populations of tunicates. The optimization strategy 
determines the ideal values by choosing the parame-
ters for optimizing and describing the ranges to inves-
tigate. The ability of the tunicate to locate food sources 
has been described in the TSOA overview. 

In this research, the food source has been considered 
as an optimization technique. Knowing the search term 
in the given search area is necessary for the suggested 

optimization strategy to solve all optimization issues. 
For hyperparameter optimization, the IDRCNN uses the 
TSO algorithm as a result. When compared to selecting 
hyper-parameters manually, this optimization tech-
nique selects them quickly. This contributes to a better 
training process as well.

The number of iterations, position angle, wide angle, 
population size, and end condition have all been initial-
ized by TSOA. Here,  it is employed to determine the 
optimal position for the PDAC region while preventing 
conflict between the search agents.

(5)

(6)

(7)

Where G represents the target function in Eq. (6), and 
the search agent's flow of advection is considered by F 
in Eq. (7). Then C1, C2, & C3 have been regarded as search 
agent variables; therefore, a force between the search-
es agents are represented by , and Eq. (8) explains 
the calculation;

(8)

Where Pmaxmin represents the minimum and maxi-
mum intensity iterations. Thus, the neighbor search 
agent's position is determined by using Eq. (9);

(9)

The tumor region’s position is represented as , the 
distance of the location is depicted as , the posi-
tion of the tunicate is expressed as , the current 
iteration is indicated as x, and the random number is 
considered as rand in a wide range [0, 1]. The following 
equation in Eq. (10) has been calculated to keep the 
search agent in its position toward the best search;

(10)

Here, the search agent's updated position is .  
As well as being utilized for updating the tumor re-
gion’s position and location, the behavior of the TSOA 
has been proposed as a means of fine-tuning the hy-
perparameter of the IDRCNN. As a result, the following 
equation in Eq. (11) has been used to determine the 
behavior of the TSOA as the best global search;

(11)

Additionally, the global position value has been re-
garded as the IDRCNN's weight updating where the hy-
perparameters' wide range of values is [0, 1]. The TSOA 
may also cover temporal and space complexity. The 
proposed pseudo-coding algorithm's TSOA has been 
calculated as follows;
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Pseudo Code of IDRCNN-TSOA
Input: initialize the population size 
Output: optimal fitness value 
Initialize the hyperparameters{(λ1, λ2,...,λn ), }, 
and choose the Max number of iterations.
While (x<maxiteration)do
for all hyper-parameters
	 Compute fitness function ( )
	 Generate rand( ) with the range [0,1]
	 Update the search agent's position using equation (11)
If (rand ≤ 0.5)then
	
else
	
end if
	 Update  for the optimal solution until 
	 the best solution
end for
Update the hyper-parameters

x←x+1
end while
Return optimized hyperparameter value

The proposed IDRCNN-TSOA model assists in the best 
possible detection and localization of PDAC lesions. At 
this stage, the IDRCNN technique detects PDAC and the 
TSO algorithm is used to hyper-tune the parameters to 
minimize the obtained loss function. Thus, using the 
provided input pictures, the proposed IDRCNN-TSOA 
technique successfully segments the tumor, the tumor 
and pancreas, and the pancreatic duct.

4.	 RESULT AND DISCUSSION

This section covers the many performance metrics 
utilized to assess the suggested strategy and contrast 
it with the recent related previous approaches. We dis-
play the results of our experimental study on how cost-
sensitive learning affects categorization ability.

This research offers a thorough and systematic ap-
plication of deep learning methods (CNN) for precisely 
identifying and segmenting PDAC. Hybrid deep-learn-
ing models were used to classify and segment the CT 
image collection. The segmentation of PDAC images 
is developed using the hybrid IDRCNN-TSOA model, 
where the network training is done by using 70% of the 
dataset, and network validation is performed by using 
30% of the dataset. The i5 processor and 8 GB of RAM 
were the computer resources used to obtain the results 
on the Python platform. 

4.1.	 Performance Metrics

Recall, precision, sensitivity, specificity, and accuracy 
are performance metrics used to assess segmentation 
performance, given below.

(12)

(13)

(14)

(15)

(16)

For the PDAC diagnosis, the number of true positives 
is known as the TP. Similarly, false positives are repre-
sented as FP, the true negatives are represented as TN, 
and the false negatives are indicated as FN.

4.2.	 Analysis

The receiver operating characteristic (ROC) curve 
is employed for assessing patient performance. The 
free-response receiver operating characteristic (FROC) 
curve was used to assess lesion performance. The false 
positive rate (1-specificity) and actual positive rate 
(sensitivity) are contrasted within the ROC analysis 
at various model output thresholds to determine the 
model's confidence in the presence or absence of a tu-
mor, referred to as the tumor likelihood map's highest 
value. For every specific lesion prediction at different 
thresholds, the false positive rate versus the average 
number of true positives per image is plotted in the 
FROC analysis to determine whether the model cor-
rectly detected the lesion. 

The trained models were individually applied to 
testing the three PDAC-detection settings to compare 
them. The partial area under the FROC curve (pAUC-
FROC) and the area under the ROC curve (AUC-ROC) are 
then compared to determine whether there were any 
statistically significant changes. The statistical signifi-
cance was determined at a level of 97.5% confidence. 
Each configuration's final performance was identified 
by combining the models' forecasts.

4.3.	 Experimental Results

Table 1 displays the results of the internal five-fold 
cross-validation sets using the three different PDAC 
detection network setups. With an AUC-ROC of 0.993, 
IDRCNN_PD performs best at the patient level. All net-
works produce a similar pAUC-FROC for lesion local-
ization, with IDRCNN_PD and IDRCNN_TP performing 
somewhat better than IDRCNN_T.

Table 1. Internal five-fold cross-validation for each 
setup using the AUC-ROC and pAUC-FROC metrics

Configuration Mean AUC-ROC 
(95%CI)

Mean pAUC-FROC 
(95%CI)

IDRCNN_T 0.974 3.795

IDRCNN_TP 0.987 4.245

IDRCNN_PD 0.993 4.660
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Fig. 3 displays the mean FROC and ROC curves 
produced for each PDAC detection network design 
using the external test set, which correspond to the 
95% confidence intervals. These curves were pro-
duced for each configuration using the proposed 
IDRCNN model (with five-fold cross-validation). Com-
pared to training with just tumor segmentation, the 
findings on the external test set demonstrate that 
incorporating the pancreas parenchyma has a clear 
advantage at the patient level. Both IDRCNN_TP and 

IDRCNN_PD produced a significantly higher AUC-
ROC than IDRCNN_T. The IDRCNN_TP and IDRCNN_
PD networks performed identically, nevertheless. In 
contrast, the three FROC curves clearly distinguished 
themselves at the lesion level across the whole test 
set (Figure 3), with pAUC-FROC being significantly 
greater for IDRCNN_PD than for the other two con-
figurations. For localizing PDAC lesions, this displays 
how the incorporation of surrounding anatomy im-
proves the model's capabilities.

Fig. 3. Curves for the mean ROC and FROC for the external test set.

Fig. 4. Results of experiments using the proposed 
approach

In the instance of a pancreatic duct-obstructing iso-
dense lesion, the benefit of anatomical integration is 
demonstrated in Fig. 4 and causes it to enlarge. Given 
that the tumor and healthy pancreatic parenchyma can-
not be distinguished from one another, the IDRCNN_TP 
and IDRCNN_T models are unable to detect this lesion. 

The dilated duct termination, however, allows IDRCNN_
PD to locate its position in the pancreas precisely. In 
the pancreas parenchyma, the neural model can con-
centrate more on the remaining regions by the duct's 
segmentation through supervised training; this could 
be responsible for its capacity to identify small tumors. 
Additionally, the radiologist can interpret the network 
output regarding the tumor with the help of the multi-
structure segmentation offered by IDRCNN_PD.

The proposed CNN architecture produces A high 
segmentation rate, making it the most efficient system 
for providing segmentation results based on CT im-
ages with the largest dataset of images used ever. The 
suggested model successfully extrapolates traits that 
describe the inter-scale heterogeneity of the illnesses, 
enhancing classification performance.

In the proposed segmentation network model, the 
residual connections make it easier to train deeper 
networks, which is crucial for capturing complex spa-
tial relationships in images. The skip connections aid in 
the flow of gradients during backpropagation, making 
it feasible to train networks with many layers without 
suffering from vanishing gradients. Information from 
earlier layers can directly contribute to later layers, al-
lowing the network to reuse essential features, which is 
beneficial for tasks like image segmentation, where dif-
ferent levels of features are necessary. Based on these 
advantages, our proposed IDRCNN segmentation net-
work effectively segments the tumor region.
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4.4.	 Comparison Results

Our proposed model's PDAC identification findings 
are compared with those of earlier studies over CT im-
ages in this section. The performance comparison of 
the proposed and existing approaches are given in 
Table 2 regarding recall, precision, specificity, sensitiv-
ity, and accuracy.

This research created a completely automated sys-
tem for finding and locating PDAC tumors on CE-CT im-
ages using the cutting-edge, self-configuring medical 
segmentation framework IDRCNN. The effect of incor-
porating surrounding anatomy was examined as well. 
Abdominal CE-CT images have only a small area for 

the pancreas. And within that area, lesions are a much 
smaller target. These are used to make deep learning 
for PDAC detection extremely difficult. The entire CE-
CT images would be exceedingly resource-intensive for 
training and testing the networks and offer practical in-
formation about the other organs. In this method, it is 
required to pick a low level of interest surrounding the 
pancreas. Still, it would take more time and resources 
to physically annotate the pancreatic before process-
ing every image via the network, significantly reducing 
the model's clinical value. A smaller volume of interest 
is automatically extracted in the entire CE-CT images 
using our PDAC detection framework in the first step 
for solving this difficulty.

Table 2. Comparative analysis of proposed approach and state-of-the-art approaches

Reference Method Accuracy (%) Recall (%) Precision (%) Sensitivity (%) Specificity (%)

Mahmoudi et al. [23] TAU-Net 87.36 88 82 -  -

Tureckova et al [28] CNN 72.53 68 70 -  -

Si et al. [29] FEE-DL 82.7 81.27 84.61 -   - 

Qiu et al. [30] MSTA 86.02  - - 87.39 91.12

Ma et al. [31] CNN 95.47   - - 91.58 98.27

Althobaiti et al. [37] CNN-CTPCD 95.49 - - 91.50 98.64

Khdhir et al. [38] ALO-CNN-GRU 95 - - - -

Proposed Approach IDRCNN 98.67 97.26 98.52 97.65 98.45

For PDAC segmentation, TAU-Net and 2D attention 
U-Net were developed by Mahmoudi et al. [23]. From 
the whole CT volume, the pancreas region is localized 
by using a 3D-CNN architecture with the help of the 
original images 3D Local Binary Pattern (LBP) map in this 
paper. TAU-Net achieves 87.36% accuracy in detecting 
the PDAC. A CNN model with deep supervision and at-
tention gates was studied by Tureckova et al. [26], and in 
this paper, PDAC is detected with an accuracy of 72.53%. 
End-to-end deep learning (FEE-DL) developed by Si et al. 
[27] achieves 82.7% accuracy in detecting PDAC. Qiu et 
al. [28] studied a new MSTA (multi-resolution-statistical 
texture analysis) system for PDAC, which achieves an 
accuracy of 86.02%. For PDAC classification, a powerful 
CNN model was developed by Ma et al. [29]. It achieves 
a specificity of 98.27%, a sensitivity of 91.58%, and an 
overall accuracy of 95.47% for plain scans. Using CT 
images, an optimal deep learning-based pancreatic tu-
mor and non-tumor classification (ODL-PTNTC) model 
is developed by Althobaiti et al. [31], and it achieves an 
average sensitivity of 91.50%, specificity of 98.64%, and 
accuracy of 95.49 % for pancreatic disease classification. 
For CT image-based pancreatic tumor segmentation 
and classification, the Antlion Optimization-Convolu-
tional Neural Network-Gated Recurrent Unit (ALO-CNN-
GRU) model was developed by Khdhir et al. [33], and it 
achieves an overall accuracy of 95% for pancreatic tumor 
classification. Our proposed IDRCNN model achieves a 
high performance with specificity of 98.45%, sensitivity 
of 97.65%, accuracy of 98.67%, recall of 97.26%, and pre-
cision of 98.52%.

Compared to the prior models, the proposed IDRCNN 
model achieves better results, and it effectively identi-
fies the PDAC and segments the region of the tumor, 
pancreas, and pancreatic duct. The essential advantage 
of the proposed IDRCNN model is that it avoids over-
fitting and has no detrimental effects on network per-
formance due to the classification and segmentation 
process.

The proposed DRCNN model optimizes the flow of 
information through both convolutional and residual 
connections; it could lead to improved gradient flow 
during training. This could result in faster convergence 
and better generalization performance than CNN 
models. In the TAU-Net model, the texture attention 
mechanisms can introduce additional computational 
complexity and memory requirements. This might re-
sult in slower training and inference times, making the 
architecture less suitable for real-time applications or 
resource-constrained environments. Still, our proposed 
approach utilizes minimum memory requirements and 
low com computational complexity. The quality of the 
input images influences the effectiveness of multi-res-
olution analysis. Poorly captured images, noise, or arti-
facts can affect the accuracy of texture analysis at dif-
ferent scales. Hence, our proposed approach produces 
defective lesion regions with high-quality images dur-
ing segmentation.

The end-to-end automatic diagnosis is performed by 
the proposed system, which is a significant advantage 
of this research, and the time it takes for each patient to 
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obtain a diagnosis after entering the initial abdomen CT 
image is 18.6 seconds. It is appropriate for clinical usage 
with significant promise for evaluating and recommend-
ing treatments since it can manage and usefully interpret 
vast volumes of data quickly, correctly, and affordably. 
The model, for instance, may be used to help diagnose 
patients in low-level hospitals with limited resources or 
for widespread pre-diagnosis during physical examina-
tions. The model's capacity to generate saliency maps, 
highlighting the region's most crucial to its diagnostic 
decision-making, is a last feature that can increase its 
dependability. While clinicians have access to additional 
data, such as patient health records and testimony, our 
method only uses evidence from CT images. As a result, 
definitive diagnoses and treatment plans should still be 
based on the clinical evaluation of specialists, not just 
the output of a deep-learning system.

5.	 CONCLUSIONS

In CE-CT scans for tumor localizing, this research 
develops an effective and automatic deep-learning-
based network model to localize the tumor in CE-CT 
scans and determine if a patient has PDAC. To precisely 
detect and localize PDAC tumors, the novel, effective 
IDRCNN model is employed. The maximum AUC of 
0.961 is acquired by the proposed model, demonstrat-
ing that our proposed approach is an effective tool for 
recognizing tiny PDAC lesions and may help support 
radiologists in the early diagnosis of PDAC. In addi-
tion, we demonstrate that adding local anatomical in-
formation considerably improves model performance 
regarding lesion localization. The performance com-
parison demonstrates that while the proposed IDRCNN 
model adds a small amount of computing overhead, 
the performance is significantly improved. Finally, our 
automatic system has proven effective at detecting 
PDAC, making it more versatile than the current state 
of the art while still performing on a level with more 
specialized techniques.

In our future research, we will use the combination 
of two deep learning models for PDAC detection and 
also perform segmentation of several surrounding ana-
tomical structures of the tumor.
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