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Abstract. This paper provides an overview of the guiding principles
and underlying ideas in the work of Marko Tadić. His research is mostly
concerned with the representation theory of reductive groups over local
fields. From the authors’ perspective, the most important guiding prin-
ciples in his work are the essential simplicity of harmonic analysis, even
in the non-commutative non-compact case, the Lefschetz principle say-
ing that the representation theory over archimedean and non-archimedean
fields should be studied in a unified way, and the principle of comparison
of Jacquet modules. Besides these, the most prominent and fruitful ideas
are the structural external approach to the unitary dual, the unitarizability
along the lines, the use of topology of various duals to get information in
harmonic analysis and arithmetic of the underlying group, and the inter-
play between unitarizability and Arthur packets. All these principles and
ideas are the subject of this paper.

1. Introduction

Writing a complete overview of someone’s mathematical work is an ex-
tremely difficult task. Any such attempt necessarily reflects the opinions,
mathematical taste, subjective viewpoints, biased highlights, incomplete con-
clusions and illusions of the authors. Having that in mind, we feel that this
paper should begin with a disclaimer.

Disclaimer. This paper is not an attempt of writing a complete account
of the work of Marko Tadić. It is neither a historical account of the topics
studied by him. All the mistakes and wishful thinking conclusions are solely
the responsibility of the authors.
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In other words, this paper is nothing else than our personal subjective
viewpoint of the most important guiding principles and underlying ideas
present in the work of Tadić. We are pretty sure that any other author,
including Tadić himself, would not make the same choices and not point out
the same ideas. The ideas described in this paper are reoccurring themes in
his work, not necessarily his inventions, but used as the fundamental tools
and guiding principles in the lines of his research over the years. They could
be described in one word as the Tadić philosophy, as indicated in the title.

The paper begins with three guiding principles present in the entire math-
ematical opus of Tadić. The first principle is the simplicity of harmonic anal-
ysis, which seeks, despite the complicated setting and techniques, for simple
principles and answers to the main problems of non-commutative harmonic
analysis. The motivation and inspiration for this principle is the beauty and
simplicity of classical harmonic analysis, in particular, Fourier series and, more
generally, Fourier analysis on locally compact Abelian groups. The main evi-
dence for this principle in the work of Tadić is the classification of the unitary
dual of the general linear groups, which is at the same time simple and beau-
tiful, despite the complicated setting of the representation theory of general
linear groups and the techniques required to establish the final results. Al-
though it is difficult to expect such a nice result in the case of the unitary
dual of classical groups, the most recent work of Tadić indicates, in form of
certain conjectures, that this problem could also get a simple answer in the
framework of local Arthur packets.

The second guiding principle in the work of Tadić is the Lefschetz princi-
ple, formulated by Harish-Chandra, which predicts that “whatever is true for
real groups is also true for p-adic groups.” However, Tadić mostly applied this
principle in the opposite direction, by transferring the results and techniques
from the p-adic setting to the real and complex groups. The prominent ex-
ample of this is again the classification of the unitary dual of general linear
groups. More evidence is provided by the determinantal formula of Tadić.

The third guiding principle in the work of Tadić, at least from our per-
spective, is related to the comparison of Jacquet modules. This principle
of the comparison of Jacquet modules claims that the more detailed under-
standing of parabolically induced representations in representation theory of
reductive groups can be achieved by comparing Jacquet modules with respect
to as many as possible parabolic subgroups. In other words, the more para-
bolic subgroups at our disposal, the more possible sources of information on
the representation theory. The first implications of this principle led Tadić to
several reducibility criteria for induced representations and their composition
series. However, it is also the underlying principle in many other ideas in his
work. The best example is perhaps the idea to apply the external approach
to study the unitary dual of general linear groups and classical groups.
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The rest of the paper is devoted to the description of the four, at least
in our opinion, crucial ideas underlying the work of Tadić. The first is the
external approach to the representation theory of reductive groups, which
is based on the Hopf ring and Hopf algebra structures on the Grothendieck
group of the category of finite length representations. This idea led not only
to the classification of the unitary dual of general linear groups, but also to
many results in the representation theory of classical p-adic groups.

The second idea is to use the approach to unitarizability along the lines
in the study of the unitary dual of classical p-adic groups. It is based on
the division of representations of a classical p-adic group into certain lines of
representations. The idea is that the unitarizability of an irreducible represen-
tation could perhaps be reduced to the unitarizability of corresponding repre-
sentations in a certain special types of these lines. Tadić poses two questions
regarding these unitarizabilites. The affirmative answer to these questions
would considerably simplify the quest for the unitary dual of classical p-adic
groups.

The third idea underlying the work of Tadić is to consider the implica-
tions of the topology on the unitary and non-unitary dual to the representation
theory and harmonic analysis on reductive groups, and its arithmetic conse-
quences. This thread of his work deals with different aspects of representation
theory of classical p-adic groups. For instance, the reducibility question for
parabolically induced representations is studied in terms of certain converg-
ing sequences in the topology of the non-unitary dual. A special attention
is paid to the isolated representations in the topology of both unitary and
non-unitary dual, as well as certain other types of duals related to arithmetic.
The isolated representations are always special in some sense, and often have
important relations to the arithmetic questions for the underlying group.

The final idea described here is the most recent one. It is the idea to
compare and combine the unitarizability problem with the description of the
local Arthur packets. Since local Arthur packets consist of possible local
components of representations in the discrete spectrum, these are all unitary.
On the other hand, Tadić has identified certain critical points in the study of
the unitary dual of classical p-adic groups. He then conjectured that a given
representation at the critical point is unitarizable if and only if it is in a local
Arthur packet.

The structure of the paper follows closely the guiding principles and un-
derlying ideas mentioned above. Each of the remaining sections is devoted to
the explanation and description of one of the principles and ideas. The only
exception is the preliminary section, that follows this introduction, which pro-
vides the necessary background and notation for the rest of the paper. The
sections, other than the preliminary section, are almost independent, and
could be read in any order.
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The reader should be aware that parts of the text are accessible even
without reading the preliminaries. Most of the sections in this paper consist
of two parts divided by the sign ∗ ∗ ∗. The first part, above the sign,
is meant to provide an overview of the covered topic in more general terms,
hopefully accessible to a wider mathematical community, and free of nota-
tional subtleties as much as possible. The second part, below the sign, is just
a bit more involved, provides examples, more detailed descriptions and results
on the covered topic in each section.

At the end of the introduction, we would like to thank Goran Muić for the
invitation to contribute to this volume. The paper is dedicated to Marko Tadić
on the occasion of his 70th birthday. We would like to use the opportunity
to express our gratitude to Marko for all of his beautiful mathematics, ideas
and thoughts. We wish for even more Marko’s mathematical pearls in many
years to come...

2. Preliminaries and notation

Let F be a p-adic field, that is, a finite extension of the field Qp of p-
adic numbers. Although many of the results discussed below are valid in any
characteristic different than two, or even for any local field, we stick in this
paper to the case of characteristic zero.

Let G be a reductive algebraic group defined over F . The group of its F -
rational points is denoted by G = G(F ), and referred to as a p-adic reductive
group. Throughout the paper we assume that G is F -split, and most of the
time G is one of the following groups:

• the general linear group GL(n, F ),
• the special linear group SL(n, F ),
• the symplectic group Sp(2n, F ),
• the odd special orthogonal group SO(2n+ 1, F ).

The F -rank of the former two groups is n − 1 and the F -rank of the latter
two groups is n.

We now introduce definitions related to the structure theory of the groups
G.We avoid the exact general definitions in the framework of reductive groups,
but give makeshift definitions adjusted to the cases of the general linear groups
and classical groups above. These groups have natural realizations as matrix
groups, obtained by fixing a basis in Fn on which these groups naturally
act. The symplectic, respectively odd special orthogonal group, is defined as
the subgroup of the special linear group preserving a non-degenerate skew-
symmetric, respectively symmetric, bilinear form. The choice of an appropri-
ate basis with respect to this form leads to convenient matrix realizations.

Structure of the general linear group. The conjugacy classes of parabolic sub-
groups in GL(n, F ) are in one-to-one correspondence with the set of ordered
partitions of n into positive integers. Given such a partition (n1, . . . , nk),
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where
∑k
i=1 ni = n, a parabolic subgroup in the corresponding conjugacy

class is denoted by P = P(n1,...,nk). Its Levi decomposition is the semidirect
product decomposition of the form P = MN , where the Levi subgroup M is
isomorphic to

M ∼= GL(n1, F )× · · · ×GL(nk, F ),
and N is the unipotent radical. In the case of k = 1, so that the partition
is a singleton n1 = n, we obtain P = G. In the case of k = n, so that the
partition consists of n ones, we obtain a Borel subgroup B, which is a minimal
parabolic subgroup. Its Levi decomposition is denoted by B = TU , where T
is a maximal split torus in GL(n, F ) isomorphic to the direct product of n
copies of GL(1, F ), and U is the unipotent radical. Throughout the paper we
denote by ν the character ν = |det | of GL(m,F ), where the absolute value
is the p-adic absolute value on F , and m is any positive integer.

Structure of classical groups. Similarly as in the case of the general linear
group, the conjugacy classes of parabolic subgroups of the classical p-adic
group Gn of rank n, as introduced above, are in one-to-one correspondence
with the set of ordered partitions of non-negative integers m ≤ n into positive
integers. Given an ordered partition (n1, . . . , nk) of some m ≤ n, a parabolic
subgroup in the corresponding conjugacy class is denoted by P = P(n1,...,nk;n′),
where n′ = n − m. It has a Levi decomposition P = MN , with the Levi
subgroup M isomorphic to

M ∼= GL(n1, F )× · · · ×GL(nk, F )×Gn′ ,

where Gn′ is the group of the same type as Gn, but of rank n′ = n−m ≤ n,
and N is the unipotent radical. We set G0 to be the trivial group. Note that
in the case of m = 0, there is no ordered partition of m into positive integers,
but still this degenerate case corresponds to the parabolic subgroup P = Gn.
In the case of k = m = n, so that the partition consists of n ones, we obtain
a Borel subgroup B of Gn, which is a minimal parabolic subgroup. Its Levi
decomposition is denoted by B = TU , where T is a maximal split torus in
Gn isomorphic to the direct product of n copies of GL(1, F ), and U is the
unipotent radical.

Representations. A representation π of a p-adic group G as above on a com-
plex vector space V is a homomorphism

π : G→ GL(V ).

We write (π, V ) for the representation, if the underlying vector space of the
representation π should be specified. Note that V can be, and usually is,
infinite-dimensional.

Let (π, V ) be a representation of G. Let W be a subspace of V invari-
ant under the action of G through π. We say that W is G-invariant. Then
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the representation of G on W is called a subrepresentation of the represen-
tation (π, V ). The trivial subspace {0} and the full space V are obviously
subrepresentations of (π, V ).

The representation (π, V ) is irreducible if the only G-invariant subspaces
of V are {0} and V itself. In other words, these are the only subrepresentations
of (π, V ). Definitions of a subrepresentation and irreducibility usually require
some notion of closedness, but this definition is enough for our purposes, since
we may, for the moment, ignore altogether the topology on V.

Let (π, V ) be a representation of G. A vector v ∈ V is called smooth if it
is fixed, through π, by an open compact subgroup of G. The representation
(π, V ) is smooth if each vector in V is smooth. The open compact stabilizers
of smooth vectors depend on the vector v ∈ V .

For any open compact subgroup K of G, denote by V K the subspace
of V which consists of all K-fixed vectors in V. The representation (π, V ) is
admissible if it is smooth and V K is finite-dimensional for each open compact
subgroup K of G.

In the rest of the paper, all representations are assumed to be smooth
and admissible, unless otherwise specified.

A representation (π, V ) is a represention of finite length if its Jordan–
Hölder series is finite. In that case, its length is called the length of the
representation π. Recall that such Jordan–Hölder series of (π, V ) is obtained
from an increasing filtration

{0} = V0 ⫋ V1 ⫋ V2 ⫋ · · · ⫋ Vℓ−1 ⫋ Vℓ = V

of V by G-invariant subspaces Vj such that, for j = 1, . . . , ℓ, the quotients
of the filtration Vj/Vj−1, with the natural action of G arising from π, are
irreducible representations of G. These irreducible representations, obtained
as quotients of the filtration, are referred to as the subquotients or irreducible
constituents of π. They form the Jordan–Hölder series of the representation
π of finite length, which is in this context also called the composition series
of π. In this situation, the length of π is ℓ. If σ is a subquotient of π, we
write σ ≤ π. More generally, if σ is a representation of G such that all its
subquotients appear in the composition series of π, we also write σ ≤ π.

A representation (π, V ) is unitarizable if there exists an inner product
( · | · ) on V such that

(π(g)v1|π(g)v2) = (v1, v2) for all v1, v2 ∈ V and g ∈ G.

Unitarizability of representations of reductive groups is one of the main topics
of Tadić’s research.

Let (π, V ) and (π′,W ) be two representations of the same group G. Any
linear operator A from V to W such that

A(π(g)v) = π′(g)(Av) for all v ∈ V, g ∈ G,
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that is, which commutes with the actions of G, is called the intertwining
operator between representations π and π′. If there exists an intertwining
operator which is an isomorphism, we say that these two representations are
isomorphic and write π ∼= π′.

Let (π, V ) be a representation of G. On the space V̂ of linear functionals
on V , one can introduce a G-action, denoted by π̂, in the following way. Let
⟨ · , · ⟩ be the usual linear algebra pairing between V and V̂ . We define

⟨π̂(g)v̂, v⟩ = ⟨v̂, π(g−1)v⟩,

for g ∈ G, v ∈ V and v̂ ∈ V̂ . This representation is not smooth. The space of
smooth vectors in the representation (π̂, V̂ ) is G-invariant. The representation
of G on the subspace of smooth vectors is called the contragredient representa-
tion of π and denoted by (π̃, Ṽ ). It is a smooth and admissible representation
of G. A representation π is called selfcontragredient if it is isomorphic to its
contragredient, i.e., if π ∼= π̃.

For the fixed v ∈ V and ṽ ∈ Ṽ , the matrix coefficient associated to v and
ṽ is the function on G defined by the assignment

g 7→ ⟨ṽ, π(g)v⟩.

The matrix coefficients allow the study of analytic properties of representa-
tions. A representation is square-integrable if all of its matrix coefficients are
square-integrable on G modulo the center of G, it is supercuspidal if all of its
matrix coefficients are compactly supported modulo center, and it is tempered
if all of its matrix coefficients are L2+ε functions on G modulo center for all
ε > 0.

Note that the condition for the matrix coefficients of a representation of
GL(m,F ) to be L2 modulo center, implies that this representation is neces-
sarily unitarizable. The representations of GL(m,F ) of the form νxδu, where
x is a real number and δu a square-integrable representation of GL(m,F )
are called essentially square-integrable representations. Conversely, for any
essentially square-integrable irreducible representation δ, the corresponding x
as above is unique. To conclude, for each essentially square integrable rep-
resentation δ, there exists a unique real number e(δ) and a square-integrable
representation δu such that

δ ∼= νe(δ)δu,

where e(δ) is called the exponent of the representation δ.
It is easy to see that every irreducible supercuspidal representation ρ of

G is essentially square integrable. Hence, there exists a unique exponent
e(ρ) ∈ R and a unitary supercuspidal representation ρu such that

ρ ∼= νe(ρ)ρu.
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The irreducible supercuspidal representations of Levi subgroups of G are the
building blocks of all the irreducible representations of G. We explain momen-
tarily in which sense.

Parabolic induction. Let G be the p-adic classical or general linear group, as
introduced above. Let P be a parabolic subgroup of G. Let P = MN be a
Levi decomposition of P, where M is the Levi subgroup and N the unipotent
radical. Recall that the Levi subgroup M is a direct product of smaller general
linear groups and a smaller classical group in the case of classical groups.
Let (σ,W ) be a representation of M. We extend this representation trivially
over N, so that we obtain a representation of P, still denoted by σ. The
representation of G parabolically induced from σ is denoted by

IndGP (σ),

and defined as follows. The underlying vector space is the space V of all
functions f : G→W which satisfy

(i) f(mug) = δP (m)1/2σ(m)f(g), for all m ∈M,u ∈ N, g ∈ G,
(ii) there exists an open compact subgroup K of G, which depends on f ,

such that f(gk) = f(g) for every k ∈ K, g ∈ G.
The action of G on the space V of the parabolically induced representation
IndGP (σ) is by right translations. If we denote that action by π, it is defined
as

(π(g0)f) (g) = f(gg0),
for g0, g ∈ G and f ∈ V .

Here δP denotes the modular function of P, which is used in (i) to obtain a
convenient normalization of parabolic induction. With this normalization, the
parabolic induction preserves unitarizability. The parabolic induction may be
viewed as a functor from the category of representations of finite length of the
Levi subgroup M to the category of such representations of G. This holds
because it can be proved that, besides smoothness and admissibility, parabolic
induction preserves the property of finite length.

Importance of parabolic subgroups. The parabolic subgroups are of the main
interest for the representation theory of the groups G as above. Namely, they
play a crucial role in the process of parabolic induction, which builds a rep-
resentation of the group G starting from a representation of a Levi subgroup.

In the case of the general linear group and classical groups, the Levi
subgroups are direct products of smaller general linear groups, and a smaller
classical group in the case of classical groups. This means that one can guess,
very optimistically, a possibility of certain inductive procedure in describing
representations of general linear groups or classical groups using description
of the set of representations of smaller groups of the same type.
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This is exactly what is achieved by the process of parabolic induction, not
only in general considerations, such as the Langlands quotient classification of
irreducible representations of any reductive group which is based on parabolic
induction. It also happens in specific cases, such as the case of the general
linear groups, in which using the more structural approach of considering at
the same time all unitarizable representations of all general linear groups, i.e.,
of all ranks, yields remarkable results of Tadić. This is explained in detail in
Section 5 and Section 6.

Supercuspidal representations as “building blocks”. Having the necessary tech-
nology in form of parabolic induction in place, we can now explain in what
sense are irreducible supercuspidal representations the “building blocks” of all
irreducible representations of the p-adic group G as above.

For every irreducible representation π of G, there exists a parabolic sub-
group P and an irreducible supercuspidal representation σ of M such that π
is a subrepresentation of the corresponding induced representation IndGP (σ)
(cf. [10]).

This yields another way to characterize irreducible supercuspidal repre-
sentations of G. They are precisely those irreducible representations of G
which cannot occur as a subquotient of any representation parabolically in-
duced from the representation of the Levi subgroup of a proper parabolic
subgroup.

Essentially square-integrable representations of GL(m,F ). There is a nice
characterization of essentially square-integrable representations of the general
linear groups. Each irreducible essentially square-integrable representation δ
of GL(m,F ) is obtained as the unique irreducible subrepresentation of the
induced representation

IndGL(m,F )
Q

(
ν

l−1
2 ρ⊗ ν

l−3
2 ρ⊗ · · · ⊗ ν− l−1

2 ρ
)
,

for an irreducible supercuspidal representation ρ of GL(d, F ) and a positive
integer l, where m = dl and Q is the parabolic subgroup of GL(m,F ) with the
Levi subgroup isomorphic to the direct product of l copies of GL(d, F ). We
denote the essentially square-integrable representation δ which is the unique
subrepresentation of the induced representation above by

δ = δ[ν− l−1
2 ρ, ν

l−1
2 ρ].

We often say, if ρ is fixed, that it is the essentially square-integrable represen-
tation attached to the segment [− l−1

2 , l−1
2 ] of length l.

Note that the twisting of the representation δ[ν− l−1
2 ρ, ν

l−1
2 ρ] by the char-

acter νx is realized as the shift of the exponents in the segment by x, i.e.,

νxδ[ν− l−1
2 ρ, ν

l−1
2 ρ] ∼= δ[νx− l−1

2 ρ, νx+ l−1
2 ρ].
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Hence, replacing ρ by ρu results with the essentially square-integrable repre-
sentation

δ = δ[ν− l−1
2 ρ, ν

l−1
2 ρ] ∼= νe(ρ)δ[ν− l−1

2 ρu, ν
l−1

2 ρu].
The representation associated to the segment [ν− l−1

2 ρu, ν
l−1

2 ρu] on the right-
hand side is a square-integrable representation, so that we may write

δu = δ[ν− l−1
2 ρu, ν

l−1
2 ρu].

Then, e(δ) = e(ρ), and the essentially square-integrable representation δ is
isomorphic to

δ ∼= νe(δ)δu,

where e(δ) is the exponent of δ, and δu is the square-integrable representation
defined above.

Notation for the parabolic induction. Essentially from the work of Bernstein
and Zelevinsky [7], there is a special notation for the parabolic induction in
the case of the general linear groups. Let P = P(n1,...,nk) be a parabolic
subgroup of GL(n, F ) corresponding to the partition (n1, . . . , nk) of n into
positive integers. The Levi subgroup M of P is isomorphic to the direct
product

M ∼= GL(n1, F )× · · · ×GL(nk, F ).
Given a representation σ ∼= σ1 ⊗ · · · ⊗ σk of M , where σj is a representation
of the factor GL(nj , F ) of M , the induced representation

IndGL(n,F )
P (σ) = IndGL(n,F )

P(n1,n2,...,nk)
(σ1 ⊗ σ2 ⊗ · · · ⊗ σk)

is denoted by
σ1 × σ2 × · · · × σk.

Originally introduced by Faddéev in [13], this notation not only shortens
the usual notation and omits the tedious bookkeeping regarding parabolic
subgroups, but also suggests certain very important properties of parabolic
induction, which are seamlessly incorporated in the notation. These are,
among others, induction in stages and independence of the Jordan–Hölder
series of the induced representation on the order of σj . The latter refers
to the parabolic induction from the so-called associate parabolic subgroups
which corresponds to changing the order of the factors above. It gives rise
to possibly different representations, but with the same Jordan–Hölder series.
The product notation is also compatible with the the structure of the Hopf
algebra, obtained when irreducible representations of general linear groups of
all ranks are organized in the (sum of) Grothendieck groups. More about that
can be found in Section 6, as Tadić used this notation extensively in his work.

Inspired by the benefits of the notation for the parabolic induction in
the case of general linear groups, Tadić invented the analogous notation in
the case of classical groups. It appeared for the first time in his work with
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Sally [36], and, systematically, in [57]. Let P = P(n1,...,nk;n′) be a parabolic
subgroup of the classical group Gn of rank n corresponding to the partition
(n1, . . . , nk) of n − n′. Let σ ∼= σ1 ⊗ · · · ⊗ σk ⊗ σ′ be a representation of the
Levi subgroup M of P , where σj is a representation of the factor GL(nj , F )
of M , and σ′ a representation of the smaller classical group Gn′ appearing as
a factor in M . The induced representation

IndGn

P (σ) = IndGn

P(n1,n2,...,nk;n′)
(σ1 ⊗ σ2 ⊗ · · · ⊗ σk ⊗ σ′)

is denoted in the notation of Tadić by
σ1 × σ2 × · · · × σk ⋊ σ′.

His crucial improvement here is the sign ⋊, which separates the representa-
tion of the only factor in the direct product of M which corresponds to the
classical group from the remaining factors which are general linear groups.
This notation in the case of classical groups remains suggestive for the im-
portant properties of the parabolic induction, as well as very well adjusted to
the structure of the Hopf module, as explained in Section 6.

In order to gain better insight in the structural information on repre-
sentations of the considered group G, the above product notation is often
slightly modified to distinguish the parabolically induced representation from
its semi-simplification. Given a representation π of G of finite length, its
semi-simplification, denoted by s. s.(π), is isomorphic to the (finite) direct
sum of its irreducible subquotients. Thus, passing to the semi-simplification,
part of the information is lost, but the benefits of the structural approach to
representation theory are huge.

In this spirit, we make the following convention in this paper. The product
notation means

σ1 × · · · × σk ⋊ σ′ = s. s.
(

IndGn

P (σ1 ⊗ · · · ⊗ σk ⊗ σ′)
)
,

that is, the semi-simplification of the induced representation. Thus, in this
paper, we carefully distinguish between the product notation and the Ind
notation. If we should be aware that certain subquotient is in fact a sub-
representation or a quotient, then the product notation will be avoided. On
the other hand, the benefits of the product notation, even after taking the
semi-simplification, will become clear in the paper.

3. Simplicity of harmonic analysis

The beauty and simplicity of classical harmonic analysis is overwhelming.
At the same time, it is one of the most powerful mathematical theories with
the widest range of diverse applications in physics, engineering, computer
science, music, and different parts of mathematics from differential equations,
numerical mathematics and mathematical physics to differential geometry and
number theory.



14 N. GRBAC AND M. HANZER

Harmonic analysis was also the starting point of Tadić’s mathematical
journey. Some of the first papers of Tadić such as [40], and his dissertation
[38], are in harmonic analysis, as well as some subsequent papers such as [32].
In his dissertation, he studies the theory of spherical functions for the so-called
Gel′fand pairs (G,K). Roughly speaking, one can think of F -points of a split
reductive group G over F and the hyperspecial maximal compact subgroup
K. He introduces certain Fréchet algebras of K-biinvariant functions on G
with some additional properties, and, among other things, defines spherical
Fourier transform on these spaces and studies its properties.

The most fundamental part of the classical harmonic analysis is the the-
ory of Fourier series. In its most basic form, it is the theory of expansions of
periodic functions into trigonometric series, the so-called spectral expansions.
The frequencies of the sine and cosine functions in the series are multiples of
the frequency given by the period of the considered periodic function. These
are the so-called harmonics, which give the harmonic analysis its name. Under
certain technical assumptions, the amplitudes of these harmonics determine
the original function. The spectral expansion of periodic functions into ele-
mentary functions such as sines and cosines is extremely useful tool in many
applications.

However, the full strength of harmonic analysis arises from certain alge-
braic structure which is compatible with spectral expansions. This is not so
obvious from the trigonometric series, and a different point of view on the
spectral expansion is required. We explain this in detail in the second part
of this section below. Briefly said, the main point is that the period of a
periodic function admits the additive structure of a compact Abelian group,
and the same group acts on the space of periodic functions. Hence, the sine
and cosine functions should be replaced by certain periodic functions that
preserve the group structure on the domain and are invariant up to scalar for
the group action. The spectral expansion according to these new functions
is the proper point of view on Fourier series and the launching pad for the
harmonic analysis in general.

The first step towards more general instances of Fourier expansions is the
harmonic analysis on locally compact Abelian groups. In this case, the space
of square-integrable complex functions on such a group is considered, with
an action of the underlying group. As in the theory of Fourier series, the
main point is to find a system of functions on the group which preserves the
group structure and is invariant up to scalar under the group action. Each
of these functions spans a group action invariant one-dimensional subspace
in the space of square-integrable functions on the group. It is these invariant
subspaces that are the key to the next level of harmonic analysis. Note that
we ignore here the fact that the spectral decomposition in the case of arbitrary
locally compact Abelian group could involve direct integrals, not only sums,
of basic functions.
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The simplest non-commutative instance of harmonic analysis is the har-
monic analysis on compact Lie groups. Its aim is to decompose the functions
on a Lie group according to the structure on the space of square-integrable
complex functions on this group arising from certain natural group action.
However, in this case, it is not possible to find a system of functions and
form the spectral expansion with respect to these functions. The reason is
that, unlike in the commutative case, the invariant subspaces are no longer
one-dimensional. Hence, the harmonic analysis on compact Lie groups means
the spectral decomposition of the space of functions on the group into invari-
ant pieces which cannot be further decomposed. Such pieces are irreducible
unitary representations of the underlying group. In the case of compact Lie
groups these are all finite-dimensional.

The same story can be transferred, almost word by word, to the more
general case of non-commutative non-compact locally compact groups, such
as p-adic reductive groups. The harmonic analysis on such groups means the
spectral decomposition of the space of square-integrable complex functions on
the underlying group into pieces that are irreducible and invariant under the
natural group action. These are again irreducible unitary representations,
but in this case they are not necessarily finite-dimensional. Moreover, the
irreducible unitary representations in the spectral decomposition do not ex-
haust all irreducible unitarizable representations. Nevertheless, the problem
of classification of irreducible unitary representations of the considered group,
which is referred to the problem of the unitary dual, is closely related and
important for the spectral decomposition. Recall that the set of isomorphism
classes of irreducible unitary representations of a group is called the unitary
dual.

After a lengthy opening of this section, we finally come to the point. The
classical theory of Fourier series is essentially very simple. One of the main
guiding principles in the work of Tadić is that the harmonic analysis, in the
more general context, should resemble the simplicity of Fourier series, despite
the more complicated setting and methods. He makes this point explicit in
[76, p. 1], by saying:

“[...] the area of harmonic analysis on locally compact groups, a theory
which has its roots in the classical Fourier analysis. The classical theory is
one of the most applied parts of math, in math as well as outside of math.
The reason for this fact is certainly the power of the theory. But it is also
related to the simplicity of basic principles of the classical theory. It is hard
to expect such simplicity in the setting which we shall consider, since the
groups with which we shall deal are much more complicated than the one of
the classical theory [...]. Nevertheless, at some directions we get remarkably
simple answers.”

To illustrate the principle of simplicity of harmonic analysis, we recall
now the Tadić classification of the unitary dual of the general linear group
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GL(n, F ) over a p-adic field F . The classification of the unitary dual of
GL(n, F ) is a very important result as one of the cornerstones of the harmonic
analysis on the p-adic groups, but at the same time its formulation is so
beautiful due to its simplicity, that we decided to include the statement here.
It is indeed a “remarkably simple answer” as mentioned in the quote above.

Given a square-integrable representation δ of GL(m,F ), and a positive
integer k, the parabolically induced representation

IndGL(n,F )
Q

(
ν

k−1
2 δ ⊗ ν

k−3
2 δ ⊗ · · · ⊗ ν− k−1

2 δ
)

has a unique irreducible quotient, where Q is the parabolic subgroup of
GL(n, F ) with the Levi subgroup isomorphic to the direct product of k copies
of GL(m,F ), and n = km. The quotient, denoted by u(δ, k), is often referred
to as the Speh representation. Observe that if k = 1, then u(δ, 1) = δ. With
this notation, the unitary dual of the general linear group is described as
follows.

Classification of the unitary dual for GLn (Tadić, [46]; see also
[55], [44], [77], [49], [43], [47]). Let Du denote the set of isomorphism classes
of square-integrable representations of all GL(m,F ), where m ranges over
positive integers. Let

IRRu =
∞⋃
n=0

̂GL(n, F )

denote the set of isomorphism classes of unitary irreducible representations of
all GL(n, F ), where n ranges over non-negative integers. Let

B =
{
u(δ, k), ναu(δ, k)× ν−αu(δ, k) : δ ∈ Du, k ∈ Z>0, 0 < α < 1/2

}
.

Then, the set IRRu is completely described as follows:
(i) if π1, . . . , πl ∈ B, then π1 × · · · × πl ∈ IRRu,

(ii) conversely, if π ∈ IRRu, then there exist π1, . . . , πl ∈ B, unique up to
permutation, such that π ∼= π1 × · · · × πl.

We turn now to the problem of the unitary dual of classical p-adic groups.
Despite a simple form of the solution in the case of general linear groups, it
seems that the expectations in the case of classical groups are different. Tadić
himself contemplates on that in [76, Sect. 9] as follows:

“In the moment, the unitarizability problem for classical groups seems
quite hard, and the solution will be definitely not simple. Despite this, it
seems that regarding this problem we are now in better position then we
have been regarding GL-unitarizability just before that problem was solved
(at the beginning of 1980-es), although the solution there turned out to be
very simple. The biggest problem in that time was that a simple answer (as
in Theorem A) was not expected. The expectations were quite opposite (and
even a possibility of an explicit solution of the problem was in question).”
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This quotation is taken from the lectures given by Tadić in 2014 at the
40th Anniversary Midwest Representation Theory Conference, University of
Chicago. Since then, he has made substantial progress regarding the unitary
dual of classical p-adic groups [82], [80], [26], [27], [74]. In particular, the
connections between the unitary dual and local Arthur packets, predicted by
a conjecture of Tadić in [81] and elaborated in Section 9, might lead in future
to the discovery of a hidden structure in the unitary dual of classical p-adic
groups. If this optimistic scenario is fulfilled, the simplicity and beauty of
harmonic analysis would be reflected by the simple structural description of
the unitary dual of classical groups, just as in the case of general linear groups.

∗ ∗ ∗

We now provide more details of the story of algebraic structure underlying
harmonic analysis. We begin with the classical theory of Fourier series. Given
a measurable periodic function f : R→ C of period one, which is also square-
integrable over [0, 1], its Fourier series Sf is defined as the trigonometric series

Sf (x) = a0 +
∞∑
m=1

(am cos(2πmx) + bm sin(2πmx)) ,

where the Fourier coefficients am and bm are given by the formulas

a0 =
∫ 1

0
f(ξ) dξ,

am = 2
∫ 1

0
f(ξ) cos(2πmξ) dξ, m ≥ 1,

bm = 2
∫ 1

0
f(ξ) sin(2πmξ) dξ, m ≥ 1.

The convergence of the Fourier series is a delicate issue, but if f is smooth,
its Fourier series Sf converges to the original function f , and provides a
powerful tool for the study of periodic functions in terms of the sine and
cosine functions.

We identify periodic functions of period one with functions on the segment
[0, 1] with equal values at the end-points 0 and 1. The identification is achieved
by the restriction of a periodic function to [0, 1]. The space of such functions
on [0, 1], which are also measurable and square-integrable over [0, 1], is denoted
by L2([0, 1]). Given f, g ∈ L2([0, 1]), their inner product is defined as

(f |g) =
∫ 1

0
f(ξ)g(ξ) dξ,

where g(ξ) denotes the complex conjugation. The Fourier coefficients are
in fact determined as inner products of f by trigonometric functions. More
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precisely,

a0 = (f |1) ,
am = 2 ·

(
f | cos(2πm · )

)
, m ≥ 1,

bm = 2 ·
(
f | sin(2πm · )

)
, m ≥ 1,

where 1 stands for the constant function of value one. The reason for such
simple explanation is that the trigonometric functions

1, cos(2πmx), sin(2πmx), m ≥ 1

which appear in the Fourier series, form an orthogonal system for the inner
product. Namely, the inner product of different functions in the system is zero,
while the inner product of a function in the system by itself gives the inverse
of the corresponding multiplicative constant in the formulas. For instance,(

cos(2πm · )| cos(2πm′ · )
)

=
{

0, if m ̸= m′,
1
2 , if m = m′.

Observe that the inner product of cos(2πm · ) by itself is 1/2, which is the in-
verse of the multiplicative constant 2 in the formula for am. In conclusion, the
inner product structure on L2([0, 1]) provides, at least formally, a convenient
way to determine the Fourier coefficients of a given periodic function.

In order to simplify even more the theory of Fourier series, more algebraic
structure is invoked. First of all, a periodic function of period one can be
viewed as a function on the interval [0, 1⟩, which is the set of representatives
for the quotient R/Z of additive groups. Thus, we obtain a group structure on
the domain of the considered functions. The group R/Z is a compact Abelian
group, which is isomorphic to the circle group S1 of complex numbers of
modulus one. The homeomorphic isomorphism is given by the assignment

x 7→ cos(2πx) + i sin(2πx)

for x ∈ [0, 1⟩ = R/Z, where i =
√
−1 is the imaginary unit.

The orthogonal system of trigonometric functions is now replaced by the
system consisting of exponential functions

χn(x) = e2πinx, n ∈ Z.

These functions are clearly of period one, but they also preserve the group
structure. More precisely, χn is a unitary character of the group R/Z, because

χn(x+ y) = e2πin(x+y) = e2πinx · e2πiny = χn(x)χn(y).

and |χn(x)| = 1. Moreover, all the unitary characters of R/Z are obtained
this way. The assignment k 7→ χk defines a natural isomorphism between the
additive group Z of integers and the multiplicative group of unitary characters
of R/Z. This means that the Pontryagin dual, which plays the role of the
unitary dual in this setting, of the group R/Z is isomorphic to Z.
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The inner product of characters equals

(χn|χm) =
∫ 1

0
χn(ξ)χm(ξ) dξ

=
∫ 1

0
χn−m(ξ) dξ

=
{

0, if n ̸= m,
1, if n = m,

where in the first line we used the facts that χkχl = χk+l and χk = χ−k,
and in the last line we integrate a character of a group over the whole group,
so that the integral is zero if the character is non-trivial, and equal to the
volume of the group if the character is trivial. Thus, the system χn, n ∈ Z,
is orthonormal. The sine and cosine functions in the Fourier series can be
replaced by χn, n ∈ Z, because

1 = χ0(x),

cos(2πmx) = χm(x) + χ−m(x)
2 , m ≥ 1,

sin(2πmx) = χm(x)− χ−m(x)
2i , m ≥ 1.

The Fourier series of f in the orthonormal system χn, n ∈ Z, reads

Sf (x) =
∑
n∈Z

cnχn(x),

where the coefficients cn are given by the inner product as

cn = (f |χn)

=
∫ 1

0
f(ξ)χn(ξ) dξ

=
∫ 1

0
f(ξ)e−2πinξ dξ, n ∈ Z.

So far, this is quite similar to the story of sines and cosines, but the first
crucial difference is that χn are unitary characters, that is, preserve the group
structure.

The space L2([0, 1]) = L2(R/Z) exhibits an action of the underlying
Abelian group R/Z by translations. More precisely, given x0 ∈ R and a
function f ∈ L2(R/Z), the action is defined as

(R(x0)f) (x) = f(x+ x0),

which is well-defined because f is of period one. Thus, R defines a representa-
tion of R/Z on the complex vector space L2(R/Z), which is referred to as the
right regular representation. This is the additional algebraic structure on the
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space L2(R/Z) that explains why the characters χn are perfect for decompos-
ing periodic functions of period one. Observe that the right regular represen-
tation is unitary, that is, preserves the inner product on L2([0, 1]) = L2(R/Z).
Given f, g ∈ L2(R/Z) and x0 ∈ R,(

R(x0)f |R(x0)g
)

=
∫ 1

0
(R(x0)f) (ξ)(R(x0)g) (ξ) dξ

=
∫ 1

0
f(ξ + x0)g(ξ + x0) dξ

=
∫ 1

0
f(ξ)g(ξ) dξ

= (f |g) ,
where we used the additive change of variables ξ 7→ ξ − x0.

It turns out that the one-dimensional subspaces Cχn spanned by χn are
invariant for the right regular representation R. Indeed, given x0 ∈ R,

(R(x0)χn) (x) = χn(x+ x0)

= e2πin(x+x0)

= e2πinx0χn(x),
for all x ∈ R, so that

R(x0)χn = e2πinx0χn ∈ Cχn.
This fact shows that the Fourier series, written in terms of characters χn,
is compatible with the structure of the right regular representation. This is
the underlying reason for the beauty, but also the power, of the harmonic
analysis.

Let us pause for the moment at this point to observe the rich algebraic
structure present in the theory of Fourier series. The domain of the consid-
ered functions is the compact Abelian group R/Z which acts on the space
L2(R/Z) of all these functions by unitary operators, that is, preserves the
inner product. The unitary dual of the compact Abelian group R/Z, referred
to as the Pontryagin dual in this context, consists of all unitary characters of
R/Z, which form the Abelian group isomorphic to Z. The unitary characters
of R/Z are compatible with the group action on L2(R/Z) by the right regu-
lar representation, so that each of them spans an invariant one-dimensional
subspace. This marvelous picture is the starting point for harmonic analysis
in more complicated settings.

In a more general setting, the harmonic analysis is actually developed
by considering the spaces invariant for the right regular representation of the
appropriate L2 space. These spaces should be irreducible unitary represen-
tations of the underlying group. The Fourier series in such setting is the
decomposition according to these unitary representations, either as a direct
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sum or a direct integral. In any case, the harmonic analysis on locally compact
topological groups crucially depends on the understanding and classification
of the unitary representations of the underlying group.

Let G be a locally compact topological group with the Haar measure dg.
Let L2(G) be the space of square-integrable measurable complex functions on
G, i.e., all measurable functions f : G→ C such that∫

G

|f(g)|2 dg <∞.

The inner product on L2(G) is defined by

(f1|f2) =
∫
G

f1(g)f2(g) dg.

The right regular representation R of G on L2(G) is defined as follows. Given
g0 ∈ G and f ∈ L2(G), the action is given by

(R(g0)f)(g) = f(gg0),

for all g ∈ G. It is unitary, because given g0 ∈ G,(
R(g0)f1|R(g0)f2

)
=
∫
G

(R(g0)f1) (g)(R(g0)f2) (g) dg

=
∫
G

f1(gg0)f2(gg0) dg

=
∫
G

f1(g)f2(g) dg

= (f1|f2) ,

where we made the change of variables g 7→ gg−1
0 .

Observe how the basic objects and algebraic structure in the case of the
group G are precisely parallel to those in the theory of classical Fourier series,
i.e., the case of the group G = R/Z. The differences appear, because in
the case of noncommutative and noncompact G, the G-invariant spaces of
L2(G) are typically infinite-dimensional. Understanding of these spaces is
an important step in the study of the unitary dual of G, although there are
also other irreducible representations of G that are unitarizable. Thus, the
classification of the unitary dual of G requires essentially more complicated
techniques and approaches than the classical harmonic analysis of the Fourier
series. However, despite the necessity for technically more advanced methods,
the Tadić philosophy is that, at the end of the day, harmonic analysis must
be simple, just as the classical theory of Fourier series. The evidence for such
claim stems from the results in the cases in which the unitary dual is known,
including the results of Tadić, as already pointed out above.
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4. The Lefschetz principle

The Lefschetz principle for reductive groups was formulated by Harish-
Chandra, inspired by the Lefschetz principle in algebraic geometry. The intro-
duction to his lecture notes on harmonic analysis on reductive p-adic groups,
given at the Institute for Advanced Study in 1969, begins with the following
paragraph:

“The object of these lectures is to illustrate, what I like to call the Lef-
schetz principle, which, in the context of reductive groups, says that whatever
is true for real groups is also true for p-adic groups” [19, p. 1].

And the rest of the introduction goes on to pinpoint examples and his
expectations at the time of giving these lectures, how certain facts from the
harmonic analysis on real groups should be transferred to the harmonic anal-
ysis on p-adic groups. The Lefschetz principle of Harish-Chandra should be
understood as a philosophical principle, not a strict claim or a conjecture.

The Lefschetz principle is a reoccurring theme in the work of Tadić as well.
However, in his work the flow of ideas and results is mostly in the opposite
direction, that is, from p-adic groups to the real groups. This point is very
nicely summarized in the joke by Paul Sally, mentioned at the end of Tadić’s
lecture notes [76]. Sally called the principle present in the work of Tadić the
“Schefletz principle”, because Tadić primarily proves the results in the case
of p-adic groups, and then, the same ideas are extended to the case of real
and complex groups. Perhaps the best way to combine the two principles is
to refer to them as the unified approach to the representation theory of p-adic
and real groups.

A prominent example of the Schefletz principle in the work of Tadić is the
classification of the unitary dual of the general linear group [46]. In the p-adic
case, this is recalled in Section 3. However, the theorem of exactly the same
form holds in the case of the general linear group over the field of real and
complex numbers [45], [69]. The only difference is in the amount of square-
integrable representations from which the Speh representations u(δ, k), which
serve as the building blocks of all unitary representations, are constructed.
In the case of GL(n,R), the possible δ are just the unitary characters of
GL(1,R) ∼= R× and the square integrable representations of GL(2,R) clas-
sified by their lowest O(2)-types. There are no square-integrable representa-
tions of GL(n,R) for n > 2. In the case of GL(n,C), the only possible δ are
the unitary characters of GL(1,C) ∼= C×, as there are no square-integrable
representations of GL(n,C) for n > 1. We also point out the paper [60] on
metaplectic covers.

As explained in Section 6, there exist different approaches to the repre-
sentation theory of the general linear group and classical groups. Over an
archimedean local field, the representation theory can be studied using differ-
entiation that leads to the representation theory of Lie algebras. However, in



TADIĆ PHILOSOPHY 23

the p-adic case, passing to the p-adic Lie algebra does not yield any non-trivial
results. The useful algebra in the p-adic case is the Hecke algebra of locally
constant functions on the group. But in the archimedean case, the algebra of
locally constant functions on a Lie group does not give any non-trivial results.
Similar phenomenon happens with the restriction to a maximal compact sub-
group, which is useful in the archimedean representation theory, but in the
p-adic case must be replaced by the theory of types, which are restrictions, in
some sense, to certain open compact subgroups.

The upshot of these considerations is that all these methods are extremely
useful in one setting, but uninteresting in the other. In other words, they are
far from the Lefschetz principle, and it seems as a miracle that the final
outcome, for instance, the classification of the unitary dual of the general
linear groups, can be formulated in the same way in both archimedean and
p-adic case.

The Lefschetz principle in the case of the unitary dual of general linear
groups is brought back to life by the external approach to the representa-
tion theory of general linear groups and classical groups. This approach of
Tadić, described in Section 6, is uniform, independent of the underlying lo-
cal field, and can be translated word-by-word from the p-adic setting to the
archimedean setting. The only minor differences, which arise from the nature
of the local field, are in the number of square-integrable representations, and
certain technical facts.

The Lefschetz principle is closely related to the simplicity of harmonic
analysis principle elaborated in Section 3. It seems that whenever the Lef-
schetz principle is well understood for certain problem in representation theory
of reductive groups, the solution can be formulated in a simpler way, and even
the proofs can be better understood and nicely structured. Somehow the un-
derstanding of the Lefschetz principle is a prerequisite for finding better points
of view at the representation theory and non-commutative harmonic analysis
in both archimedean and p-adic setting.

Another example of the Lefschetz principle is provided by the determi-
nantal formula of Tadić [58]. It gives the characters of Speh representations
in terms of characters of essentially square-integrable representations simul-
taneously in the p-adic and archimedean case. The characters of irreducible
representations are one of the central problems in representation theory from
its beginnings. Already in the classical book of Gel′fand and Naymark1 [15],
they point out the three main goals of representation theory of reductive
groups. These are unitary duals, characters of irreducible representations and
Plancherel measures. The influence of the work of Gel′fand and Naymark is
present in the work of Tadić, in particular, in the early stages of his study of

1Although the official English transliteration would be Naymark, the name is often
spelled as Naimark, Năımark or even Neumark. The last one is used in our list of references,
in which we follow the transliteration found in MathSciNet and zbMATH Open databases.
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unitary duals.
∗ ∗ ∗

In the rest of this section, the determinantal formula is explained in more
detail. In [58], Tadić expressed the characters of twists of Speh representa-
tions as linear combinations of the characters of essentially square-integrable
representations, or in other words, in terms of the characters of standard
representations. Note that the knowledge about the characters of Speh repre-
sentations guarantees the knowledge about the characters of the whole unitary
dual, according to the work of van Dyk [83]. This can be viewed as a special
instance of the use of Kazhdan–Lusztig polynomials, but in general, these are
very complicated, while the formula of Tadić, turned out to be very simple and
elegant. He used a very interesting idea to formally transfer the problem from
p–adic to complex groups, thus, providing more evidence for the Lefschetz, or
more precisely, Schefletz principle. In both cases, he used information about
the end of certain complementary series representations.

Determinantal formula (Tadić, [58, Thm. 5.4]). Let ρ be an irreducible
supercuspidal representation of GL(d, F ), where d is a positive integer. Let δ
be the essentially square-integrable representation of GL(m,F ) defined above
as

δ = δ[ν− l−1
2 ρ, ν

l−1
2 ρ],

where l is a positive integer such that m = dl. Let k be a positive integer and
Wk the group of permutations of the set {1, 2, . . . , k} . Let

W
(l)
k = {w ∈Wk : w(i) + l ≥ i for all 1 ≤ i ≤ k} .

Then, the following identity

ν
k+l

2 u(δ, k) =
∑

w∈W (l)
k

(−1)sgn(w)
k∏
i=1

δ[νiρ, νw(i)+l−1ρ].

holds in the Grothedieck group of the category of finite length representations
of GL(n, F ), where n = mk and u(δ, k) is the Speh representation defined as
in Section 3, but δ is not necessarily unitarizable.

Note that the name of the formula stems from the alternating signs in
the sum above, and the summation is over the set which is an obvious subset
of the symmetric group Wk, just as in the definition of the determinant.

The argument of Tadić was later even simplified by Chenevier and Re-
nard [11]. This was generalized by Lapid and Mínguez [23] to a wider class
of representations, the so-called “ladder representations”, encompassing the
Speh representations, using Jacquet modules and completely avoiding the
unitarizability issues.
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5. Comparison of Jacquet modules

In the representation theory of p-adic groups one of the most fundamen-
tal objects is the parabolically induced representation introduced in Section
2. It is the most important construction of representations arising from rep-
resentations of smaller groups. The complete understanding of reducibility of
parabolically induced representations and their composition series is required
in the classification of irreducible representations and irreducible unitary rep-
resentations of the considered group.

One of the powerful tools in the study of parabolically induced representa-
tions are Jacquet modules. The reasons for that are the Frobenius reciprocity,
which relates the intertwining operators on the level of the induced representa-
tion of the full group to the intertwining operators of Jacquet modules on the
level of the Levi subgroups, and the geometric lemma and the related struc-
tural formula, recalled in Section 6, which determines the Jacquet module of
parabolically induced representations.

LetG be a reductive p-adic group and P = MN a parabolic subgroup with
the Levi subgroup M and the unipotent radical N . Given a representation π
of a reductive p-adic group G in a complex vector space V , the Jacquet module
of π with respect to P is the representation rGM (π) of the Levi subgroup M
acting on the space

VN = V/V (N), where V (N) = span
u∈N,v∈V

{π(u)v − v}

by the formula((
rGM (π)

)
(m)

)
(v + V (N)) = δP (m)−1/2π(m)v + V (N),

where m ∈ M , v ∈ V and δP is the modular function of P . The role of the
modular function is a convenient normalization of Jacquet modules, as in the
definition of parabolic induction in Section 2.

The fundamental relation between induced representations and Jacquet
modules is the Frobenius reciprocity. It says that, given a finite length rep-
resentation π of G and a finite length representation σ of M , there is an
isomorphism

HomG

(
π, IndGP (σ)

)
∼= HomM

(
rGM (π), σ

)
of spaces of intertwining operators. In other words, the functor of taking
Jacquet modules is left adjoint to the functor of parabolic induction.

The Jacquet modules are not the invention of Tadić. They were used
earlier by Jacquet [20], Casselman [10] and Bernstein–Zelevinsky [7]. However,
his idea to apply Jacquet modules with respect to several different parabolic
subgroups and compare the results turned out extremely fruitful. His main
point is that the Jacquet module techniques yield better results for larger
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groups, simply because there are more parabolic subgroups at our disposal
[61], [36]. This idea is referred to as the Tadić philosophy by Blondel in [8].

To put it in his own words, quoted from [61], “Surprisingly, Jacquet mod-
ules are much more powerful in more complicated situations. The reason
for this is simple: there are more standard parabolic subgroups. Therefore,
one can compare information on Jacquet modules coming from different par-
abolic subgroups. For this approach to be most effective, one needs to direct
one’s attention to Jacquet modules with respect to large parabolic subgroups
(which was not usually done in the early applications of this use of Jacquet
modules). We note that this approach is particularly convenient for classical
groups because the Levi subgroups of their parabolic subgroups are direct
products of general linear groups and smaller classical groups.”

The limitations of the Jacquet module techniques in the case of smaller
groups are best observed in the case of G = SL(2, F ), as pointed out in [61].
In that case, the only proper parabolic subgroup, up to conjugacy, is the Borel
subgroup B of upper-triangular matrices in SL(2, F ). Its Levi subgroup is
the maximal split torus T ∼= F× of diagonal matrices in SL(2, F ). Given a
multiplicative character χ of F×, one may construct the parabolically induced
representation

IndSL(2,F )
B (χ).

Since B is, up to conjugacy, the only proper parabolic subgroup of SL(2, F ),
the only Jacquet module that can be considered in this setting is

r
SL(2,F )
T

(
IndSL(2,F )

B (χ)
)
,

which is not sufficient to solve even the basic questions. For example, in the
case of χ2 is trivial, the above induced representation is irreducible if χ is
trivial and reducible if χ is not trivial. In the case χ = | |α, with α ∈ R, it is
irreducible if and only if α ̸= ±1. These facts cannot be obtained by a simple
application of Jacquet modules.

On the other hand, in case of larger classical group G, the Jacquet module
techniques provide reducibility and irreducibility criteria arising from com-
paring Jacquet modules with respect to different parabolic subgroups. Such
criteria proved to be extremely useful in the study of parabolically induced
representations in a series of papers of Tadić, e.g. [62], [61], [63], [31], [59],
[64], [72], [71], [53], [66], [65], [56], [17].

∗ ∗ ∗

As an example, which highlights the flavor of these results, we recall now
the first and simplest reducibility criterion of [62, Sect. 3].

Reducibility criterion (Tadić [62, Lemma 3.1]). Let G be a reductive
p-adic group. Let π, π′ and Π be representations of G of finite length. Suppose
that
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(i) π ≤ Π and π′ ≤ Π,
(ii) there exist parabolic subgroups P1 and P2 of G, with Levi subgroups M1

and M2, respectively, such that
rGM1

(π) ̸≤ rGM1
(π′),

rGM2
(π) + rGM2

(π′) ̸≤ rGM2
(Π).

Then, π is reducible and has a common irreducible subquotient with π′.

Even without going into details, it is now clear why larger groups are more
suitable for Jacquet module techniques. There are more parabolic subgroups,
and therefore more possible choices for P1 and P2 in condition (ii) of Lemma
5. The comparison of Jacquet modules with respect to carefully chosen P1
and P2 yields the reducibility results required in applications.

In practice, as observed in [62, Rmk. 3.2], the reducibility criterion is ap-
plied to the setting in which the representations π, π′ and Π are parabolically
induced representations. More precisely, let P , P ′ and Q be parabolic sub-
groups of G, with Levi subgroups M , M ′ and L, respectively. Let σ, σ′ and
Σ be irreducible representations of M , M ′ and L. Then, we take π, π′ and Π
to be the induced representations

π = IndGP (σ),

π′ = IndGP ′(σ′),

Π = IndGQ(Σ).

The conditions (i) and (ii) of Lemma 5 in this setting read
(i) IndGP (σ) ≤ IndGQ(Σ) and IndGP ′(σ′) ≤ IndGQ(Σ)
(ii) there exist parabolic subgroups P1 and P2 of G, with Levi subgroups

M1 and M2, respectively, such that

rGM1

(
IndGP (σ)

)
̸≤ rGM1

(
IndGP ′(σ′)

)
,

rGM2

(
IndGP (σ)

)
+ rGM2

(
IndGP ′(σ′)

)
̸≤ rGM2

(
IndGQ(Σ)

)
.

Observe that condition (ii) contains Jacquet modules of induced representa-
tions, which should be determined. But this boils down to the so-called geo-
metric lemma and the closely related structural formula, which is a slightly
different story, and will be revisited in the context of classical groups in Sec-
tion 6.

6. External approach to unitary duals

In the representation theory of non-compact non-commutative reductive
groups over archimedean local fields, that is, the fields R and C of real and
complex numbers, respectively, the methods which can be referred to as “in-
ternal” appear to be very useful. These methods substantially exploit the



28 N. GRBAC AND M. HANZER

internal structure of the considered representations. The linearization of the
problem by differentiation leads to the study of the representations of the Lie
algebra of the considered Lie group, and the restriction to a maximal compact
subgroup allows the use of the well-known representation theory of compact
Lie groups. The combination of these two ideas was pursued in the work
of many people in the field of real reductive groups, among which we only
mention the work of Vogan [84].

In the case of p-adic reductive groups, these internal methods of the
archimedean theory are not appropriate. The study of the p-adic Lie algebra
and its complex representations, for instance, does not yield any non-trivial
results. One of the ways to circumvent this problem is to use a different
approach, which can be referred to as “external”, because it never considers
the internal structure of representations. It instead considers a certain al-
gebraic structure on the set of isomorphism classes of representations of the
given p-adic group. The original idea goes back to the work of Bernstein
and Zelevinsky [87] in the case of the general linear group over a p-adic field.
However, Tadić used this approach extensively in the case of general linear
groups, extended it to the case of classical p-adic groups, and showed that
the same approach works for the general linear groups over archimedean local
fields as well.

The external approach to unitary duals led Tadić to the complete clas-
sification of the unitary dual of the general linear group over any local field,
except that in the case of an archimedean local field the proof relied on certain
technical conjecture of Kirillov. The conjecture of Kirillov was announced in
[22], but not proved at the time of Tadić’s classification result. It was later
proved by Baruch in [6].

The statement of the classification is already given in Section 3 in the case
of the general linear group over a p-adic field as an example of the simple final
answer to a complicated problem in the non-commutative harmonic analysis.
However, the same statement is true for the archimedean case, as well, which
provides a superb example of the Lefschetz principle, as already mentioned in
Section 4.

Even the unitary dual of the general linear group over a p-adic division
algebra D can be approached by the same external method [52]. However, in
this case, the complete proof at the time depended on certain facts, denoted
by (U0)–(U4) by Tadić. The facts (U3) and (U4) are already proved in [52],
as well as the fact that (U0) and (U1) together imply (U2). When Badulescu
and Renard proved (U1) in [5], it remained to prove (U0), which reads as
follows:

(U0) Let σ1 and σ2 be irreducible unitary representations of the gen-
eral linear groups GL(n1, D) and GL(n2, D), respectively. Then, the
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parabolically induced representation σ1 × σ2 of GL(n1 + n2, D) is ir-
reducible.

The proof of (U0) was finally provided by Sécherre [37], who generalized the
theory of types of Bushnel–Kutzko [9] to the case of the general linear group
over a p-adic division algebra. Observe that the theory of types can be seen
as the internal approach to the representation theory of p-adic groups, as
it considers the restrictions, in some sense, to certain open compact sub-
groups. However, the recent work of Lapid and Mínguez [24] provides the
complete proof of the classification of the unitary dual of GL(n,D) in the
spirit of Tadić’s external approach. Their main point is that the classification
is obtained from a weaker version of (U0), and then the original (U0) is a
consequence of the classification. We mention some other contributions of
Tadić to further understanding of the representation theory of general linear
groups over division algebras and their relation to the representation theory
of general linear groups over fields [75], [67], [78]. Since special linear groups
are closely related to general linear groups, as their derived subgroups, their
representation theories are closely related, and the exact form of it was elabo-
rated by Tadić in [54]. The external approach also led to several contributions
of Tadić to the representation theory of classical p-adic groups [62], [61], [63],
[31], [59], [64].

∗ ∗ ∗
Let us now describe in more detail the external approach to the repre-

sentation theory of the general linear group and classical groups over a p-adic
field, which is one of the reoccurring themes in the work of Tadić.

LetRn denote the category of representations of GL(n, F ) of finite length.
Let Rn be its Grothendieck group, that is, the free Abelian group with the Z-
basis consisting of the set of isomorphism classes of irreducible representations
of GL(n, F ). The canonical map from the category Rn to its Grothendieck
group Rn is called semi-simplification and denoted simply by s. s., as in Section
2. Given an object π in Rn, its semi-simplification is the sum

s. s.(π) = σ1 + · · ·+ σℓ,

where σ1, . . . , σℓ are the (possibly isomorphic) irreducible subquotients of π,
and ℓ is the length of π. Let

R =
∞⊕
n=0

Rn

be the sum of Grothendieck groups, which carries the structure of a Z≥0-
graded Abelian group. Note that we set GL(0, F ) to be the trivial group, and
the basis of R0 is the trivial representation of the trivial group GL(0, F ).

The multiplication on R is defined using parabolic induction. Given two
irreducible representations π1 ∈ Rn1 and π2 ∈ Rn2 of the general linear groups
GL(n1, F ) and GL(n2, F ), respectively, their product π1 × π2 is an element
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of the Grothedieck group Rn1+n2 , i.e., a representation of GL(n1 + n2, F ),
defined using parabolic induction as

π1 × π2 = s. s.
(

IndGL(n,F )
P(n1,n2)

(π1 ⊗ π2)
)
,

where P(n1,n2) is the parabolic subgroup of GL(n1 + n2, F ) with the Levi
subgroup isomorphic to the product GL(n1, F )×GL(n2, F ). The multiplica-
tion is then extended to arbitrary elements of R by Z-linearity. The resulting
multiplication map

m : R⊗R→ R

is a Z-linear map of Z≥0-graded Abelian groups. According to the properties
of parabolic induction, the multiplication m gives rise to the structure of Z≥0-
graded Z-algebra on R. The unit element is the trivial representation 1 of
the trivial group GL(0, F ), which may be viewed as a map e : Z → R given
by the assignment e(k) = k1 for every integer k ∈ Z.

Similarly, the comultiplication on R is defined in terms of Jacquet mod-
ules. Given an irreducible representation π ∈ Rn of the general linear group
GL(n, F ), the coproduct of π is defined using Jacquet modules as

m∗(π) =
n∑
k=0

s. s.
(
r
GL(n,F )
M(k,n−k)

(π)
)
,

where M(k,n−k) ∼= GL(k, F )×GL(n− k, F ) is the Levi subgroup of the par-
abolic subgroup P(k,n−k) of GL(n, F ), and r

GL(n,F )
M(k,n−k)

stands for the Jacquet
module with respect to P(k,n−k), as above. The summands on the right-hand
side are elements of Rk ⊗ Rn−k, so that their sum is in the tensor product
R ⊗ R. The definition of m∗ is extended to all of R by Z-linearity. In other
words,

m∗ : R→ R⊗R
is a comultiplication on R. It is coassociative due to the transitivity of Jacquet
modules. The counit element in R is the Z-linear map e∗ : R→ Z, defined on
the Z-basis of R by the assignment

e∗(π) =
{

1, if π = 1,
0, otherwise,

where π is an irreducible representation of GL(n, F ), and 1 denotes the trivial
representation of the trivial group GL(0, F ). The comultiplication and counit
give rise to the structure of Z≥0-graded Z-coalgebra on R.

The algebra and coalgebra structures on R are compatible in the sense
that the comultiplication is an algebra homomorphism of R and R ⊗ R, or
equivalently, the multiplication is the coalgebra homomorphism of R⊗R and
R. This fact means that R exhibits a bialgebra structure. The final ingredient
for the Hopf algebra is an anti-involution ϑ on R such that

m ◦ (id⊗ ϑ) ◦m∗ = e ◦ e∗.
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It turns out that there is a unique such ϑ.
The Hopf algebra structure on R is a strong tool for the study of repre-

sentation theory of GL(n, F ). However, the theory of derivatives of Gel′fand
and Kazhdan [16] was historically the main tool for the study of representa-
tions of the general linear group over a p-adic field. Nevertheless, the external
approach, as pursued by Tadić, led to the classification of the unitary dual
of the general linear group over all local fields, including archimedean local
fields, as well as over division algebras over local fields. Moreover, the external
approach provided a unified proof of the classification of the unitary dual of
the general linear group over all local fields and division algebras over local
fields.

We proceed now to the external approach to the representation theory
of classical p-adic groups. For simplicity of exposition, we stick to the cases
of the symplectic and odd special orthogonal p-adic groups. Let Gn denote
either the symplectic group Sp(2n, F ), or the odd special orthogonal group
SO(2n+ 1, F ), over a p-adic field F . We follow closely the exposition in [59].

Similarly as in the case of the general linear group, let Rn(G) be the
category of representations of Gn of finite length. Let Rn(G) denote the
Grothendieck group of Rn(G). It is a free Abelian group with the Z-basis
consisting of isomorphism classes of irreducible representations of Gn. Let

R(G) =
∞⊕
n=0

Rn(G).

It is a Z≥0-graded Abelian group. For n = 0, the group G0 is the trivial
group, and the trivial representation of G0 is again denoted by 1.

The Abelian group R(G) has no multiplicative structure of a Z-algebra.
However, since the Levi subgroups of Gn are products of the general linear
groups and a smaller classical group of the same type, the parabolic induction
gives rise to an R-module structure on R(G). More precisely, given an irre-
ducible representation π ∈ Rm of GL(m,F ) and an irreducible representation
σ ∈ Rn(G) of Gn, the scalar multiplication π ⋊ σ is defined using parabolic
induction as

π ⋊ σ = s. s.
(

IndGm+n

P(m;n)
(π ⊗ σ)

)
,

where P(m;n) is the parabolic subgroup of Gm+n with the Levi subgroup iso-
morphic to the product GL(m,F )×Gn. The result is an element of Rm+n(G).
Extending the scalar multiplication Z-bilinearly gives rise to the map

µ : R×R(G)→ R(G),

which is a scalar multiplication on R(G) with scalars from R. Thus, the Z≥0-
graded Abelian group R(G) carries the structure of Z≥0-graded R-module.

The R-comodule structure on R(G) is defined as follows. Given an irre-
ducible representation σ of Gn, the scalar comultiplication µ∗(σ) is defined
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using Jacquet modules as

µ∗(σ) =
n∑
k=0

s. s.
(
rGn

M(k;n−k)
(σ)
)
,

where M(k;n−k) ∼= GL(k, F )×Gn−k is the Levi subgroup of a parabolic sub-
group P(k;n−k) of Gn, and rGn

M(k;n−k)
is the Jacquet module with respect to

P(k;n−k). Clearly, µ∗(σ) is an element of R ⊗ R(G). The Z-linear extension
of µ∗ gives rise to the scalar comultiplication as a map

µ∗ : R(G)→ R⊗R(G).

Since
(1⊗ µ∗) ◦ µ∗ = (m∗ ⊗ 1) ◦ µ∗

as maps from R(G) to R⊗R⊗R(G), it follows that µ∗ is coassociative. The
R-comodule structure on R(G) is also Z≥0-graded.

So far, we have the R-module and R-comodule structures on R(G), given
by µ and µ∗, respectively. In order to have the Hopf R-module structure
on R(G), it is required that µ and µ∗ are compatible in the sense that µ∗ :
R(G) → R ⊗ R(G) is a homomorphism of R-modules with the R-module
structure on R⊗R(G) given by the comultiplication m∗ on R. More precisely,
given r0 ∈ R and r ⊗ s in R⊗R(G), the scalar multiplication is defined as

r0 .(r ⊗ s) = m∗(r0)(r ⊗ s),

where the multiplication by m∗(r0) on the right-hand side is given by the
R ⊗R-module structure on R ⊗R(G) defined by m on the first and by µ on
the second factor. However, it turns out that this requirement for the Hopf R-
module structure on R(G) is not satisfied. This fact can be observed by look-
ing at the representation theoretic consequences, which the Hopf R-module
structure on R(G) would imply. A simple argument leading to contradiction
is given in [59, Rmk. 7.3].

Hence, it is necessary to introduce certain twisted variant of the Hopf
R-module structure on R(G). This is achieved by twisting the R-module
structure on R⊗R(G) in the definition of the Hopf R-module. More precisely,
the m∗ in the definition of the scalar multiplication on R ⊗ R(G) by scalars
in R should be replaced with another ring homomorphism from R to R⊗R.
This homomorphism is denoted by M∗ and defined as follows. Let ∼ stand
for the contragredient operator on irreducible representations of general linear
groups, extended Z-linearly to all of R. It is an automorphism of Z-algebra
R. Let t be the ring endomorphism on R ⊗ R which interchanges the two
factors, i.e., t(r1 ⊗ r2) = r2 ⊗ r1 for r1, r2 ∈ R. Then, M∗ : R → R ⊗ R is
defined as

M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ t ◦m∗.
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It is a ring homomorphism. The M∗-Hopf R-module structure is defined
by the requirement that the comultiplication µ∗ : R(G) → R ⊗ R(G) is a
homomorphism of R-modules, where the scalar multiplication on R ⊗ R(G)
is defined as

r0 .(r ⊗ s) = M∗(r0)(r ⊗ s),
and the scalar multiplication on the right-hand side is defined as above. One
of the main points of the paper [59] is that R(G) is indeed the M∗-Hopf
R-module.

The twisted Hopf module structure on R(G) leads to the full and sys-
tematic exploitation of the Jacquet module machinery. Together with the
geometric lemma and the reducibility criteria mentioned in Section 5, it en-
abled Tadić to obtain many important results in representation theory and to
continue the quest for the unitary dual of classical groups.

7. Unitarizability along the lines

In this section we consider the unitarizability problem for irreducible
representations of classical p-adic groups. For our purposes, it is sufficient
to have in mind the two classical groups introduced in Section 2, so that
G = Sp(2n, F ) or G = SO(2n + 1, F ). The problem is easily reduced to the
case of so-called weakly real representations. This is a technical condition,
omitted here, but recalled below in the second part of this section.

Given a weakly real irreducible representation π of G, there is a finite set
of representations of classical groups of the same type and smaller (or equal)
rank, associated to π by Jantzen [21]. These are denoted by Xρi

(π), indexed
by a certain finite set of self-contragredient supercuspidal representations ρi
of general linear groups. Each Xρi(π) belongs to a family of representations
of the classical groups which is referred to as the line of representations. This
is related to the form of their supercuspidal support, but we leave the details
for the second part of this section.

Jantzen has already proved in [21] that the passage from π to Xρi(π)
preserves several fundamental properties, such as square-integrability, for in-
stance. The idea of Tadić in this context can be summarized by two questions
he posed in [68], see also [80].

Unitarizability along the lines questions (Tadić, [68]). Let π be a
weakly real irreducible representation of G. Let Xρi

(π), for i = 1, . . . , k, be
the representations associated to π in [21].

1. Preservation of unitarizability: Is it true that π is unitarizable
if and only if all Xρi(π) are unitarizable, i.e., could unitarizability
problem be reduced to unitarizability along the lines?

2. Independence of unitarizability: Is it possible to transfer unitariz-
ability results between different lines of representations under certain
natural conditions?



34 N. GRBAC AND M. HANZER

These two questions are somehow the guideline for a possible approach
to the unitarizability problem for classical p-adic groups. The affirmative
answer to the first question would reduce the unitarizability problem to the
unitarizability along the lines, that is, to the unitarizability problem for rep-
resentations belonging to a line of representations. The affirmative answer to
the second question would further reduce the study of unitarizability along
the lines to certain special types of lines of representations.

The motivation for these two questions arises from the classification of
the unitary dual of general linear groups. In Section 3, we recalled the clas-
sification of the unitary dual of the general linear group over a local field.
However, the case of the general linear group over a local division algebra,
takes a similar form, except that the so-called supercuspidal reducibility is
at different points. That is, if ρ and ρ′ are supercuspidal representations of
general linear groups over a local field, then the induced representation ρ× ρ′

reduces if and only if ρ′ ∼= ν±1ρ. However, if ρ and ρ′ are supercuspidal rep-
resentations of general linear groups over a local division algebra, then the
induced representation ρ× ρ′ reduces if and only if ρ′ ∼= ν±s0ρ, where s0 de-
pends on ρ. The latter situation is what inspires the unitarizability along the
lines approach. Essentially, the independence of unitarizability would imply
that the solution to the unitarizability problem depends only on the point s0
at which the induced representation reduces.

Although it is still not clear whether the unitarizability along the lines
will be the right approach to the unitary dual of classical p-adic groups, it
is a great example of Tadić’s way of thinking. He always seeks for unifying
arguments between different settings which reduce the considered problem to
certain fundamental facts. In a way, his approaches are always very structured
and uniform.

∗ ∗ ∗
Let π be an irreducible representation of the classical p-adic group Gn, as

above, where n blue stands for its rank. As already mentioned, the problem
of unitarizability of π can be reduced to the case of so-called weakly real
representations. This means that there exists a parabolic subgroup Q, with
the Levi subgroup isomorphic to the productGL(n1, F )×· · ·×GL(nk, F )×Gn′

with n1 + · · ·+ nk + n′ = n, selfcontragredient supercuspidal representations
ρ′
i of GL(ni, F ), a supercuspidal representation σ of Gn′ , and real numbers
xi ∈ R, for i = 1, . . . , k, such that π is a subrepresentation of the induced
representation

π ↪→ IndGn

Q (νx1ρ′
1 ⊗ νx2ρ′

2 ⊗ · · · ⊗ νxkρ′
k ⊗ σ) .

In this situation, we say that σ is the partial supercuspidal support of π.
For a given π, such σ is uniquely determined.

Let X be a set of irreducible supercuspidal representations of general
linear groups. Assume that X = X̃ = {ρ̃ : ρ ∈ X}. For an irreducible
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representation π of a classical p-adic group, one says that it is supported by
X∪{σ} if there exist ρi ∈ X such that π is a subrepresentation of the induced
representation

π ↪→ IndGn

P (ρ1 ⊗ · · · ⊗ ρk ⊗ σ),

where P is an appropriate parabolic subgroup of Gn.
Let ρ be an irreducible selfcontragredient supercuspidal representation of

a general linear group. We define the line Xρ of supercuspidal representations
associated to ρ as

Xρ = {νxρ : x ∈ R}.

We denote by Irr(Xρ, σ) the set of all isomorphism classes of irreducible rep-
resentations of the considered classical groups supported by Xρ ∪ {σ}.

For the given weakly real irreducible representation π of the classical
group Gn and an irreducible selfcontragredient supercuspidal representation
ρ of a general linear group, there exists a representation of the classical group
Gm′ of rank m′ ≤ n, denoted by Xρ(π), supported by Xρ ∪ {σ} and an irre-
ducible representation of the general linear group GL(m,F ) with m+m′ = n,
denoted by Xc

ρ(π), supported outside of Xρ, such that π is a subrepresentation
of the induced representation

π ↪→ IndGn

P(m;m′)

(
Xc
ρ(π)⊗Xρ(π)

)
,

where P(m;m′) is a parabolic subgroup of Gn with the Levi subgroup isomor-
phic to the product GL(m,F )×Gm′ .

Obviously, for all but finitely many selfcontragredient ρ, we have that
Xρ(π) ∼= σ. Those for which we have Xρ(π) ̸∼= σ, we denote by ρ1, . . . , ρk.
Jantzen has proved in [21] that the correspondence

π ↔ (Xρ1(π), Xρ2(π), . . . , Xρk
(π))

is a bijection between the set of all irreducible representations supported by
Xρ1 ∪ · · · ∪Xρk

∪ {σ} and the product
∏k
i=1 Irr(Xρi

, σ).
Having all the notation in place, we can now explain more thoroughly the

two questions of Tadić raised at the beginning of this section. The question
regarding the preservation of unitarizability can be rephrased as the question
whether the bijection defined by Jantzen preserves unitarizability. Although
Jantzen has shown that this bijection preserves some of the fundamental prop-
erties of representations, such as square-integrability, unitarizability is not
among them. The affirmative answer to this question would reduce the unita-
rizability problem to the problem about unitarizability of the representations
supported by just one line.

Let us now explain what the question regarding independence of unita-
rizability means. Assuming that the answer to the first question is positive,
the unitarizability question reduces to the question about the unitarizability
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of the representations supported by just one line. The independence of uni-
tarizability question asks whether it could be that the unitarizable represen-
tations supported in two different lines, but additionally satisfying a natural
assumption, have totally analogous description. More precisely, given a self-
contragredient supercuspidal representation ρ of a general linear group and a
supercuspidal representation σ of a classical group, as above, there exists a
unique αρ,σ ∈ R≥0 such that

ναρ,σρ⋊ σ

reduces. Moreover, since the characteristic of the p-adic field F is zero, it
follows from the work of Arthur and Mœglin [86] that αρ,σ ∈ 1

2Z. If there is
another pair ρ′, σ′ such that αρ,σ = αρ′,σ′ , there is a canonical bijection

E : Irr(Xρ, σ)→ Irr(Xρ′ , σ′).
The second question now pertains to the following question: is it true that
π ∈ Irr(Xρ, σ) is unitarizable if and only if E(π) ∈ Irr(Xρ′ , σ′) is unitarizable?

The evidence for the positive answer to both of these questions of Tadić
is provided by the case of generic representations [25] and unramified repre-
sentations [35].

8. Topology of the unitary dual

A keen interest in the topology and geometry of the unitary and non-
unitary duals of reductive groups is a common thread in Tadić’s work for
decades [41], [50], [48], [42], [51], [39], [73]. Some observations and findings
obtained from the topology of these duals of reductive algebraic groups, both
p-adic and real, were the primary motivation for future studies in harmonic
analysis on these groups. These findings, in turn, informed very interesting
arithmetic interpretations.

Although the following considerations are valid for any reductive algebraic
group over a local field, for simplicity of exposition we consider only the groups
G introduced in Section 2 over a p-adic field F .

Let Ĝ denote the unitary dual of G, that is, the set of isomorphism
classes of unitarizable irreducible representations of G. Then, Ĝ is naturally
a topological space with the topology as defined below in the second part of
this section.

Let G̃ denote the non-unitary dual of G, that is, the set of isomorphism
classes of all irreducible representations of G. Certain convenient character-
ization of the topology on Ĝ in terms of convergence of matrix coefficients
can be used to define a topology on G̃. It turns out that Ĝ is closed in G̃.
Tadić has also shown many different characterizations of this topology on G̃.
In particular, this is exactly the topology introduced by Fell in [14].

It turns out, as Tadić observed, that even if one is only interested in the
unitary dual Ĝ, certain knowledge of G̃ is indispensable. For example, the
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reducibility of the parabolically induced representations can be formulated in
terms of number of limits of certain converging sequences in the non-unitary
dual G̃, see [50] for more details. Note that the topology of G̃ is not Hausdorff.
The irreducibility and reducibility of the parabolic induction is crucial in the
determination of complementary series representation and parabolic reduction
arguments, which are both very important in the determination of the unitary
dual.

To support these claims, consider the general linear group GL(n, F ). Let
u(δ, k) be the Speh representation, defined in Section 3, where δ is a square-
integrable representation of GL(m,F ) and k a positive integer such that km =
n. The Tadić classification of the unitary dual of GL(n, F ), recalled in Section
3, implies that the Speh representation u(δ, k) is unitarizable, as well as the
induced representation ναu(δ, k)× ν−αu(δ, k) for α ∈ ⟨0, 1

2 ⟩. The latter is an
example of a complementary series representation. The irreducibility of the
induced representation for α in that range is crucial for its unitarizability.

On the other hand, one of the local ways to establish the unitarizability
of the Speh representations u(δ, k) is by induction over k. For k = 1, the
Speh representation is just u(δ, 1) = δ, which is unitary. Observing that
u(δ, k − 1)× u(δ, k + 1) appears as a subquotient of ναu(δ, k)× ν−αu(δ, k) at
α = 1

2 , i.e., at the end of the complementary series, together with the fact that
u(δ, k−1)×u(δ, k+1) is irreducible, parabolic reduction gives that u(δ, k+1)
must be unitarizable, as well. This illustrates the importance of reducibility
and irreducibility information to gain knowledge about the unitary dual.

From the Tadić classification of the unitary dual of GL(n, F ), recalled in
Section 3, it is transparent what a prominent role the Speh representations
have. They appear to be the building blocks for the unitary dual, by us-
ing relatively simple procedures like parabolic induction or formation of the
complementary series. On the other hand, they are isolated in the unitary
dual of GL(n, F ), except in the special cases of k = 2 and of δ attached to
a segment of length two. The idea of Tadić that this topological property is
what makes them very important in the construction of the whole unitary
dual turned out to be very fruitful. They are indeed the building blocks for
the unitary dual of the general linear groups, both in the archimedean and
p-adic case, and, in both cases, they are topologically isolated. On the other
hand, cohomological representations are very rare in the p-adic case, unlike
in the real case, so that the cohomological argument does not, at least not in
a straightforward manner, bring a unifying argument. However, as we have
just seen, topology of the unitary dual does! For the record, this is another
example of the Lefschetz principle, described in Section 4, present in the work
of Tadić.

His philosophy that it is very important to find isolated representations
in the appropriate duals gave important results in different contexts. For ex-
ample, for a general reductive group G over a p-adic field, it is proved in [50]
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that the representation π is isolated modulo center in G̃ if and only if it is
supercuspidal. It is also known that the isolated representations in L2(G), in
which the support in the corresponding direct integral decomposition consists
of tempered representations, are precisely square-integrable representations
[18]. In both cases, we see that all the representations isolated in the ap-
propriate unitary duals have certain direct characterization in the harmonic
analysis on that group.

Topological consideration of various other types of duals, especially those
arising from the setting of adèlic groups, such as the automorphic dual and Ra-
manujan dual at the local place, yield striking arithmetic information. Tadić
pursued these ideas and obtained interesting arithmetic consequences, which
we elaborate below.

∗ ∗ ∗
We begin the technical part of this section with a definition of topology on

the unitary dual Ĝ, where G is one of the groups introduced in Section 2. Let
C0(G) denote the convolution algebra of locally constant compactly supported
functions on G. One can introduce a norm on C0(G) in the following way

||f || = sup{||π(f)|| : π ∈ Ĝ},

where f ∈ C0(G), and the norm on the right-hand side is the operator norm.
Recall that π(f) is defined as

π(f)v =
∫
G

f(g)π(g)v dg,

where v is a vector in the space on which π acts, and dg is a Haar measure
on G.

Let C∗(G) be the completion of C0(G) with respect to this norm. It is a
C∗ algebra. We denote by Ĉ∗(G) the set of isomorphism classes of all non-zero
representations of C∗(G). This set is in bijection with Ĝ. We define topology
on the set Ĉ∗(G) using the canonical epimorphism

Ĉ∗(G)→ Prim(C∗(G)),

given by the assignment π 7→ kerπ, to the set Prim(C∗(G)) of primitive ideals
of C∗(G) equipped with the Jacobson topology. The topology on Ĉ∗(G) is
then defined as the weakest topology in which this epimorphism is continuous.
Because of the aforementioned bijection, this also defines topology on Ĝ.

It is important to observe that the same procedure could not be conducted
for the non-unitary dual G̃ of G. However, the topology on Ĝ can be described
in terms of convergence of matrix coefficients. This characterization of topol-
ogy can be carried over to define topology on G̃. As already mentioned, Tadić
studied this topology extensively, and proved several characterizations, and
in particular showed that it is precisely the Fell topology introduced in [14].
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The idea of Tadić is that representations isolated in any type of dual of
G are of the utmost importance, either for harmonic analysis on G or the
arithmetic considerations related to G. The example of Speh representations,
which are isolated in the topology of the unitary dual of GL(n, F ), is already
discussed above. We turn now our attention to arithmetic consequences of
topology on various duals. Hence, for the rest of this section, we move to the
adèlic setting.

For the moment, up to the end of this section, let F be an algebraic
number field, that is, a finite extension of Q. For a given place v of F, let Fv
denote the completion of F at v. Let AF be the ring of adèles of F. Let G be
the classical group or the special linear group defined over F.

The automorphic dual Ĝv,aut of G at the place v is defined as the support
of the representation of G(Fv) acting on L2(G(F )\G(AF )) by right transla-
tions. Here the support means the support of the corresponding measure in
the spectral expansion of L2(G(F )\G(AF )) as a direct integral.

On the other hand, Ĝ1
v denotes the unramified dual with respect to the

fixed maximal compact subgroup Kv of G(Fv). It is an open subset of the
unitary dual Ĝv of G(Fv). Recall that a representation of G(Fv) is called
unramified or spherical if its space contains a Kv-invariant vector. Let Ĝ1

v,aut
denote the unramified part of the automorphic dual of G at the place v.

Sometimes Ĝ1
v,aut is called the Ramanujan dual of G at the place v.

We remark that Ĝv,aut is largely unknown, even in the simplest of cases.
For example, ŜL(2)∞,aut is largely unknown, but its description entails many
important conjectures, e.g., the Selberg 1

4 -conjecture [70], [12]. Following the
Tadić philosophy, it is very important to find isolated representations in the
topology of Ĝ1

v and Ĝ1
v,aut. Note that the isolated representations in Ĝ1

v which
are automorphic, are automatically isolated in Ĝ1

v,aut, but the converse does
not hold in general.

The unramified unitary dual of the groups in question is completely known
by [35]. Not only that the whole unramified unitary dual is obtained, but also
its isolated points, and, among them, the points which are isolated in the
whole unitary dual. On the other hand, motivated by his studies of unipo-
tent automorphic representations, Muić introduces in [33] the negative and
strongly negative (unramified) representations. Roughly, they are unramified
representations which satisfy the conditions on Jacquet modules which are
opposite to the ones that satisfy tempered and square-integrable representa-
tions, respectively, by the Casselman criterion [10]. In other words, they are
unramified representations which are Aubert duals (cf. [3] for the definition
of Aubert duality) of tempered and square-integrable representations, respec-
tively. We denote by Ĝ1

v,neg the negative representations in the unramified
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unitary dual. Muić proved that the strongly negative representations are lo-
cal components of the automorphic representations [34]. Furthermore, it is
proved in [70] that

Ĝ1
v,neg ⊆ Ĝ1

v,aut,

that is, all the negative unramified representations of G(Fv) are in the Ra-
manujan dual at v.

We recall now a very significant conjecture of Clozel, known under the
name Arthur+ε conjecture [12, Conj. 2]. The unramified representations
of G(Fv) are parameterized, via the Satake isomorphism, by the conjugacy
classes of semisimple elements in the complex dual group G∨ of G. Let tπ
denote a semisimple representative of the Satake parameter of π. In our un-
ramified setting, the local Arthur parameter is, briefly said, certain admissible
homomorphism

ψ : WFv
× SL(2,C)→ G∨,

where WFv
is the Weil group of Fv and G∨ is the complex dual group of G.

The Arthur parameter ψ is called unramified and isobaric of weight zero, if
ψ|SL(2,C) is algebraic, ψ|IFv

is trivial, where IFv is the inertia subgroup of WFv ,
and ψ maps the Frobenius element Frobv to a maximal compact subgroup of
G∨.

The Arthur+ε conjecture states, roughly, that if π is an unramified local
component of an irreducible automorphic representation, then there exists a
parameter ψ, unramified and isobaric of weight zero as above, such that

tπ = ψ

(
Frobv,

[
q

1
2
v 0
0 q

− 1
2

v

])
,

where qv is the order of the residue field of Fv.
If one assumes that the Arthur+ε conjecture holds, it follows that

Ĝ1
v,neg = Ĝ1

v,aut.

This would also give us the complete description of isolated representations
in the Ramanujan dual. Namely, [70, Prop. 2.5] then gives that the isolated
representations in the Ramanujan dual are precisely all the strongly negative
unramified representations.

It is also interesting to note that there is a huge discrepancy in the rela-
tionship of the Ramanujan dual and the whole unramified unitary dual be-
tween the split classical p-adic group G(Fv), i.e., the symplectic and odd spe-
cial orthogonal group, and the special linear group SL(n, Fv). Indeed, if one
assumes Clozel’s Arthur+ε conjecture, there are many more isolated points
in Ĝ1

v,aut than in Ĝ1
v in the case of symplectic or odd special orthogonal group

G(Fv), because the isolated points in Ĝ1
v,aut would be exactly the strongly

negative representations. In that case, for example when G = Sp(340, Fv)
of rank 170, as Tadić points out in [70], the number of isolated unramified
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representations makes up just 1, 93% of the number of strongly negative un-
ramified representations. In the case of SL(n, Fv), these numbers coincide,
and are both equal to one.

We mention now two more important instances of the explicit use of
the topology of the unitary dual of p-adic reductive groups. The first is the
convergence in the unitary dual [41], which is instrumental in the proof of
the Tadić classification of the unitary dual of GL(n, F ) for a p-adic field F in
[46]. More precisely, it is used in the Appendix to prove some crucial claims
without referring to the properties of the Zelevinsky–Aubert involution [3],
[4], which were still unknown at that time. The second use of topology is to
obtain bounds for appearance of unitarizable subquotients in the parabolically
induced representations [79].

The notion of a rigid representation is introduced in the setting of rep-
resentations of general linear groups. The set of rigid unitarizable represen-
tations is defined as the set of isomorphism classes of all irreducible unitary
representations which are induced from the Speh representations, but with-
out complementary series. It turns out that one of the consequences of the
generalized Ramanujan conjecture would be equality of the automorphic and
rigid duals for the general linear group, with Speh representations as the only
ones isolated in the topology of the automorphic dual. A certain partial gen-
eralization of this notion is possible for the classical p-adic groups. These
topological consideration lead us to the final topic of the paper in the section
that follows.

9. Interplay of Arthur packets and unitarizability

This idea is the most recent line of thought in the work Tadić. In the
classification of the unitary dual of p-adic groups, the point of departure
is the so-called supercuspidal reducibility as in Section 7. The final goal
is to determine the unitary dual in terms of supercuspidal reducibilities as
parameters. In that quest, the most difficult step is the study of parabolically
induced representations at the so-called critical points.

On the other hand, local Arthur packets are defined as the sets of possi-
ble local components of the automorphic representations in the global Arthur
packets [1]. The latter are candidates for representations in the spectral de-
composition of the discrete part of the space of L2 automorphic forms on
the adèlic group, and thus, necessarily unitarizable. Briefly said, members of
local Arthur packets form a family of unitarizable representations of G. The
representations in this family are sometimes referred to as the representations
of Arhtur’s type.

According to Tadić, the interplay between the representations at critical
points and those of Arthur’s type, could be the crucial ingredient in the un-
derstanding of unitary duals of classical p-adic groups. These representations
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also seem to be distinguished in terms of the topology of the unitary dual in-
troduced in Section 8. These expectations can be formulated by the following
conjecture of Tadić [81].

Conjecture on unitarizability and Arthur packets (Tadić, [81]).
Let π be an irreducible representation of the classical p-adic group G.

1. Suppose that π is an irreducible subquotient at a critical point. Then
the following two claims are equivalent:

(a) π is unitarizable.
(b) π is a member of a local Arthur packet.

2. If π is an isolated representation in the unitary dual, then π is a rep-
resentation at a critical point.

3. Each isolated representation π in the unitary dual is a member of a
local Arthur packet.

The support for the validity of this conjecture Tadić has found in three
cases: the corank three case [82], in the case of the generic unitary dual [25]
and in the case of unramified unitary dual [35]. We end with a quote from
[81] regarding the conjecture:

“[...] the above conjecture expects that in the case of the critical points,
which is the most delicate part of the unitarizability, the mysterious line
between unitarizability and non-unitarizability is drawn by Arthur packets.
It may easily happen that the above conjecture is not true, but still we expect
that this approach of thinking is in a good direction. This conjecture may be
very hard to prove (if it is true).”

∗ ∗ ∗

In the rest of this section, we introduce the technical notions required for
better understanding of the Tadić conjecture above. It is still assumed, for
simplicity, that the group G is one of the classical p-adic groups introduced
in Section 2.

We begin with the definition of critical points. Given an irreducible su-
percuspidal representation ρ of the general linear group, there is a unique
real number e(ρ), referred to as the exponent of ρ, and a unitary irreducible
supercuspidal representation ρu such that ρ ∼= νe(ρ)ρu. Recall that a segment
[a, b] is a sequence of real numbers of the form a, a + 1, a + 2, . . . , b, where
b−a+1 is a positive integer. Given a unitary irreducible supercuspidal repre-
sentation ρu and an irreducible supercuspidal representation σ of the classical
group, there exists a unique non-negative real number αρu,σ ≥ 0 such that
the induced representation

ν±αρu,σρu ⋊ σ

reduces. This was already used in Section 7.
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Let ρ1, . . . , ρk be irreducible supercuspidal representations of general lin-
ear groups, and σ an irreducible supercuspidal representation of G. Assume
that for each i ∈ {1, 2, . . . , k} the following holds :

• ρui is selfcontragredient, i.e., ρui ∼= ρ̃ui ,
• the multiset {e(ρj) : ρuj ∼= ρui } of exponents, which can be assumed to

be non-negative, is such that the underlying set forms a segment in
1
2Z,

• the set of exponents from the previous point contains the reducibility
exponent αρu

i
,σ.

Then, the induced representation ρ1 × ρ2 × · · · × ρk ⋊ σ is referred to as
the representation at the critical point, or of critical type. Any irreducible
subquotient π of that induced representation is then called the irreducible
subquotient at the critical point.

In order to proceed towards the conjecture of Tadić, we recall of the rep-
resentations of Arthur’s type. They are the local constituents of the global
Arthur packets, which parameterize, according to Arthur’s fundamental work
[1], possible automorphic representations in the discrete part of the spectral
decomposition of L2 automorphic forms on the adèlic group. The explicit con-
struction of the representations in the local Arthur packets, i.e., of Arthur’s
type, over a p-adic field is done mostly by Mœglin in a series of papers culmi-
nating with [30], [29], [85], [2].

In Section 8, we used a special form of Arthur packets which is appropriate
to deal with unramified representations. We now recall a more general defini-
tion for the considered groups, which are all split. The local Arthur parameter
for the split classical p–adic group G in question is a homomorphism

ψ : WF × SL(2,C)× SL(2,C)→ G∨

subject to certain technical requirements, where WF is the Weil group of F
and G∨ is the complex dual group of G. The local Arthur packet attached to
this parameter is a finite multiset, which is actually a set in the considered
cases according to [30], of irreducible representations of G subject to certain
character relations.

We would like to point out that one of the main initial ingredients of
Mœglin’s construction of local Arthur packets is the Mœglin–Tadić classifi-
cation of the square-integrable representations of classical p-adic groups [28],
[31]. In their joint work, as a motivation, Tadić used the following idea to con-
struct irreducible summands in the L-parameter attached to square-integrable
representations. Assume that σ is an irreducible square-integrable represen-
tation of a classical group and ρ a selfcontragredient irreducible supercuspidal
representation of a general linear group. Tadić examined, for a positive integer
a, the following induced representation

IndGP (δ[ν− a−1
2 ρ, ν

a−1
2 ρ]⊗ σ),
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where δ[ν− a−1
2 ρ, ν

a−1
2 ρ] is the square-integrable representation attached to

the segment [ν− a−1
2 ρ, ν

a−1
2 ρ] as in Section 2. It turns out that for one par-

ity of a, this representation is never reducible, and for almost all a of the
other parity, it is reducible. The finite set of exceptions to reducibility will
form the summands ρ⊗ Sa in the Langlands parameter of σ, where Sa is the
unique a-dimensional irreducible representation of SL(2,C). This idea, that
one can describe the summands in the L-parameter of a representation, thus,
the object exhibiting both analytical and arithmetical properties, in terms of
reducibility of parabolically induced representations, came from the case of
the general linear group. Of course, one had to ensure that this candidate for
L-parameter indeed satisfies all the required properties.
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Tadićeva filozofija: pregled temeljnih principa i ključnih ideja u
radovima Marka Tadića

Neven Grbac i Marcela Hanzer

Sažetak. Ovaj rad daje pregled temeljnih principa i ključnih
ideja u radovima Marka Tadića. Njegovo istraživanje se naj-
većim dijelom bavi teorijom reprezentacija reduktivnih grupa nad
lokalnim poljima. Iz perspektive autora, najvažniji temeljni prin-
cipi u njegovom radu su suštinska jednostavnost harmonijske
analize, čak i u nekomutativnom nekompaktnom slučaju, Lef-
schetzov princip koji kaže da bi se teorija reprezentacija nad
arhimedskim i nearhimedskim poljima trebala proučavati na iste
načine te princip usporedbe Jacquetovih modula. Osim tih prin-
cipa, najvažnije i najplodonosnije ideje su strukturni vanjski
pristup unitarnom dualu, unitarizabilnost duž pravaca, korištenje
topologije raznih duala da se dobiju informacije o harmonijskoj
analizi i aritmetici promatrane grupe te veza izmedu unitarizabil-
nosti i Arthurovih paketa. Svi ti principi i ideje su tema ovog
rada.
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