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Abstract – This paper presents a novel approach for emotion recognition (ER) based on Electroencephalogram (EEG), Electromyogram 
(EMG), Electrocardiogram (ECG), and computer vision. The proposed system includes two different models for physiological signals 
and facial expressions deployed in a real-time embedded system. A custom dataset for EEG, ECG, EMG, and facial expression was 
collected from 10 participants using an Affective Video Response System. Time, frequency, and wavelet domain-specific features were 
extracted and optimized, based on their Visualizations from Exploratory Data Analysis (EDA) and Principal Component Analysis (PCA). 
Local Binary Patterns (LBP), Local Ternary Patterns (LTP), Histogram of Oriented Gradients (HOG), and Gabor descriptors were used 
for differentiating facial emotions. Classification models, namely decision tree, random forest, and optimized variants thereof, were 
trained using these features. The optimized Random Forest model achieved an accuracy of 84%, while the optimized Decision Tree 
achieved 76% for the physiological signal-based model. The facial emotion recognition (FER) model attained an accuracy of 84.6%, 
74.3%, 67%, and 64.5% using K-Nearest Neighbors (KNN), Random Forest, Decision Tree, and XGBoost, respectively. Performance 
metrics, including Area Under Curve (AUC), F1 score, and Receiver Operating Characteristic Curve (ROC), were computed to evaluate 
the models. The outcome of both results, i.e., the fusion of bio-signals and facial emotion analysis, is given to a voting classifier to get 
the final emotion. A comprehensive report is generated using the Generative Pretrained Transformer (GPT) language model based 
on the resultant emotion, achieving an accuracy of 87.5%. The model was implemented and deployed on a Jetson Nano. The results 
show its relevance to ER. It has applications in enhancing prosthetic systems and other medical fields such as psychological therapy, 
rehabilitation, assisting individuals with neurological disorders, mental health monitoring, and biometric security.

Keywords: Emotion Recognition (ER), Analysis of Mental Health, Feature Fusion, Machine Learning (ML), Computer Vision,  
 Physiological Signals

1.  INTRODUCTION

Emotion recognition (ER) is a fascinating field that 
aims to identify and understand human emotions 
through different modalities, such as facial expressions, 
speech, physiological signals, and behavioral patterns. It 
has become a research topic in areas such as medicine, 
machine learning (ML), and psychology [1]. ER technolo-
gy can potentially be used in prosthetic arms to improve 
their usability and functionality, including adjusting their 
sensitivity and responsiveness for prosthetic arm wear-
ers. Facial emotion recognition (FER) finds relevance in 
numerous applications, including identification pro-
cesses for citizenship, identification cards, social security 
cards, and even intrusion detection [2]. Two prominent 
approaches in this domain are ER using physiological 
signals and FER using the ML model. Many FER systems 

employ ML techniques to recognize accurate emotions. 
One such ML-based FER system is proposed in [3], which 
constructs a multi-layer classifier based on a carefully cu-
rated dataset of 7 individuals, employing Haar-cascade 
features and histogram of oriented gradients (HOG) for 
feature extraction while employing Support Vector Ma-
chine (SVM) as the classifier. 

Emotions can be recognized using different physio-
logical signals, namely Electroencephalogram (EEG), skin 
temperature, Electrocardiogram (ECG), Electromyogra-
phy (EMG), blood pressure, respiration rate, heart rate, 
Blood Volume Pressure, and Galvanic Skin Response, but 
the collection and processing of these signals become 
hard due to some added noise. For our system to work 
as intended, filtering these signals is necessary. Physi-
ological signals, namely ECG, can reflect the relationship 
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between changes in emotions and heartbeat. Different 
emotions can be recognized by extracting heart rate 
variability (HRV). In the field of emotion identification, 
EEG signals are getting more attention day by day as 
they accurately reflect the feelings of any person. Sig-
nals collected from peripheral nervous systems, includ-
ing ECG and EMG, can also be used for the same [4]. The 
studies in brain-computer interface (BCI) with different 
techniques that recognize emotions mostly made use of 
EEG, as EEG responds in time and is sensitive to changes 
in affective states [5]. EMG-based systems for ER have 
the capability to identify a person’s genuine emotions.

ER systems can prove useful for understanding some-
one’s emotional state and for achieving better communi-
cation. Harnessing the power of computer vision and ML 
advancements, researchers and developers are now uti-
lizing facial expression analysis to automate ER processes 
with remarkable precision. Multimodal emotional datas-
ets can be used, or the fusion of two or more signals im-
proves accuracy and provides the relationship between 
different bio-signals. These signals can be fused together 
for the unique identification of emotions. Fusion of EEG, 
ECG, and EMG signals can be done to achieve better per-
formance. Among the diverse approaches in this domain, 
FER holds particular significance.

In this paper, a multi-model system is proposed that 
considers the features from both the fusion of EMG, 
ECG, and EEG and facial expressions. The subsequent 
sections delve into the process of implementing it, aim-
ing to contribute to the development of a more robust 
and reliable system.

2. RELATED WORK

Researchers have done notable research in the do-
main of ER using bio-medical devices due to their 
potential applications in various areas such as mental 
health and human-computer interaction. Hwang et al. 
made use of the SEED dataset, a publicly available data-
set, recorded from 15 participants. The sample rate for 
the EEG signal was chosen as 1000 Hz [6]. Ferdinando 
Hany et al. made use of the ECG signals, which were 
taken from the Mahnob-HCI database, containing re-
cords of 27 participants, while participants were shown 
images and videos [7]. A 32-channel EEG was recorded, 
and a sampling frequency of 256 Hz was used in [8]. 
A diagram and positioning of electrodes over the face 
for EMG and experimental setup have been proposed 
in [9], which helps in getting insight into montage 
placement. According to research, EEG signals can be 
acquired using silver chloride electrodes. The EEG sig-
nal has a relatively low amplitude (5–500 uV), making it 
difficult to capture and evaluate. As a result, an ampli-
fier was used to amplify the signals to a desirable level, 
which helped in achieving better accuracy [10]. 

Kumar Nitin et al. collected data from participants us-
ing music and videos as external stimuli, with almost 
40 trials for each participant. 32 electrodes were placed 

according to a 10–20 worldwide system for EEG with 
a sampling frequency of 512 Hz. Down-sampling was 
initially carried out from 512 to 128 Hz. The Noise was 
removed using a bandpass filter in the frequency range 
of 5–45 Hz. A Butterworth filter was used for the filter-
ing signal [11]. Signals, which were collected using 16 
channels PowerLab with a sampling rate of 400 Hz, 
were filtered by a digital notch filter at a frequency of 
50 Hz [12]. HoSeung Cha et al. used a Riemann mani-
fold for feature extraction, and a pattern recognition-
based myoelectric interface was built based on Linear 
Discriminant Analysis (LDA) implementation. Recall, 
F1 score, and precision were calculated for concluding 
LDA adaptation conditions. The various results were 
successfully reflected in the user's current state be-
tween virtual and real [13]. Time domain characteristics 
such as First and Second differences, Root mean square, 
Line length, Signal power, and Total Wavelet Energy, 
Frequency domain characteristics such as Dominant 
frequency, Total Wavelet Energy, and entropy-based 
characteristics such as spectral entropy, Shannon en-
tropy, and sample entropy were employed, as well as 
various classifier techniques including SVM, ANN, and 
Naïve Bayes were used for classification in [14]. Silvio 
Barra performed feature extraction using a* peak de-
tection method. The ECG signals were characterized 
by detecting repeating peaks consisting of Q, R, and S 
waves [15]. An analysis was performed by the authors 
using Normalization, mean, and standard deviation of 
the original signal for all 11 channels [16]. 

Many researchers have utilized a variety of validation 
and searching techniques to optimize the classification 
process. Different classification techniques were used 
and reviewed in [17]. In [18], the Bio Vid Emo DB dataset 
was used to validate the proposed method. The experi-
mental conditions included a classifier, namely SVM 
using the RBF kernel, which obtained a 79.51% maxi-
mum accuracy in differentiating positive and negative 
emotions. P. Sarkar et al. fed emotion identification 
weights into a neural network with fully connected 
layers that were trained to categorize emotions. Data-
bases like Dreamer, Seed, and Swell were used to test 
the results, with the maximum being an improvement 
over the 96.9% accuracy [19]. Min Chen et al. [20] used 
a minimal quantity of multimodal labeled data; the 
proposed LLEC first trains the neural network model. 
The unlabeled data is then automatically labeled and 
added to the training set, utilizing improved hybrid 
label-less learning to boost model detection accuracy 
even more. Wu et al. [21] developed a prototype of a 
wearable emotion-detection headband using EEG. The 
temporal window of 0.5 to 4 sec is suggested, with a 
short delay of <1 sec in between the 5 bands of the sig-
nal. The prototype included an EEG- measuring front 
end in the form of a headband for acquiring and pre-
amplifying EEG data. Ante Topic et al. [22] built a model 
showing that the holographic feature map technique 
clearly outperforms topographic feature maps. 
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A successful expression recognition system has the 
potential to have robust features to effectively recog-
nize the face's appearance [23]. Alghamdi et al. gave 
a comparison between various technologies that can 
be used for facial recognition. Types of detection al-
gorithms like SVM, the Viola-Jones (VJ) algorithm, the 
Kanade Lucas Tomasi algorithm, the AdaBoost algo-
rithm, the hybrid face detection algorithm, and the 
Elman Neural Network have been introduced [24]. Li 
et al. discussed the future development direction and 
potential application prospects of FER. Techniques like 
Principal Component Analysis (PCA) and LDA have 
been discussed. For classification, SVM, Ada-boost, 
small samples, and neural network techniques were 
compared. Some deep learning-based techniques 
were also reviewed [25]. He et al. proposed Laplacian-
faces, which are based on the Laplacian Eigenmaps 
approach. Laplacianfaces is an algorithm utilizing the 
Laplacian Eigenmaps approach for face recognition 
by constructing a graph using the similarity of the 
face images, which is then used to compute the ei-
genfaces [26]. The paper [27] focuses on conducting a 
comparative analysis of various convolutional neural 
network (CNN) architectures for face recognition. The 
authors emphasize the significance of face recogni-
tion in numerous applications and highlight the grow-
ing use of CNN in this field. It provides an overview of 
popular CNN architectures, including AlexNet, VGGNet, 
GoogLeNet, and ResNet, explaining their design prin-
ciples and features relevant to face recognition. The 
authors conducted experiments by training and evalu-
ating the selected CNN architectures on the dataset, 
employing evaluation metrics like accuracy, precision, 
recall, and F1 score to assess performance. 

Chowdary et al. discussed various deep-learning ap-
proaches used for FER. This includes CNN, Recurrent 
Neural Networks (RNN), or a combination of both. The 
authors described the architecture and configuration 
of the neural network used in their study. The authors 
also explained preprocessing techniques applied to the 
images, such as normalization or data augmentation, 

to enhance the performance of the model. The training 
process of the deep learning model, including details on 
the optimization algorithm, loss function, and hyperpa-
rameter tuning has been presented in [28]. In [29], two 
databases named Bosphorus Face Database (consisting 
of 4666 face images of 105 subjects) and the University 
of Milano Bicocca (UMB) Face Database (consisting of 
1473 face images of 143 subjects) were used. Multiple 
ML models were tested on them. Enhancement attacks 
like blurring, sharpening, histogram equalization, and 
median filtering; geometric attacks like rotation and 
cropping resizing; and noise attacks like Gaussian at-
tacks, speckle attacks, and poison attacks were imple-
mented. Koonsanit et al. created a framework for ER by 
capturing the facial images of users. Facial expressions 
were categorized into seven categories, i.e., Angry, Dis-
gust, Fear, Happy, Sad, Surprise, and Neutral. Classifiers 
like SVM, Logistics Regression (LR), K-nearest neighbor 
(KNN), and Multi-Layer Perceptron (MLP) were used 
[30]. Liu et al. collected a custom dataset for EEG signals 
from 16 participants. Higuchi Fractal Dimension (FD) 
Spectrum was used for analyzing non-linear properties 
of EEG signal [31]. Ergin et al. used the Empirical mode 
decomposition (EMD) method for EEG signals, to obtain 
Intrinsic Mode Functions (IMFs). Previously used meth-
ods have been described in Table 1. 

Numerous solutions have been put forth for ER 
through the utilization of physiological signals. How-
ever, these methods have limitations, which call for fur-
ther research to improve their effectiveness. Through 
using a multi-modular system, a more robust and re-
liable system can be obtained. The contemporary ER 
system includes the use of music, games, and videos 
as external stimuli, with the assembly including a com-
plex module for analysis where the limitations include 
poor performance in participant-independent ER. This 
results in reduced robustness and increases the chance 
of misdiagnosis or biased decisions. Also, the use of 
deep learning techniques results in complex models 
requiring more resources to deploy in real-time.  

Ref No. Year Signal Dataset Algorithm Performance

[6] 2020 EEG SEED

Input signal -> Band-pass filtering -> Short-Time Fourier 
Transform (STFT) -> Applying single-task DNN, multi-
task DNN and adversarial DNN -> Model performance 

evaluation

Accuracy- 75.31%

[9] 2014 EMG, ECG, GSR Custom

Data acquisition of EMG, EEG and GSR signals using 
audio-visual stimuli -> Filtering using notch filter and 

average filter -> Applying Higher order statistics (HOS) 
for feature extraction -> Classification using KNN

Accuracy- 69%

[31] 2014 EEG Custom, DEAP
Data acquisition for EEG signal from 16 subjects -> 

Higuchi Fractal Dimension Spectrum -> Classification 
using SVM -> Validation on DEAP dataset

Accuracy- 85.38%

[32] 2019 EEG Custom

Data acquisition for EEG signal from 25 subjects -> 
Filtering of data -> Empirical Mode Decomposition -> 
Selection of intrinsic mode functions -> Classification 

using SVM

Accuracy- 84.3%

Table 1. Review of previous technologies used for ER
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Thus, a need for a lightweight system using ML aris-
es. Even though the result of emotional identification 
is significant, further study is required to uncover the 
elements that may simply and efficiently recognize 
emotional patterns. The importance of a model that 
considers the various physiological signals together 
and makes decisions accordingly is taken into con-
sideration. As a result, to increase the accuracy and 
other performance parameters of the final result, a fu-
sion of EEG, ECG, EMG, and facial expressions was un-
dertaken. An Affective Response System (ARS), which 
is based on stimuli from sudden news, audio, video, 
speech, and sudden actions, was used to provide bet-
ter results. The physiological system proposes a better 
variable for choosing the Butterworth filter, window 
slicing techniques, Exploratory Data Analysis (EDA), 
and PCA.  The model based on facial expressions lever-
ages several feature extraction techniques to provide a 
comprehensive analysis of emotional states. Decision 
Tree, Random Forest, and Optimized Random Forest 
were selected as ML classifiers. The model was tested 
for various performance parameters using the f1 score, 
precision, accuracy, sensitivity, and Receiver Operating 
Characteristic Curve (ROC) curve. By incorporating ad-
ditional modalities, the proposed system potentially 
enhances the accuracy and reliability of ER systems, 
leading to more robust and reliable results.

3. METHODOLOGY

This paper presents an approach for ER by fusing 
physiological signals, including EEG, ECG, EMG, and 
facial expressions. The proposed system is organized 
into two distinct sections, with one dedicated to physi-
ological signals and the other to facial expressions. In 
the physiological domain, the system integrates signals 
from the EMG, EEG, and ECG, extracting relevant fea-
tures. Simultaneously, facial emotions were captured 
by analyzing facial cues from images. Emotions can 
be broadly categorized as positive, namely surprise 
and happiness, and negative, namely sadness, anger, 
and fear. This paper focuses on recognizing three emo-
tions, fear, neutrality, and surprise. The data utilized for 
this study was acquired from a sample of 10 healthy 
participants. The collected data was subjected to pre-
processing to remove any artifacts, followed by feature 
extraction. These features were carefully fused and op-
timized to form a comprehensive feature fusion vector, 
which would enable a more robust ER model. 

In the context of FER, a custom dataset was curated 
for the experiment. A model was trained using this da-
taset to classify the above-mentioned emotions. The 
final decision-making process involved a voting mech-
anism between the predicted facial emotion and the 
emotion inferred from physiological signals. The final 
result is the generation of a comprehensive medical 
report, facilitated by GPT-3, leveraging the combined 
insights from both physiological and facial expression 
data sources. This approach takes advantage of the 

strengths of both modalities, leading to more accurate 
and reliable ER outcomes. An overview of the proposed 
system can be seen in Fig. 1.

Fig. 1. Overview of the proposed multimodal ER 
system

3.1. IMPORTANCE OF ECG, EEG, EMG, AND 
 FACIAL SIGNALS

There is a need to understand why vision, EEG, ECG, 
and EMG were selected for this experiment before delv-
ing deep into the process of multimodal ER. Fusion of 
vision, EEG, ECG, and EMG signals is an interdisciplinary 
approach that combines physiological and behavioral 
data to gain a comprehensive understanding of human 
emotions. Together, these signals provide valuable in-
sights into how fear, surprise, and neutral emotions are 
represented and expressed.

3.1.1.  VISION

Visual information is one of the most prominent and 
informative source for understanding emotions. Facial 
expressions, body language, and eye movements are 
crucial indicators of emotional states. Fear and sur-
prise caused widened eyes, raised eyebrows, and open 
mouths. Neutral emotions typically result in neutral fa-
cial expressions. In neutral, there wasn’t any noticeable 
change in the facial expressions. The analysis of these 
visual cues provides insights into the intensity and type 
of emotion being experienced.

3.1.2.  EEG

EEG measures electrical activity in the brain and is 
particularly useful for studying cognitive and emo-
tional processes. Different brain regions and frequency 
bands are associated with various emotions and cogni-
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tive functions. Fear and surprise lead to increased activ-
ity in the amygdala and other brain regions associated 
with emotional processing, while neutral emotions 
have a more balanced brain activity pattern. EEG can 
capture these differences in neural activation during 
different emotional states.

3.1.3. ECG

The heart rate and heart rate variability are closely 
linked to emotional responses. ECG measures the elec-
trical activity of the heart and reflects changes in auto-
nomic nervous system activity during emotions. Fear 
and surprise typically lead to an increase in heart rate 
and reduced heart rate variability due to activation of 
the sympathetic nervous system ("fight or flight" re-
sponse). In contrast, neutral emotions often result in 
relatively stable heart rate patterns. ECG can quantify 
these physiological changes. 

3.1.4. EMG

EMG measures electrical activity in skeletal muscles, 
which provides information about facial expressions 
and emotional responses involving muscle contrac-
tions. Fear and surprise lead to increased muscle ten-
sion in the facial muscles, such as in the brows and 
around the mouth. Neutral emotions result in a more 
relaxed facial muscle state. EMG data can capture these 
subtle muscle activity changes.

3.2. MODEL BASED ON THE FUSION OF 
 PHYSIOLOGICAL SIGNALS

The model architecture was divided into six main 
parts: data acquisition, pre-processing, feature extrac-
tion, feature selection, feature fusion, and classifica-
tion. Each part plays a crucial role in the overall process 
of physiological ER. 

3.2.1. DATA ACQUISITION 

A well-designed setup was implemented to collect 
the physiological signals of the participants accurately. 
The setup for the physiological system differs depend-
ing on the type of biomedical devices used to detect 
the physiological signals, including EEG, EMG, and ECG. 

A custom dataset for all three ECG, EMG, and EEG 
signals for ER was collected. The emotions that were 
selected for the proposed model were fear, neutrality, 
and surprise. The channels were selected considering 
the effect of emotion on the lobes of the brain, the 
electrical activity of muscles, and the heart. In the case 
of 4-channel EMG, the frontalis and masseter muscles 
were used, which are described in Fig. 2(a) with the 
ground placed at the forehead. The ECG setup included 
a 2-channel electrode placed on the arm, as shown 
in Fig. 2(b). AgCl electrodes were placed at positions 
namely F3-F4, T3-T4, P3-P4, and O1-O2 for a 4-channel 
EEG, which can be seen in Fig. 2(c). Setup for each of 
the devices was carried out separately.

(a)

(b)

(c)
Fig. 2. Montages for (a) EMG, (b) ECG, and (c) EEG 

used in the System

The data acquisition setup included subject prepa-
ration and environmental setup. The chosen subjects 
were between the ages of 19 and 21, were healthy, 
and had no prior medical history. They were prepared 
in a manner to minimize any human artifacts. By ethi-
cal guidelines, all participants willingly signed consent 
forms before their involvement in the experiment. 

Participants were given experimental guidance at the 
start of the experiment and were asked to sit in a labora-
tory environment. An affective response system (ARS) was 
used for detecting and analyzing emotion in response to 
audio and video stimuli. Simultaneously, a video of each 
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participant was recorded, which was used for testing the 
facial model based on the physiological emotions. Dif-
ferent video clips corresponding to different emotions 
were shown to 50 people. Based on their voting, video 
clips with more than 90% votes were finalized for the ex-
periment. For each of the emotions, 3 clips were chosen, 
bringing the total to 9 clips with a length of 2 minutes. The 
clips chosen were carefully selected to induce the desired 
emotion. The data were recorded from 10 participants. 
While recording the data, each participant was asked to 
relax for one minute at the start of the experiment, then 
a signal was collected for two minutes while a video clip 
was shown to the participant. In this period of 2 minutes, 
the signal was recorded for 1 minute and 30 seconds, 
depending on the time for which emotion was induced. 
The subject was provided to rest in between each session 
for one minute, as described in Fig. 3. This process was 
repeated for each participant. For each emotion, every 
participant underwent three separate test sessions for 
signal acquisition, following an identical procedure that 
was repeated for ECG, EMG, and EEG measurements. Data 
were collected separately for the different signals. After 
collecting the signal readings, the data was exported as 
Excel sheets and formatted accordingly.

Fig. 3. Experimental setup for physiological signal 
acquisition of EEG, ECG, and EMG

3.2.2. DATA PRE-PROCESSING

In the process of bioelectric data collection, noise 
may be added due to the participant's body move-
ments, eye blinking, or other sources. Notch and But-
terworth filters were used to remove these artifacts. A 
default-frequency notch filter was maintained during 
the collection of data to remove artifacts from the sig-
nals. A notch filter was used to eliminate 50Hz supply 
frequency noise. The range of this band-stop filter was 
49–51 Hz. As shown in Fig. 3, a window of 90 seconds 
was selected to capture the signals generated by the 
subject when subjected to a particular emotion. The 
window size was based on noticing the frequency and 
changes in the signal during the emotion. It was cho-

sen as 5 seconds for EEG, EMG, and ECG, respectively. 
The culmination of all the windows was added to the fi-
nal Excel file, along with the other necessary steps such 
as imputing missing values and clearing out outliers. 
All the collected data was formatted according to their 
specific requirements, making it organized for feature 
extraction. The process flow for signal acquisition, pre-
processing, feature extraction, and classification is de-
scribed in Fig. 4, with the end result being an accurate 
classifier that recognizes emotions.

3.2.3. FEATURE EXTRACTION

Feature extraction extracts the different properties 
of signals. Different feature extraction techniques, do-
mains, and methods exist for bio-signal processing. For 
this experiment, time, frequency, and wavelet domain 
features were considered, as shown in Table 2. 

 3.2.3.1. TIME DOMAIN FEATURES

Signal properties that pertain to the temporal di-
mension are designated as time-domain features. 
These features are helpful in analyzing the temporal 
characteristics of signals. Root Mean Square, Integral, 
Variance, Mean Absolute Value, Amplitude Change, 
Difference absolute standard deviation value, Average 
Wavelength, Willison amplitude, Zero-Crossing, and 
Myopulse percentage rate were all taken into account.

 3.2.3.2. FREQUENCY DOMAIN FEATURES

In this domain, the signals are analyzed with respect 
to frequency rather than time. They provide insights 
into the spectral content of a signal. For the frequency 
domain, features, namely Mean Power, Mean Frequen-
cy, Frequency ratio, and total power were selected. 

 3.2.3.3. WAVELET DOMAIN FEATURES

The analysis incorporates techniques that examine 
the signal simultaneously in both time and frequency 
domains, offering a comprehensive and nuanced un-
derstanding of the signal characteristics. Wavelet de-
composition up to four levels was utilized to extract 
features from the signal. The chosen wavelet features 
include Mean, Standard Deviation, Energy, and Entropy 
of the coefficients. 

In addition, Kurtosis, Max-Min, and H2-H1 were com-
puted for each bio-electrical signal. The combination of 
these features with all the domain features resulted in a 
total of 35 features. These features were extracted from 
each channel of ECG, EMG, and EEG, whose details can 
be found in Table 2. 

Domain Features Extracted

Time domain Variance, Difference absolute standard deviation value, Willison amplitude, Zero Crossing and Myopulse percentage rate, 
Root Mean Square, Integral, Mean Absolute Value, Wavelength, Average Amplitude Change

Frequency domain Mean Power, Mean Frequency, Frequency ratio, Total Power

Wavelet domain Mean, Kurtosis, Standard Deviation, Energy and Entropy of the coefficients

Table 2. Selection of features according to different domains on a single channel for EEG, EMG, and ECG
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Fig. 4. Subject placement and laboratory setup for implemented workflow

3.2.4. FEATURE SELECTION AND FUSION

After extracting 35 features, for EMG (4 channel), the 
size of the feature vector was (280, 140) for a single par-
ticipant, and for EEG (4 channel EEG + 1 channel ECG), 
it was (1070, 175). EDA was performed on these ex-
tracted features to categorize them according to their 
importance in classifying emotions. 11 less important 
features based on visual inspection of mean and vari-
ance were removed. The final size of the feature vector 
becomes (280, 129) for EMG and (1070, 164) for EEG.

As the sampling rates for EEG and EMG were different, 
the number of data points generated was also differ-
ent. The number of data points generated for EEG and 
ECG was higher than for EMG. As a result, up-sampling 
(ups) and down-sampling (ds) techniques were used to 
prevent a biased model, as shown in Fig. 5. One such 
synthetic sampling technique is the Synthetic Minor-
ity Oversampling Technique (SMOTE), whose formula is 
given in (1). The SMOTE process involves identifying the 
S closest neighbors to every sample in the minority class 
and then using those neighbors to generate synthetic 
samples. This is achieved by computing the dissimilar-
ity between a sample from the minority class and one of 
its S nearest neighbors and multiplying it by a random 
number between 0 and 1 to generate a new synthetic 
sample with a slightly different feature set. This pre-
serves important information about the minority class 
and helps to improve model performance.

Fig. 5. EEG, ECG, EMG feature data with synthetic 
sampling

For a given sample from the minority class, denoted 
as w, SMOTE generates a synthetic y as:

(1)

where λ is a random number between 0 and 1, and 
neighbor_i is one of the nearest neighbors to w, where 
s is the number of neighbors to consider. The resultant 
matrix was formed after using the smote function on 
the EMG dataset.

Algorithm 1: Fusion of EEG, ECG and EMG features
Input: Subject-wise dataset on EMG, EEG and ECG
Output: Fusion Dataset for Model Training
Initialization
1: fv(EMG,EEG,ECG)←No. of feature vector
2: Nn←Nearest Neighbours of a Sample
3: kN(class samples)←Minority Samples
4: N←No. of Samples
5: Compute N1 ←Number of Classes
6: if fv(EMG)<fv(EEG,ECG)  then
7: fvo ← Split fv(EMG) into N1 frame
8: end if
9: for i==class do:
10: if kN≥Nn then
11: pre set ←kN(i) ∶N(Classes-i)
12: smote (y) ← Ups(pre set)
13: emg (y1) ←y+fvo 
14: if y1<fv(EEG,ECG) then
15: N2 ←fv(y1)
16: y2←ds[N(EEG,ECG)]
17: end if
18: end if
19: end for
20: Final model= y1+y2
21: return Final model
end

The EMG dataset was first divided into training and 
testing sets before applying SMOTE. The subsequent 
technique was only applied to the training set. This 
training set was further split into subject-wise sets, and 
each test was further divided using labels assigned to 
the emotions.



48 International Journal of Electrical and Computer Engineering Systems

Fig. 6. Description of feature vector size at each 
step of the methodology

Considering a single participant, the feature vector of 
280 rows was split label-wise, resulting in the ratio for 
neutral, fear, and surprise being 90:96:94. This helped 
to separate out the data for each subject’s emotions. 
These were then randomly selected with a ratio of S: 
Majority class samples among the chosen emotion la-
bel vs. the rest of the labels, resulting in class unbalanc-
ing among the EMG labels for every subject.

The value of neighbor_i was observed to be 7. Hence, 
the initial minority input for each individual label S was 
chosen to be greater or equal to 7, i.e., 10. The resul-
tant ratio was 10:96, which was stored in a separate set. 
The Smote technique was subsequently applied to this 
dataset. The process occurred recursively for each sub-
ject's label, resulting in a unique ratio of 96:96.

The original feature vector was then appended to 
these synthetically generated sets, which resulted in a 
ratio of 184: 192: 190. This provided the final resultant 
training set for each subject as (566, 129) for the EMG. 

As the feature vector of the final resultant training set 
of EMG (566, 129) is less than the total size of the feature 
vector of EEG and ECG (1070, 164), a down-sampling tech-
nique was used. Random down-sampling was applied to 
the EEG dataset for each subject on separate labels to 
equalize the rows. This method randomly chooses a sub-
set of samples from the majority class to match the size of 
the minority class. This created separate datasets with the 
same rows and ratios as in the EMG set. These separate 
data frames were then appended together to form the fi-
nal resultant training set for each subject as (566, 164) for 
the EEG. The resultant training set for EEG, ECG, and EMG 
was merged to produce a fusion model for the recogni-
tion of emotions. This fusion model was further optimized 
for classification. The complete process of change in the 
feature vector size can be visualized in Fig. 6.

3.2.5. FEATURE OPTIMIZATION AND 
 CLASSIFICATION

Feature optimization is crucial in ER as it aims to 
enhance the accuracy and efficiency of classification 
models by selecting the most relevant and significant 
features from the dataset. Feature optimization stream-
lines the classification process, resulting in improved 
performance and a better understanding of emotional 
patterns by reducing dimensionality and focusing on 
essential attributes.

 3.2.5.1. FUSION DATASET

The resulting training sets for EEG, ECG, and EMG are 
amalgamated to form a fusion model capable of ER. 
The fusion set consisted of (3898, 292) samples. Feature 
vector tuning techniques were employed to further 
optimize this fusion set. 

A dimensionality reduction technique, PCA, was ap-
plied to the fused multi-dimensional dataset to reduce 
computational complexity and enhance classification 
accuracy. It was used to identify and extract the most 
significant features from the resultant fusion dataset 
into a new set of variables. Here, a set of 10 principal 
components was chosen, and the final optimized fea-
ture matrix was obtained, which was of size (3898,10).

Fig. 7. Schematic of the model representing systematic steps from subject placement to model testing
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The model testing was done in two stages. First, the 
individual datasets of EEG, EMG, and ECG were used 
and optimized. Secondly, the fusion model was used. 
The classifiers used were decision tree classifier, random 
forest classifier, and Optimized random forest. After per-
forming classification, the outputs of the classifiers were 
merged, followed by post-processing optimization. Dif-
ferent performance parameters were calculated, includ-
ing accuracy, F1-score, precision, recall, ROC, and Area 
Under Curve (AUC). The complete process for physiolog-
ical signal-based ER is illustrated in Fig. 7.

3.3. MODEL BASED ON FACIAL EXPRESSIONS

The facial model architecture was implemented in four 
main steps: facial data acquisition, image pre-processing, 
feature optimization, and classification. Each part plays a 
crucial role in the overall process of physiological ER. 

3.3.1. FACIAL DATA ACQUISITION

A custom dataset was created for the face detection 
process. Sample images are illustrated in Fig. 8. The 
data acquisition includes participants exposed to a va-
riety of stimuli and scenarios carefully designed to elicit 
specific emotions. A total of 10 participants were cho-
sen, and video clips for various emotions were shown 
to them. As participants responded to these stimuli, 
their facial expressions were captured by the camera, 
resulting in a diverse dataset of facial images depict-
ing different emotional states. This dataset consisted of 
face images captured against a uniform background. 
Firstly, normal images capturing various facial expres-
sions were obtained. These images were then cropped 
manually to isolate the face region for more precise fa-
cial feature analysis. A total of 4,000 facial images were 
collected. These facial images were then categorized 
into four emotions, namely fear, surprise, neutral, and 
"other emotion". To enhance the visibility of facial cues 
during data acquisition, appropriate lighting condi-
tions, facial angles, distances, and orientations were 
maintained. This ensured the proper capture of facial 
cues during each emotion. 

(a) (b)

Fig. 8. Images for (a) fear and (b) neutral in the 
dataset

3.3.2. DATA PRE-PROCESSING

The collected images were resized to 64x64 and con-
verted from RGB scale to grayscale for the facial dataset. 

To enhance the system's generalization capability, 
further preprocessing was performed on the images, 
including normalization, standardization, and histo-
gram equalization. Fig. 9 depicts the output of the pre-
processing stage. This pre-processed dataset was subse-
quently partitioned into training, testing, and validation 
sets, which were then forwarded for feature extraction.

(a) (b)

Fig. 9. Pre-processed images 

3.3.3. FACIAL FEATURES

Facial features represent the different properties and 
characteristics of facial images. Different techniques 
were used for extracting the required facial key points 
from the dataset. To select the features from the face, 
different techniques were studied that focused on ex-
tracting texture and shape information. Gabor filters, 
Histograms of Oriented Gradients (HOG), Local Binary 
Patterns (LBP), and Local Ternary Patterns (LTP) filters 
were selected and applied to the pre-processed im-
ages to extract facial landmarks. The selection of these 
features was based on their effectiveness in capturing 
multiple aspects of facial expressions. 

The pre-processed dataset images were passed 
through the feature extraction filters, and the resulting 
features were used to train a classification model. In the 
presented method, techniques for feature extraction, 
namely Gabor, LBP, LTP, and HOG, were used. These 
techniques were designed to capture different aspects 
of facial expressions, such as texture, shape, and spatial 
relationships between facial features. The method of 
feature extraction is illustrated in Fig. 10.

Fig. 10. Facial feature extraction

HOG was used to detect edges and oriented features 
in images. It detected the presence of facial expres-
sions such as smiles, frowns, and raised eyebrows. This 
was achieved by detecting the changes in orientation 
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and gradient magnitude of the facial features. The ap-
plied HOG filter with a cell size of 16*16 pixels on the 
pre-processed image obtained a vector size of (1,700). 
LBP captures the texture information of the image and 
detects facial expressions such as wrinkles, dimples, 
and other small facial features. These features were ex-
tracted by comparing the neighboring pixels' values 
and their intensities. LTP, a variant of LBP, captures the 
texture information of an image in a more robust way. 
It helped to detect facial expressions that involve sub-
tle changes in texture, such as those associated with 
emotions such as surprise and fear. Gabor features, de-
rived from Gabor filters, were used to detect features at 
different scales and orientations. It detected the pres-
ence of facial expressions such as wrinkles, creases, and 
other fine details that are associated with emotions 
such as fear and surprise. The features mapped from 
the GABOR came around to (1,200). 

The resulting feature vectors from all four feature ex-
traction methods were concatenated to form the final fea-
ture vector that represents the facial expression. The final 
feature vector had a size of (21445, 964) and was then op-
timized for better performance using PCA and K-Means.

3.3.4. FEATURE OPTIMIZATION AND  
 CLASSIFICATION

The optimization of the facial features involved two 
steps, i.e., clustering and feature selection. K-Means was 
used for clustering the extracted data features. The num-
ber of clusters K is a hyperparameter, which was chosen 
as 18, based on the elbow plot. This technique helped 
to group the similar facial emotion feature set together, 
which was then split into six histogram bins for creating 
feature columns. These feature columns were further 
optimized using PCA to select important features and 
reduce their dimensionality, making them easy for fur-
ther processing. Features representing 95% of the total 
variance contributed by 13 principal components were 
chosen to create a lower-dimensional representation of 
the data that still retains most of the important informa-
tion. The results were then used as input for a classifier 
for better classification performance. The implementa-
tion stages for the facial model are illustrated in Fig. 11. 

Fig. 11. FER process

Classification techniques like KNN, XGBoost, Random 
Forest, and decision trees are employed on the opti-
mized feature vector. Decision trees recursively split 
the input space to form a tree-like structure for class 
prediction. KNN, which used k-nearest neighbors was 

initialized with a value of 59. For Random Forest, mul-
tiple decision tree predictions were combined to yield 
a more robust outcome, and it was initialized with 100 
features. Similarly, XGBoost, an advanced gradient 
boosting algorithm, utilized 100 decision trees in each 
iteration, with the best one being 73. These techniques 
were then applied to the facial dataset for classification 
based on the provided labels. The models were trained 
on the extracted features, and their performance was 
subsequently evaluated.

3.4. VOTING BASED DECISION AND 
 IMPLEMENTATION ON JETSON NANO 

The facial and bio-electric fusion models were care-
fully selected with the consideration that the system 
needed to be deployed in real-time, aiming for a bal-
ance between performance and time requirements. In 
the video capture process, where subjects displayed 
specific emotions, the video stream was segmented 
into individual frames.

Algorithm 2: Voting based Decision on the 
 Candidate Emotions

Input: Video input from camera & Raw input from the 
Datasheet
Output: Voting based Decision on the final output
Initialization
f(x) ← features for face emotion, f(y) ← features for    
bio-emotion
r ← ROI (Face)
fe(m) ← Facial Emotion Trained Model
be(t) ← Fused Bio-Emotion Trained Model
1: for frame f(x,y) in video input 
2: if frame then
3: f(y) ← Feature Extraction (Signal Input) 
4. Pred_bio_emotion ← be(f(y))
5: ROI ← Haar Cascade(Frame)
6: if face=True then 
7: Op ← Feature Extraction (ROI)
8: Pred_f ← fe(Op) 
9: end if
10: end if
11: end for
12: Count Number of Pred_f & Pred_b
13: final decision = Max vote(emotion)
14: return final decision
end

Accurate real-time ER relies on the identification and 
interpretation of human facial expressions, making 
the localization of the face within each frame crucial 
to identifying the Region of Interest (ROI). To accom-
plish this, the Haar Cascade Localization technique 
was employed for face detection. Once the face was 
successfully recognized through the HAAR cascade, 
the captured image underwent pre-processing, includ-
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ing feature extraction and filtering. This pre-processed 
data was then fed into a classification model, allow-
ing the real-time prediction of emotions based on this 
comprehensive facial analysis. A review of facial model 
implementation is given in Fig. 12.

Fig. 12. Complete implementation of facial model 
from data acquisition to model classification

Jetson Nano was selected as the embedded devel-
opment board as it is suitable for handling real-time, 
scalable ML models. Here, a Logitech C270 camera was 
interfaced with the Jetson Nano Board to capture the 
real-time video. The Jetson Nano was configured ac-
cordingly, and then a bio-datasheet was stored in it. The 
developed system was a stand-alone system in which 
the video captured by the camera was processed to 
predict facial emotion, which was fed to the final voting 
mechanism. Simultaneously, the bio-emotion predict-
ed by the bio-electric model was also integrated into 
the system. Depending on the frequency of emotions, 
for every 2-second duration of video input, the final 
output emotion was given as described in Algorithm 
2. This resulted in five voting classifier decisions for a 
duration of 10 seconds of video input. 

This array of outputs was further given to the GPT 
language model to generate a medical report.

3.5. CONCLUSIVE REPORT GENERATION 
 USING GPT

GPT is a state-of-the-art natural language processing 
technology developed by OpenAI. It is a type of artificial 
neural network that has gained significant attention in 
the fields of AI and ML due to its remarkable ability to 
generate human-like text. GPT models are pre-trained 
on massive amounts of text data from the internet and 
then fine-tuned for specific tasks, making them highly 
versatile for various natural language understand-
ing and generation tasks. The core of GPT technology 
is the Transformer architecture, which is designed to 
handle sequential data efficiently. Transformers use a 
mechanism called attention to process and generate 
sequences of text. GPT models are accessed and uti-
lized through an Application Programming Interface 
(API) provided by OpenAI, allowing for a wide range of 
natural language processing tasks.

The final output from the voting classifier based on 
the predictions from the physiological and vision clas-
sifiers is given to the GPT using this API. The use of GPT 
here is to synthesize these diverse emotional cues into 

a comprehensive conclusion. For a 10-second video, 
the voting classifier produces a decision every 2 sec-
onds, resulting in 5 sequential emotions. Using this 
array of emotions, GPT generates a comprehensive 
medical report. This report succinctly encapsulates the 
array of emotions exhibited by the subject throughout 
the 10-second timeframe. This approach allows for a 
holistic understanding of the subject's emotional state, 
bridging the gap between physiological and visual in-
dicators to provide valuable insights.

4. RESULTS AND DISCUSSION

The major part of the proposed study focuses on of-
fering a comprehensive and systematic approach to 
ER, effectively combining physiological signals and 
facial expressions to achieve more accurate and nu-
anced emotion estimation. Utilizing GPT, a medical 
conclusion derived from these emotions yields prom-
ising implications for medical applications.

4.1. CHANGES IN PHYSIOLOGICAL SIGNALS 
 AND FACIAL EXPRESSIONS 

In this experiment, several alterations were observed 
while participants were expressing a particular emo-
tion. These variations in traits provided valuable in-
sights into the unique patterns exhibited in physiologi-
cal and facial signals across different subjects.

4.1.1. VISION

During emotions like fear and surprise, there is an 
observable increase in electrical activity in the muscles 
responsible for controlling eye and brow movements, 
reflected in the EMG signal. The amplitude and voltage 
of the EMG signal are elevated as the electrical impuls-
es to these muscles intensify. This heightened electrical 
activity corresponds to widened eyes, raised eyebrows, 
and a more open mouth, all of which are indicative of 
the emotional response.

4.1.2. EEG

Fear and surprise lead to increased electrical activity 
in specific brain regions, particularly the amygdala. This 
heightened electrical activity is reflected as an increase 
in the amplitude of the EEG signal. The amygdala's role 
in emotional processing and arousal results in these 
elevated electrical signals. Conversely, during neutral 
emotions, the EEG signal shows a more balanced am-
plitude across various brain regions, reflecting a state 
of relative emotional calm.

4.1.3. ECG

During fear and surprise, there is an increase in the 
electrical signal's amplitude, which directly corre-
sponds to a rise in heart rate. The sympathetic nervous 
system's activation during these emotions leads to the 
generation of stronger electrical impulses in the heart, 
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causing an elevated heart rate. Simultaneously, heart 
rate variability may decrease as the electrical signals 
governing heartbeat rhythms become more regular.

4.1.4. EMG

During fear and surprise, there is an increase in the 
amplitude and voltage of the EMG signal in facial mus-
cles, such as those controlling eyebrow and mouth 
movements. These changes reflect heightened muscle 
tension in response to emotional arousal. In contrast, 
during neutral emotions, the EMG signal exhibits a 
more relaxed state with lower amplitude and voltage, 
indicating a lack of pronounced muscle contractions. 
In the case of EMG, during fear and surprise, there is 
an increase in the amplitude and voltage of the elec-

trical signals detected in facial muscles. These changes 
are a direct result of heightened muscle tension and 
increased electrical impulses in the muscles controlling 
facial expressions, such as those around the eyebrows 
and mouth. These electrical signals are indicative of the 
muscle contractions associated with the emotional re-
sponse.

4.2. EVALUATION OF CLASSIFIERS

EDA was performed on both the facial and physio-
logical features to visualize and identify the important 
features. These features were further optimized and 
then provided to the classifier. The performance of the 
classifier was estimated using different parameters, in-
cluding accuracy, recall, precision, F1 score, and ROC.

(a) (b) (c)

Fig. 13. Data analysis of some of the important features (a) Myopulse percentage rate (channel – 2),  
(b) Kurtosis (channel – 3), and (c) Mean frequency (channel – 1) considered in the model for different 

channels of device

4.2.1. PERFORMANCE OF BIO-ELECTRIC CLASSIFIER

EDA performed on the bioelectric features produced 
different variations depending on the emotions cho-
sen. This helped to separate out the important features 
among the set of features and remove the redundant fea-
tures. Features from the wavelet domain, namely mean 
and kurtosis showed distinct categorization in the mini-
mum and maximum values of their boxplots. The myo-
pulse percentage rate is an important feature in the time 
domain, showing variations in its EDA visualization aiding 
in the categorization of the different emotions captured 
by the EMG biomedical device. These important features 
were depicted through their boxplots in Fig. 13. Changes 
in performance parameters were observed using low fre-
quencies (LF) and high frequencies (HF). 

The frequency range was first chosen depending on 
the highest performance parameters and then changed 
according to the distribution of mean band amplitude 
over the EEG frequency bands. For EMG, when 2 and 10 
were selected for LF and HF, respectively, the accuracy 
was around 63%. In the case of EEG and ECG, when 5 
and 20 were selected for LF and HF, respectively, the ac-
curacy was around 59%. Among all of these above clas-
sifiers, different classifiers for different scenarios have 

Fig. 14. Parameter comparison of classifiers on the 
EMG dataset

achieved better accuracy. The performance of different 
classifiers for each EEG, EMG, and ECG has been visual-
ized. Accuracy was boosted up to 71% and 62% in the 
cases of EMG and EEG-ECG, respectively, by changing 
the notch filter frequency. These changes in the perfor-
mance parameters have been visualized in Fig. 14 and 
Fig. 15.

International Journal of Electrical and Computer Engineering Systems
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Fig. 15. Comparison of parameters of classifiers on 
EEG and ECG dataset

Fig. 16. Parameters comparison for models on class 
balanced fusion dataset of EEG, EMG, ECG with 

smote technique

Fig. 17. Comparison of parameters for models on 
optimized fusion dataset after PCA

The resultant data set was obtained using fusion 
techniques. Further optimization was carried out by 
choosing 10 linearly uncorrelated variables and order-
ing them in terms of their importance in explaining 
99% of the variance in the original data. These chosen 
principal components helped in identifying the key 
features or variables that have the most significant im-
pact on the outcome variable, which aids in the final 
classification. After optimization, the accuracy was in-

creased up to 84% in the case of EMG and 76% for EEG 
and ECG, as can be seen in Fig. 16 and Fig. 17.

The results highlight the importance of consider-
ing multiple performance metrics, as different metrics 
provide different insights into the performance of the 
model. Here, the parameters were calculated based 
on the Weighted-average which considers the relative 
importance of different performance parameters. The 
Weighted average precision was calculated based on 
precision per class and takes into account the number 
of samples of each class in the data, providing the high-
est result compared to other weights. 

The fusion model showed a boost in classifier perfor-
mance compared to individual datasets. The 84% ac-
curacy of the optimized random forest model suggests 
that it was able to detect positive emotions effectively, 
which is important for clinical applications. The decision 
tree model achieved an accuracy of 76%. The precision 
of the models was 85% and 76.4%, respectively, provid-
ing the ability to correctly identify a particular emotion 
(e.g., neutral) among all the emotions it predicts. The 
recall of the models was compared, and the optimized 
random forest achieved the highest recall of 91%, 
showing its ability to identify particular emotions (e.g., 
fear) among all the samples that actually represent that 
emotion. This ensures that almost no positive cases are 
missed, which can improve patient outcomes. Both re-
call and precision are important in clinical settings and 
for prosthetic patients, as they provide insights into the 
model's ability to accurately detect positive and nega-
tive cases of a particular medical condition. It is impor-
tant to strike a balance between precision and recall. 
Accounting for this F1 score, a harmonic mean of preci-
sion and recall, which provides a balance between the 
two metrics, was calculated. The models achieved an 
F1 score of 88% and 79%, respectively. 

Fig. 18. ROC curve and AUC curve for neutral vs. all 
for the highest-achieving models

Volume 15, Number 1, 2024
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A multiclass ROC curve is visualized in Fig. 18. The 
multiclass ROC curve extends the binary ROC curve 
to multiple classes by considering each class as a posi-
tive class (neutral) and all other classes as the negative 
class (surprise & fear), plotting the ROC curve for each 
class, and then averaging them. The curve illustrates 
the trade-off between the true positive rate and false 
positive rate for each class, providing a comparison of 
model performance across different classes.

The optimized random forest classifier achieved the 
highest Area Under Curve of 0.95, demonstrating the 
model's capability to differentiate between the posi-
tive and negative classes. This model was then saved 
for implementation on the embedded system.

4.2.2. PERFORMANCE OF FACIAL FEATURE 
 CLASSIFIER

Facial features were extracted from each facial image, 
with a specific focus on facial key points. Here, HOG, 
LBP, LTP, and Gabor feature techniques were chosen ac-
cording to their ability to capture important facial cues. 
Depending on the emotion, distinct facial cues were 
identified. The visualization of these different facial fea-
tures is illustrated in Fig. 19.  

(a) (b)

(c) (d)

Fig. 19. Facial feature visualization on applying 
different feature extraction techniques (a) Hog, (b) 

Gabor, (c) LTP, and (d) LBP

This helped to visualize facial features and remove 
redundant features. Further optimization was carried 
out using clustering and PCA. This feature vector was 
then provided to the ML algorithms. Their performance 
metrics were calculated to provide useful insights for 
FER. Similar to the bio-electric model, here the param-
eters were calculated based on the Weighted average 
which considers the relative importance of different 
performance parameters. Fig. 20 summarizes the clas-
sification performance of each classifier for ER. KNN 

achieved the highest accuracy of 84.6%, followed by 
Random Forest with 74.3%, Decision Tree with 67%, 
and Xg-Boost with 64.5%. KNN also achieved the high-
est precision and F1-score for each emotion category, 
indicating its superior performance compared to the 
other classifiers. This model was saved and further used 
for embedded deployment.

Fig. 20. Classification performance of each classifier 
for emotion recognition

4.3. FUNCTIONAL/USABILITY EVALUATION

The models to be deployed on the embedded board 
were chosen based on the highest ratio of accuracy to 
time taken. A comparison of model accuracy and the 
time taken to predict the emotion after the input is 
given is shown in Table 3.

Model Classifier Accuracy Time Taken

FER

KNN 84.6% 0.6 s

Random forest 74.3% 0.8 s

Decision Tree 67% 0.5 s

Xg-Boost 64.5% 1.4 s

Bio-signal 
Fusion based 

ER

Optimized 
Random Forest 84% 0.3 s

Optimized 
decision tree 76% 0.2 s

Table 3. Comparison of accuracy and time taken to 
generate prediction for bio-electric and facial models

Accordingly, for physiological signals and facial ex-
pression-based emotion prediction, optimized random 
forest and KNN were selected, respectively, to be used 
in the implemented system, which is illustrated in Fig. 
21. Video recorded during participant under the ARS 
system was used as a basis to test the implemented 
system, and the facial expression video was mapped 
according to the physiological emotions. This helped 
to compare the ground-truth emotions with the physi-
ologically and facially predicted emotions. 

The EEG, ECG, and EMG fusion data was directly pro-
vided to the bio-electric classifier on the embedded 
system. The real-time video of the subject was captured 
at the same time. This helped process the video to pre-
dict the facial emotion and compare it with the pre-
dicted physiological emotion. The predicted emotions 
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from both sources were fed into the voting mechanism, 
which determined the final output based on the highest 
frequency of the recurring predicted emotion. Out of a 
total of 17 predictions made for the fusion of facial and 
bio-electric models, the average of 15 output predic-
tions matched the ground truth emotion. The average 
accuracy for the fusion model was found to be 87.5%. 

The predicted emotions were further subjected to a 
voting mechanism where, depending on the highest fre-
quency of emotions in a 2-second window, the final out-
put emotion is provided. This results in a total of five final 
emotion predictions during a 10-second video input.

Fig. 21. Implementation of the system on a 
standalone embedded board

These emotions were provided to the GPT-3 model 
to generate a suitable, comprehensive conclusion. Its 
performance was compared by observing the similar-
ity between the ground truth for the patient over the 
period of video input and the generated conclusion. 
The GPT-generated conclusion for an array of emo-
tions, namely fear, is: “Based on the predicted outcome 
of the patient’s emotions, it can be concluded that they 
experience fear, and it is important for healthcare pro-
fessionals to provide emotional support and resources 
to help patients cope with it”. This helps to provide a 
brief conclusion on the subject’s emotions that are 
conveyed during the test.

4.4. SIGNIFICANCE AND COMPARISON WITH 
 EXISTING WORK

The fusion of EEG, ECG, and EMG signals provides a 
holistic understanding of emotional states by captur-
ing neural, cardiac, and facial muscle insights.

These signals collectively represent the diverse di-
mensions of human emotions. An integrated decision, 
combined with facial insights, is essential due to the in-
tricate nature of emotions, accommodating individual 
variations, and enhancing accuracy. This integration 
adds robustness, overcoming challenges like noise, 
and cross-validation across signals further boosts cred-
ibility, and minimizes the risk of misclassification.
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[6] Available No No 75.31% No

[9] Custom Yes Yes 69.5% No

[31]
Custom 

& 
Available

No No 85.38% No

[32] Custom No No 84.3% No

Table 4. Comparison of proposed system with 
existing approaches

This proposed system has been compared with exist-
ing approaches in two ways, i.e., by comparing complete 
systems and by comparing only datasets. The effective-
ness of the proposed facial model was assessed through 
testing on established benchmark datasets, including 
FER2013 [33] and CK+ [34], resulting in accuracy rates 
of 75% on FER and 90% on CK+. Due to the innovative 
nature of the fusion model incorporating EEG, EMG, and 
ECG signals, a dedicated testing dataset tailored to this 
unique approach was not available for assessment. A 
complete system comparison has been shown in Table 4 
by using different parameters like multi-modularity, real-
time nature, and system performance.

The proposed system model shows high accuracy 
in real-time systems compared to other existing ones. 
It uses a custom dataset and focuses on multi-modu-
larity. The development of this system represents a 
significant advancement in the understanding and ap-
plication of emotions within prosthetic systems and 
as general medical solutions. The integration of vision 
and physiological signals plays an integral part in user-
machine interactions, allowing prosthetic arm users to 
experience an emotionally intuitive control interface.

5. CONCLUSION

The recognition of emotions can be achieved using 
signals such as EEG, ECG, and EMG, as well as facial ex-
pressions. The fusion of these signals and facial emotions 
has demonstrated a notable improvement in system 
performance. This study explored an ER system that uses 
EEG, ECG, and EMG data to identify the three emotional 
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states of fear, neutral, and surprise. Concurrently, facial 
expressions were also incorporated into the analysis. In 
this work, a dataset of fear, neutral, and surprise emo-
tions for EEG, ECG, and EMG signals was meticulously 
collected. The subsequent steps involved the extraction 
of diverse domain-specific features, followed by the vi-
sualization of feature vectors. Important features were 
discerned and subsequently refined through the appli-
cation of EDA and PCA The resultant fusion matrix was 
formed using fusion and class-balancing techniques on 
a combined dataset. These matrices were then subjected 
to classification employing specific classifiers. The accu-
racy of 84% and 76% were obtained using the optimized 
random forest model and the optimized decision tree, 
respectively, for the bio-signal-based model. Compara-
tively, when EEG-ECG and EMG signals were chosen indi-
vidually, accuracy was lower due to the consideration of 
an unimodular system.

A boost in performance parameters was observed for 
the fusion dataset. Optimization also helped in increas-
ing this accuracy. In the case of facial emotion, features, 
namely LBP, LTP, HOG, and Gabor were extracted and 
optimized by using K-means clustering and PCA. An ac-
curacy of 84.6%, 74.3%, 67%, and 64.5% was achieved 
using KNN, Random Forest, Decision tree, and Xg-Boost 
Classifiers, respectively. Both modalities were used to 
determine the optimal emotion. To consolidate the re-
sults of both physiological and facial emotion analyses, 
a voting classifier was employed to determine the final 
emotional classification. This model was deployed in 
a real-time ER system by interfacing a Logitech C270 
camera with the Jetson Nano board. 

In this context, the system was beset with several is-
sues, such as subject independence, which provides less 
accuracy owing to limited data. Expanding sample sizes 
is crucial to enhancing the generalizability of findings. 
By using more participants' data, higher accuracy can be 
achieved. Additional model tuning can be done using 
a greater number of channels and features. Other tech-
niques and classifiers can be explored to improve the 
current performance estimators. Other preprocessing 
steps could be explored for recognizing facial key points. 

The emotions recognized by this model can be used 
to improve the functionality and usability of prosthetic 
devices. By enabling users to control their prosthetics 
using their emotions, it can provide a more intuitive 
and natural user experience. Its inception followed a 
comprehensive survey of existing prosthetic system 
users, addressing the need for more personalized and 
responsive assistive technologies. The system not only 
enhances the functionality and comfort of the pros-
thetic system but also opens doors to a wide range of 
medical applications. It allows for emotionally aware 
control, enhances the user experience, and blurs the 
lines between human and machine. This novel integra-
tion not only improves the functionality of prosthetic 
arms but also profoundly impacts users' comfort and 
confidence. Moreover, while its primary application is 

within prosthetic arms, its adaptability and versatility 
make it usable for general medical systems. Its poten-
tial impact spans across the spectrum of medical and 
assistive technologies, making it a pioneering and 
transformative development. 

Future research could focus on improving ER accuracy 
by incorporating other modalities, such as voice and 
body language, and using larger and more diverse data-
sets. This system holds promise for further refinements 
and broader applications. Additional parameters, such 
as Galvanic Skin Response (GSR) sensors, voice analysis, 
and temperature sensors, can be integrated to enhance 
its accuracy and versatility. This expansion of sensor 
types will enable even more precise recognition and re-
sponse to emotional states, further improving the quali-
ty of life for prosthetic system users. The incorporation of 
these sensors may lead to applications in mental health 
support, user experience enhancement, and medical 
diagnosis, marking an exciting path for future research 
and development. The proposed work highlights its sig-
nificance in the domain of ER and suggests the potential 
for further exploration in related fields.
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