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ENDOSCOPIC TRANSFER AND AUTOMORPHIC
L-FUNCTIONS: THE CASE OF THE GENERAL SPIN

GROUP AND THE TWISTED SYMMETRIC AND
EXTERIOR SQUARE L-FUNCTIONS

Neven Grbac

Dedicated to Marko Tadić on the occasion of his 70th birthday

Abstract. The endoscopic classification and the Langlands spectral
theory are two approaches to the discrete spectrum of the group of adèlic
points of a reductive linear algebraic group defined over a number field. The
two points of view on the same object yield interesting consequences. In
this paper, the case of the general spin group is considered. In that case,
it is shown how the comparison of the two approaches implies that the
twisted symmetric and exterior square complete automorphic L-functions
associated to a cuspidal automorphic representation of the general linear
group are holomorphic in the critical strip.

1. Introduction

It happens quite often in mathematics that different points of view on
the same object yield the most fruitful ideas and new insights. Examples of
this phenomenon pop out in each and every part of mathematics. It is very
common that this kind of ideas are considered to be mathematical jewels –
the most beautiful parts of a mathematical theory. We begin this paper with
an incomplete and very personal choice of evidence for this claim.

The representations of groups on vector spaces make a perfect basic ex-
ample. The group is a non-linear object, often difficult to grasp. Its represen-
tation on a vector space realizes the elements of the group as linear operators,
while at the same time resembling the group structure and its symmetries.
However, the full power of this approach lies in the study and comparison
of as many as possible different representations of the given group. Different

2020 Mathematics Subject Classification. 11F66, 11F70, 11F72, 22E55.
Key words and phrases. Twisted symmetric and exterior square automorphic L-

function, general spin group, automorphic representation, endoscopic classification, spectral
decomposition, Langlands–Shahidi method.

71



72 N. GRBAC

representations may be viewed as different points of view on the same group,
thus providing the first evidence for our opening claim.

This paper is dedicated to Marko Tadić. In his work, the above phenom-
enon can be seen, for instance, in his applications of Jacquet modules in the
study of parabolically induced representations of p-adic groups, see [36], [42],
[43], [44], [45], [46], among other papers. The idea is to apply as many Jacquet
modules as possible to a given parabolically induced representation, in order
to get results about its structure and reducibility through a comparison of
different Jacquet modules. In a sense, different Jacquet modules provide dif-
ferent points of view on the same induced representation. This idea of Tadić
bears the name Tadić philosophy, coined by Corinne Blondel in [8].

Another prominent example, within the scope of our own research inter-
ests, is the study of cohomology of arithmetic groups. Let Γ be an arithmetic
subgroup of a connected semisimple linear algebraic group G defined over the
field Q of rational numbers. Then Γ can be viewed as a discrete subgroup of
the group G(R) of real points of G. Assume that Γ is a torsion free congru-
ence subgroup. The cohomology of Γ can be expressed in two substantially
different ways.

The first point of view on cohomology of Γ is geometric. Viewing Γ as a
discrete subgroup of the real Lie group G(R), its cohomology can be expressed
in terms of differential forms as the de Rham cohomology of the locally sym-
metric space Γ\G(R)/KR, where KR is a maximal compact subgroup of G(R).
We refer to [11] for more details. The other point of view on the cohomology
of Γ is from the arithmetic perspective of the theory of automorphic forms.
According to the regularization theorems of Borel [9] and the result of Franke
[12], it can be expressed as the relative Lie algebra cohomology of the space
of automorphic forms on G(R) with respect to Γ.

The two complementary points of view on the cohomology of arithmetic
groups allow the flow of ideas in both directions. For example, geometric
constructions of non-trivial cohomology classes imply the existence of auto-
morphic forms with certain properties. On the other hand, the understanding
of the structure of spaces of automorphic forms provides an approach to ex-
plicit calculation of cohomology. The problem is that the structure of spaces
of automorphic forms depends on deep arithmetic conditions given in terms
of analytic properties of Eisenstein series and automorphic L-functions. How-
ever, the combination of the geometric and arithmetic point of view often
yields best results. The geometric necessary non-vanishing conditions in co-
homology reduce the problem to the understanding of the structure of spaces
of automorphic forms with quite regular cuspidal support, which turns out to
be feasible in many cases. This line of research is followed in the collabora-
tion of the author with Joachim Schwermer [17], [18], [19], [20], [21], and with
Harald Grobner [16]. See [15] for a survey of this work.
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We are now slowly moving towards the scope of the present paper. The
Arthur trace formula [1], [3] is another superb example of the phenomenon
mentioned in the opening paragraph. It is the formula that combines the
geometric and spectral expressions of the same object – the trace of the right
regular representation on the relevant space of automorphic forms on a reduc-
tive group. The applications of the trace formula compare not only the two
sides of the formula, but also the trace formulas for different groups and cer-
tain other objects related to them. All these points of view on the trace, result
in the theory of endoscopy, which provides constructions of functorial trans-
fers of automorphic representations between different groups, as predicted by
the Langlands program. The endoscopic classification of automorphic repre-
sentations of classical groups is obtained in that way [4], [35], [51], subject to
certain technical issues related to the trace formula. The endoscopic transfer
mentioned in the title is the functorial transfer of automorphic representations
of the general spin group to the automorphic representations of the general
linear group, formulated without proof in terms of Arthur parameters in [2].

The last evidence for the opening claim of this paper, at least in our
incomplete list, arises from the comparison of the endoscopic classification
and the Langlands theory of spectral decomposition of spaces of automorphic
forms on reductive groups [31], [34]. Given a reductive linear algebraic group
G defined over a number field, let L2

disc(G,χ) denote the discrete part of the
L2 space of square-integrable automorphic forms on the group G(A) of adèlic
points of G with central character χ. For precise definition of these notions
see [10]. There are two different points of view on the space L2

disc(G,χ).
The first point of view is the endoscopic classification, relying on the

Arthur trace formula, which yields the description of L2
disc(G,χ) in terms of

Arthur parameters, which can be reformulated in terms of the discrete spec-
trum of the general linear groups. The second point of view is the Langlands
spectral theory, which describes the constituents of L2

disc(G,χ) in terms of
the analytic properties of Eisenstein series and the automorphic L-functions
appearing in their constant terms via the Langlands–Shahidi method [34],
[40]. The comparison of the two descriptions of L2

disc(G,χ) can be used to
prove certain analytic properties of the automorphic L-functions in the con-
stant term of the Eisenstein series. This idea was successfully applied in the
case of the symplectic and special orthogonal groups to show how endoscopic
classification implies the holomorphy in the critical strip of the symmetric
and exterior square automorphic L-functions associated to a cuspidal auto-
morphic representation of the general linear group [13], and in the case of the
quasi-split unitary groups implies the holomorphy of the Asai automorphic
L-functions [22]. See [14] for an overview of these results.

The present paper considers the case of the general spin groups and the
twisted symmetric and exterior square automorphic L-functions associated
to a cuspidal automorphic representation of the general linear group, which
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appear in the constant term of the Eisenstein series on the general spin groups.
The Langlands spectral theory is applied in this case by Mahdi Asgari [5], and
the endoscopic classification is formulated without proof by James Arthur in
[2]. The main result is that the endoscopic classification of the automorphic
representations in L2

disc(G,χ) in the case of the general spin group G would
imply that the twisted symmetric and exterior square complete automorphic
L-functions are holomorphic at the values of their complex parameter in the
critical strip.

There are other approaches to the study of these automorphic L-functions.
In particular, the theory of integral representations also implies the analytic
properties of twisted symmetric and exterior square partial automorphic L-
functions [47], [48], [27], [7], but not the complete ones, because it avoids the
finite number of bad local places. However, the Langlands–Shahidi method
and the theory of integral representations for automorphic L-functions provide
yet another example of two points of view on the same object, thus providing
more evidence for the opening claim of this paper.

The motivation and inspiration for writing this paper arose almost ten
years ago, at the Marko Tadić 60th birthday conference,1 from a question by
Guy Henniart, and the subsequent discussion with Colette Mœglin. After my
talk on the analytic properties of the symmetric and exterior square automor-
phic L-functions, Henniart asked whether these results could be generalized
to the twisted L-functions. The case of the general spin groups treated here
provides the affirmative answer.

It is really great how this special volume, dedicated to the occasion of
Marko Tadić’s 70th birthday, popped out these ideas from the back of my
mind and made me write these lines... I would like to express my gratitude
to Guy Henniart for raising the question and Colette Mœglin for the useful
discussion. I am thankful to Ivan Matić for answering my questions regarding
the structure of general spin groups. I am indebted to Goran Muić for the
invitation to contribute to the special volume. Thanks are also due to the
referee for careful reading of the manuscript and pointing out the missing
details which substantially improved the exposition.

Finally, it is my great pleasure to acknowledge my gratitude to Marko
Tadić for leading the representation theory research group in Zagreb, including
researchers from other Croatian universities such as myself, for so many years,
handling the administration of a series of research projects during which we
all grew up into what could be now referred to as the Zagreb or Croatian
school of representation theory and automorphic forms. I look forward to
future collaboration, cooperation and companionship in many years to come.
Happy birthday, Marko!

1Conference Representations of p-adic Groups; A Conference Dedicated to Marko
Tadić on his 60th Birthday, held at the Department of Mathematics, University of Zagreb,
Croatia, in June 2014.
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2. Preliminaries

Let F be an algebraic number field. For a place v of F , let Fv denote
the completion of F at v. Let A denote the ring of adèles, and I the group of
idèles of F .

Let n be a positive integer, and r = ⌊n2 ⌋ the largest integer not greater
than n

2 . We assume throughout the paper that r ≥ 2, in order to avoid
trivial cases. Let Gn = GSpinn be the F -split general spin group of F -rank r
defined over F . It is a split reductive linear algebraic group over F with the
root system of type Br if n = 2r+ 1 is odd, and of type Dr if n = 2r is even.
The derived group of Gn is the spin group Spinn, which is a double covering
of the split special orthogonal group SOn, viewed as algebraic groups. In this
paper, we do not require a complete description of the structure of Gn, and
refer to [5] or [23] for a detailed account. See also [32] for the closely related
case of the split spin groups.

Let P be a parabolic F -subgroup of Gn with the Levi decomposition
P = MN , where the Levi factor M is isomorphic to

M ∼= GLr ×GL1,

andN denotes the unipotent radical. Following [23], we refer to such parabolic
subgroup as the Siegel parabolic subgroup. In the case of n = 2r+ 1 odd, the
Siegel parabolic subgroup is unique up to conjugacy, and thus, self-associate.

However, in the case of n = 2r even, there are two non-conjugate such
parabolic subgroups with isomorphic, but not conjugate, Levi factors [6, page
143], [29]. Since the Levi factors are not conjugate, both parabolic subgroups
are self-associate. These two parabolic subgroups are obtained by removing
either the last or the second-to-last simple root from the set of simple roots
of G2r, which form the root system of type Dr. In what follows, we choose
the Siegel parabolic subgroup P of G2r to be the parabolic subgroup that is
obtained by removing the last simple root from the set of simple roots.

Let W , resp. WM , be the Weyl group of Gn, resp. M . Let w0 be the
unique non-trivial Weyl group element of Gn of minimal length in its coset
w0WM such that w0Mw−1

0 is the Levi factor of a standard parabolic subgroup.
Note that implicit in these considerations is the choice of a minimal parabolic
F -subgroup of Gn and its maximal F -split torus.

Let Ĝn denote the complex dual group of Gn. It is the similitude sym-
plectic group Ĝn = GSp2r(C) of rank r if n = 2r+1 is odd, and the similitude
special orthogonal group Ĝn = GSO2r(C) of rank r if n = 2r is even. The
complex dual group of the Levi factor M of the Siegel parabolic subgroup is
M̂ = GLr(C) × GL1(C). In the case of the Siegel parabolic subgroup, the
action R of the complex dual group M̂ on the Lie algebra of the complex dual
group of the unipotent radical N is irreducible [5], [23], [30].
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Let π ⊗ χ be a cuspidal automorphic representation of the Levi factor
M(A) ∼= GLr(A) × GL1(A). It is the exterior tensor product of a cuspidal
automorphic representation π of GLr(A) and the unitary Hecke character χ of
the group of idèles I = GL1(A). In this case, since every cuspidal automorphic
representation of GLr(A) is globally generic (with respect to any fixed non-
trivial additive character), the automorphic L-functions associated to π ⊗ χ
and the irreducible representation R of the complex dual group M̂ can be
defined by the Langlands–Shahidi method [40], [39]. If n = 2r + 1 is odd,
the L-function associated to π ⊗ χ and R is the twisted symmetric square
automorphic L-function

L(s, π, Sym2 ⊗ χ),
and if n = 2r is even, the L-function associated to π⊗χ and R is the twisted
exterior square automorphic L-function

L(s, π,∧2 ⊗ χ).

These two L-functions are the main objects of concern in this paper.

3. Langlands spectral theory

In this section we construct certain non-trivial constituents of the discrete
spectrum L2

disc(Gn, χ) of the general spin group Gn(A), where χ is the central
character, subject to the analytic properties of the twisted symmetric and
exterior square automorphic L-function associated to a cuspidal automorphic
representation of the Levi factor M(A) of the Siegel parabolic subgroup P in
Gn.

Let π ⊗ χ be a cuspidal automorphic representation of the Levi factor
M(A) ∼= GLr(A)×GL1(A), where π is a cuspidal automorphic representation
of GLr(A), and χ a unitary Hecke character of I ∼= GL1(A). We always
assume that cuspidal automorphic representations of the general linear group
are irreducible and unitary. We also make the following convention.

Convention. In what follows, it is always assumed that π and χ are
normalized in such a way that the possible poles of the Eisenstein series on
Gn(A) associated to π⊗χ, and the automorphic L-functions in their constant
terms, are all real. This assumption is not restrictive, as it is just a convenient
choice of coordinates. It is achieved by an appropriate twist by a unitary
character. See [28, p. 121, Sect. 4.1] for more details.

Given s ∈ C, we may form the parabolically induced representation

I(s, π ⊗ χ) = IndGn(A)
P (A) (π|det |s ⊗ χ) ,

where, as usual, the parabolic induction is normalized by the half-sum of
positive roots in the unipotent radical N .
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The Eisenstein series on Gn(A) associated to π⊗χ are constructed using
sections fs of the induced representations I(s, π⊗χ). They are defined as the
analytic continuation from the domain of convergence of the sum

E(fs, g) =
∑

γ∈P (F )\Gn(F )

fs(γg),

where g ∈ Gn(A). The sum converges absolutely for s in some right half-
plane, and its analytic continuation is a meromorphic function on the whole
complex plane. See [34], [31] for more details.

In the case of the general spin group, the Langlands–Shahidi method [40],
[38] implies that the constant term EP (fs, g) along P of the Eisenstein series
E(fs, g) can be expressed in terms of the twisted symmetric and exterior
square automorphic L-functions as

EP (fs, g) = fs(g) + L(2s, π,R)
ε(2s, π,R)L(1 + 2s, π,R)N(s, π ⊗ χ,w0)fs(g),

where R = Sym2 ⊗ χ, resp. R = ∧2 ⊗ χ, if n = 2r + 1 is odd, resp. n = 2r
is even. The operator N(s, π⊗χ,w0) is the normalized intertwining operator
associated to π and the Weyl group element w0, as in [6].

Our first task is to determine the poles of the Eisenstein series E(fs, g) for
the values s of its complex parameter such that Re(s) ≥ 0. Our Convention
made in Section 3 regarding the normalization of π implies that these poles
are real. By the general theory of Eisenstein series [34], the possible poles
of the Eisenstein series coincide with the poles of its constant term. Hence,
we should study the poles of the second summand in the expression for the
constant term. The first step is the following lemma which shows that the
pole is determined by the L-functions, and not by the normalized intertwining
operator.

Lemma 3.1. In the notation as above, the normalized intertwining opera-
tor N(s, π⊗χ,w0) is holomorphic and not identically vanishing at the values
s of its complex parameter such that Re(s) ≥ 0.

Proof. This lemma is essentially Proposition 3.6 in [6] with a slight im-
provement due to the fact that we deal with the Siegel parabolic subgroup.
Our statement for the global normalized intertwining operator N(s, π⊗χ,w0)
is reduced to the local result for the local normalized intertwining operators
N(s, πv ⊗χv, w0), where π ∼= ⊗vπv is the restricted tensor product decompo-
sition and χ =

∏
v χv, as follows.

Let fs = ⊗vfs,v be a decomposable section, where fs,v are sections of the
local induced representations

I(s, πv ⊗ χv) = IndGn(Fv)
P (Fv) (πv|det |sv ⊗ χv) .

Then, there is a finite set of places Sf , which contains all archimedean places,
such that the local component πv of π is unramified and fs,v = f◦

s,v for all
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places v ̸∈ Sf , where f◦
s,v is the unramified vector in I(s, πv ⊗χv) normalized

by the condition that f◦
s,v takes value one on the identity element of Gn(Fv).

The action of the global normalized intertwining operator decomposes as

N(s, π ⊗ χ,w0)fs = ⊗vN(s, πv ⊗ χv, w0)fs,v

=
(
⊗v∈Sf

N(s, πv ⊗ χv, w0)fs,v
)
⊗
(
⊗v ̸∈Sf

f̃◦
−s,v

)
,

where f̃◦
−s,v is the unramified vector in the representation I(−s, w0(πv)) nor-

malized by the condition that it takes value one on the identity element of
Gn(Fv). This decomposition implies that the holomorphy and non-vanishing
of the global intertwining operator is reduced to the same result for the local
normalized intertwining operator at every place v.

The holomorphy of N(s, πv ⊗ χv, w0) for the values s of the complex
parameter such that Re(s) ≥ 0 now follows in the same way as in the proof
of Proposition 3.6 in [6]. The better bound is obtained, because in the Levi
factor of the Siegel parabolic subgroup there is no general spin group of smaller
rank. For convenience of the reader we sketch the proof below.

Since πv is a local component of a cuspidal automorphic representation of
GLr(A), it is unitary and generic. According to the classification of irreducible
unitary representations of the general linear group in [41] over a p-adic field
and in [50] over an archimedean field, and the standard module conjecture
for the general linear group in [52] over a p-adic field and in [49] over an
archimedean field, the representation πv is isomorphic to the fully induced
representation

πv ∼= IndGLr(Fv)
Q(Fv) (δ1|det |α1

v ⊗ · · · ⊗ δk|det |αk
v ) ,

where Q is an appropriate parabolic subgroup of GLr with the Levi factor
isomorphic to a product of general linear groups of smaller rank, the rep-
resentations δj are unitary square-integrable representations of the smaller
general linear groups in the Levi factor of Q, and αj are real numbers such
that |αj | < 1/2.

As in the proof of Proposition 3.6 in [6], by the decomposition of the
intertwining operators and induction in stages, it is sufficient to check the
holomorphy of each factor viewed as an intertwining operator for a maximal
parabolic subgroup in a certain smaller group. In the case of the Siegel para-
bolic subgroup, the factors are simpler than in the general case. They are all
either of the form

N(2s+ αi + αj , δi ⊗ δ̃j),
where i < j and δ̃j is the contragredient of δj , which is the normalized inter-
twining operator associated to a square-integrable representation of a maximal
parabolic subgroup in the general linear group, or of the form

N(s+ αi, δi),
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which is the normalized intertwining operator associated to a square-integrable
representation of the Levi factor of the Siegel parabolic subgroup of a smaller
general spin group. The former are holomorphic for the values of the complex
parameter s such that

Re(2s+ αi + αj) > −1
by [33], and the latter are holomorphic for the values of s such that

Re(s+ αi) > −1/2

by [53]. The assumptions in [53] are all proved in the case of general spin
groups, as explained in [6]. The above inequalities are all satisfied by the
values of s such that Re(s) ≥ 0, since |αi| < 1/2. Thus, all the factors are
holomorphic for such s, as required.

The non-vanishing of N(s, πv ⊗ χv, w0) is a consequence of holomorphy
by Zhang’s lemma [53].

We are now ready to prove the main result of this section, which relates the
poles of the ratio of the twisted symmetric and exterior square automorphic
L-function to the constituents of the discrete spectrum L2

disc(Gn, χ) of Gn(A).

Theorem 3.2. Let π be a cuspidal automorphic representation of GLr(A)
and χ a unitary Hecke character, normalized as in Convention made in Sec-
tion 3. Let either n = 2r + 1 or n = 2r. Let E(fs, g) be the Eisenstein series
on the general spin group Gn(A) associated to the cuspidal automorphic rep-
resentation π ⊗ χ of the Levi factor M(A) of the Siegel parabolic subgroup P
of Gn. Then, the poles of the Eisentstein series E(fs, g) for the values of the
complex parameter s in the region Re(s) > 0 coincide with the poles of the
ratio of the automorphic L-functions

L(z, π,R)
L(1 + z, π,R)

at the value z = 2s of the complex parameter, where R = Sym2 ⊗ χ if n =
2r + 1, and R = ∧2 ⊗ χ if n = 2r. In particular, if z0 > 0 is a positive real
number such that the ratio above has a pole at z = z0, then there exists a non-
trivial summand Π in the discrete spectrum L2

disc(Gn, χ) of the general spin
group Gn(A) such that Π ∼= ⊗vΠv and Πv is a quotient of the parabolically
induced representation

I(z0/2, πv ⊗ χv)
for every place v.

Proof. According to Lemma 3.1, the poles of E(fs, g) at the values s
of its complex parameter such that Re(s) > 0 coincide with the poles of the
normalizing factor

L(2s, π,R)
ε(2s, π,R)L(1 + 2s, π,R) ,
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where R is as in the statement of the theorem. Since the ε-factor is entire
and non-zero, the first claim of the theorem follows.

Suppose now that z0 > 0 is the pole of the ratio
L(z, π,R)

L(1 + z, π,R) ,

then the Eisenstein series E(fs, g) has a pole at 2s = z0, i.e., s = z0/2. By the
general theory of Eisenstein series [34], the residues of E(fs, g) at the pole s =
z0/2 > 0 span a residual representation Π ofGn(A), that is, Π is a summand in
L2

disc(Gn, χ). Let Π ∼= ⊗vΠv be the decomposition of Π into a restricted tensor
product. Then, Πv is isomorphic to the image of the normalized intertwining
operator N(s, πv ⊗ χv, w0) at s = z0/2. Since this intertwining operator
intertwines the induced representation I(z0/2, πv⊗χv), its image is isomorphic
to a quotient of that induced representation, as claimed.

4. Holomorphy of L-functions in the non-self-dual case

In this section we treat the case in which the analytic properties of the
twisted symmetric and exterior square automorphic L-functions are obtained
independently of the endoscopic classification.

Let χ be a unitary Hecke character of the group of idèles I. A cuspidal
automorphic representation π of GLm(A) is called χ-self-dual (or twisted self-
dual), if it satisfies

π ∼= π̃ ⊗ χ,
where π̃ is the contragredient representation of π. Recall Convention made
in Section 3, which says that it is always assumed that cuspidal automorphic
representations of GLm(A) are normalized in such a way that the poles of the
associated Eisenstein series and the automorphic L-functions are real.

In this section, we consider the case of a cuspidal automorphic represen-
tation π of GLr(A) which is not χ-self-dual. We begin with the lemma that
describes the analytic properties of Eisenstein series associated to such π and
χ.

Lemma 4.1. Let π be a cuspidal automorphic representation of GLr(A)
which is not χ-self-dual, that is, π ̸∼= π̃⊗χ. Let either n = 2r+1 or n = 2r. Let
E(fs, g) be the Eisenstein series on the general spin group Gn(A) associated
to the cuspidal automorphic representation π ⊗ χ of the Levi factor M(A) of
the Siegel parabolic subgroup P of Gn. Then, the Eisenstein series E(fs, g) is
holomorphic for the value s of its complex parameter such that Re(s) ≥ 0.

Proof. According to the general theory of Eisenstein series, the neces-
sary condition for the existence of the pole of E(fs, g) in the right half-plane
Re(s) ≥ 0 is that P is self-associate and π is χ-self-dual. See [34, Sect. IV.3.12]
for more details. Since we are now dealing with the case of π not χ-self-dual,
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the Eisenstein series E(fs, g) is holomorphic in the right half-plane Re(s) ≥ 0.

Theorem 4.2. Let π be a cuspidal automorphic representation of GLr(A)
and χ a unitary Hecke character of the group of idèles I. Suppose that π is
not χ-self-dual, that is, π ̸∼= π̃ ⊗ χ. Then, the twisted symmetric and exterior
automorphic L-functions

L(z, π, Sym2 ⊗ χ) and L(z, π,∧2 ⊗ χ)

are entire as functions of their complex parameter z, and non-zero for the
values of z such that Re(z) ≤ 0 and Re(z) ≥ 1.

Proof. Consider the Eisenstein series E(fs, g) on the general spin group
Gn(A) associated to the cuspidal automorphic representation π ⊗ χ of the
Levi factor M(A) of the Siegel parabolic subgroup P of Gn, where either
n = 2r+1 or n = 2r. According to Lemma 4.1, the Eisenstein series E(fs, g) is
holomorphic for the values s of their complex parameter such that Re(s) ≥ 0.

For the non-vanishing of the automorphic L-functions, we follow the
method of Shahidi and consider the non-constant Fourier coefficient E(fs, g)ψ
of the Eisenstein series E(fs, g) with respect to a non-trivial continuous ad-
ditive character ψ of F\A. Its evaluation at the identity element e of Gn(A)
can be written as

E(fs, e)ψ = 1
LS (1 + 2s, π,R)

∏
v∈S

Wv(ev),

where R = Sym2 ⊗ χ if n = 2r + 1 and R = ∧2 ⊗ χ if n = 2r, and S is
a finite set of places, containing all archimedean places, and such that the
local components πv, χv and ψv are unramified for all v ̸∈ S. The function
LS (1 + 2s, π,R) is the partial L-function associated to π ⊗ χ and R, defined
as the product of the unramified local L-functions over all places v ̸∈ S. For
v ∈ S, the function Wv(ev) is the ψv-Whittaker function associated to the
section fs,v and ev is the identity element of Gn(Fv). See [37] and [40, Sect. 7]
for more details.

As in [40, Sect. 7.2], there is a choice of the local data such that Wv(ev)
is non-zero for every v ∈ S. The Fourier coefficient E(fs, g)ψ is holomor-
phic at the values of s such that Re(s) ≥ 0, because the same holds for the
Eisenstein series E(fs, g). Hence, the partial L-function LS (1 + 2s, π,R) in
the denominator must be non-zero for the values of s such that Re(s) ≥ 0.
It follows that the partial L-function LS(z, π,R) is non-zero for the values z
of its complex parameter such that Re(z) ≥ 1. Since the local L-functions
at the remaining places are non-vanishing, the same holds for the complete
L-function L(z, π,R). The non-vanishing in the left half-plane Re(z) ≤ 0
follows by the functional equation for automorphic L-functions. This proves
the claim regarding the non-vanishing of L(z, π,R).
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For the holomorphy, consider first the Rankin–Selberg automorphic L-
function L(z, π× (π⊗χ)) of the pair of cuspidal automorphic representations
π and π ⊗ χ of GLr(A). It can be decomposed into the product

L(z, π × (π ⊗ χ)) = L(z, π, Sym2 ⊗ χ)L(z, π,∧2 ⊗ χ),

of the twisted symmetric and exterior square automorphic L-functions. This
follows from the direct sum decomposition of the twisted tensor product of
the standard representations of GLr(C) into a direct sum of the twisted sym-
metric and exterior square of the standard representation of GLr(C). See
[23, Sect. 2.2] for more details.

The analytic properties of the Rankin–Selberg L-functions of pairs are
well-known from [25], [26], [24], [33]. Since π is not χ-self-dual, the Rankin–
Selberg L-function L(z, π × (π ⊗ χ)) is entire. We already proved that the
twisted symmetric and exterior square L-functions on the right-hand side
are non-zero for the values z such that Re(z) ≥ 1. It follows that they are
both holomorphic for z such that Re(z) ≥ 1. Otherwise, the pole at z such
that Re(z) ≥ 1 of any of the L-functions L(z, π,R) would produce the pole
at z with Re(z) ≥ 1 of the Rankin–Selberg L-function, which would be a
contradiction. The holomorphy in the left half-plane Re(s) ≤ 0 is now a
consequence of the functional equation.

It remains to prove the holomorphy of L(z, π,R) at the values z such that
0 < Re(z) < 1. Suppose that there is z0 such that 0 < Re(z0) < 1 and the
automorphic L-function L(z, π,R) has a pole at z = z0. Then, the ratio of
L-functions

L(2s, π,R)
L(1 + 2s, π,R)

has a pole at the value of s such that 2s = z0, because in the denominator
Re(1 + 2s) = Re(1 + z0) > 1 and we already proved the holomorphy of
L(z, π,R) in that region. Invoking Theorem 3.2 implies that the Eisenstein
series E(fs, g) associated to π ⊗ χ has a pole at s = z0/2 with Re(s) > 0.
This is a contradiction to Lemma 4.1, so that the theorem is proved.

5. Endoscopic classification

The endoscopic classification of the discrete spectrum L2
disc(Gn, χ) of the

general spin group Gn(A) in terms of Arthur parameters is formulated, with-
out proof, in [2], at least in the case of odd n. However, the case of even n is
analogous. In this section, we recall the definition of Arthur parameters for
the general spin groups, and explain how endoscopic transfer would provide
the classification in terms of discrete spectra of general linear groups.

Lemma 5.1. Let π be a χ-self-dual cuspidal automorphic representation
of GLm(A), that is, π ∼= π̃⊗χ, normalized as in Convention made in Section
3. Then, exactly one of the automorphic L-functions L(z, π, Sym2 ⊗ χ) and
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L(z, π,∧2 ⊗ χ) has a pole of order one at z = 0 and z = 1, and the other
L-function is holomorphic at z = 0 and z = 1.

Proof. Consider the Rankin–Selberg automorphic L-function L(z, π ×
(π ⊗ χ)) of the pair of cuspidal automorphic representations π and π ⊗ χ of
GLr(A), which we already used in the proof of Theorem 4.2. In the case of
χ-self-dual π, it is holomorphic, except for the poles of order one at z = 0 and
z = 1. These facts are the result of the theory of integral representations of
L-functions, developed in this case in [25], [26], [24], see also [33].

Consider again the decomposition
L(z, π × (π ⊗ χ)) = L(z, π, Sym2 ⊗ χ)L(z, π,∧2 ⊗ χ),

as in the proof of Theorem 4.2. According to [37], [39], the L-functions on
the right-hand side are non-zero at z = 0 and z = 1. Hence, in the case of
χ-self-dual π, exactly one of the L-functions on the right-hand side has a pole
at z = 0 and z = 1, and that pole is of order one.

The lemma provides a way to make a distinction between two types of χ-
self-dual cuspidal automorphic representations of GLm(A), depending on the
L-function that has a pole at z = 1. These two types are called the orthogonal
and symplectic type, because they are precisely the functorial transfers from
similitude orthogonal and symplectic groups.

Definition 5.2. The χ-self-dual cuspidal automorphic representation π
of GLm(A) is orthogonal, resp. symplectic, if the automorphic L-function
L(z, π, Sym2 ⊗ χ), resp. L(z, π,∧2 ⊗ χ), associated to π, has a pole at z = 1.

Consider now χ as a unitary Hecke character which is the similitude
character of Gn. The set Ψ2(Gn, χ) of Arthur parameters for L2

disc(Gn, χ)
is defined as follows.

Definition 5.3. An Arthur parameter for L2
disc(Gn, χ) is an unordered

formal sum
ψ = (µ1 ⊠ ν1) ⊞ · · ·⊞ (µℓ ⊠ νℓ)

of formal tensor products µi ⊠ νi, such that
(i) the positive integers m1, . . . ,mℓ and n1, . . . , nℓ are such that m1n1 +
· · ·+mℓnℓ = 2r,

(ii) µi is a χ-self-dual cuspidal automorphic representation of GLmi
(A),

for i = 1, . . . , ℓ,
(iii) νi is the unique irreducible algebraic representation of SL2(C) of di-

mension ni, for i = 1, . . . , ℓ,
(iv) µi ⊠ νi are all distinct, i.e., for i ̸= j, we have µi ̸∼= µj or ni ̸= nj,
(v) the central characters ωµi

of µi, for i = 1, . . . , ℓ, and χ satisfy a com-
patibility condition ωni

µi
= χ,

(vi) the type of representations µi, for i = 1, . . . , ℓ, is determined as follows:
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• if n = 2r+1 is odd, then µi is of symplectic type, if ni is odd,
µi is of orthogonal type, if ni is even,

• if n = 2r is even, then µi is of orthogonal type, if ni is odd,
µi is of symplectic type, if ni is even.

The set of such Arthur parameters is denoted by Ψ2(Gn, χ). Note that the
adjective unordered means that two formal sums that differ only by the order
of summands are considered equal.

The Arthur packet Πψ of automorphic representations of Gn(A) with the
similitude character χ is associated to each Arthur parameter ψ ∈ Ψ2(Gn, χ)
as in [3]. The members of Arthur packets are candidates for the constituents
of the discrete spectrum L2

disc(Gn, χ). The endoscopic classification of the
discrete spectrum L2

disc(Gn, χ) is then given by a multiplicity formula for
members of Arthur packets, which singles out those members of Arthur pack-
ets which contribute with non-zero multiplicity. The multiplicity formula
amounts to a parity condition precisely defined in the discussion following
[4, Thm. 1.5.2].

All representations in the Arthur packet Πψ associated to ψ are nearly
equivalent to each other, that is, their local components are isomorphic at
all but finitely many places. More precisely, given an Arthur parameter ψ ∈
Ψ2(Gn, χ) as a formal sum

ψ = (µ1 ⊠ ν1) ⊞ · · ·⊞ (µℓ ⊠ νℓ),

then, for every representation in the Arthur packet Πψ, its local component at
all but finitely many places is the unramified representation of Gn(Fv) given
by the Satake parameter

c(ψv) =
ℓ⊕
i=1

(c(µi,v)⊗ c(νi)) ,

where c(µi,v) is the Satake parameter of the unramified representation µi,v of
GLmi

(Fv) and

c(νi) = diag
(
q

ni−1
2

v , q
ni−3

2
v , . . . , q

− ni−1
2

v

)
,

with qv the cardinality of the residual field of Fv and ni the dimension of νi.

6. Holomorphy of L-functions in the self-dual case

So far, in Section 4, we proved the analytic properties of the twisted
symmetric and exterior square automorphic L-functions of a cuspidal auto-
morphic representation π of GLr(A) in the case of π that is not χ-self-dual.
Those results are independent of the endoscopic classification for general spin
groups.
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In this section, we consider the case of a cuspidal automorphic represen-
tation π of GLr(A) which is χ-self-dual, that is, π ∼= π̃ ⊗ χ. In what follows
we make the assumption, as we may, that π and χ are normalized as in Con-
vention made in Section 3. In the χ-self-dual case, the results below depend
on the eventual complete proof of the endoscopic classification of the discrete
spectrum L2

disc(Gn, χ) of the general spin groups. In other words, we freely
use the description elaborated in Section 5.

However, observe that the analytic behavior at z = 0 and z = 1 of
the twisted symmetric and exterior square automorphic L-function in the
case of χ-self-dual π is described in Lemma 5.1. Note that this result is also
independent of the endoscopic classification. What remains is to determine the
analytic properties of the twisted symmetric and exterior square automorphic
L-functions L(z, π, Sym2⊗χ) and L(z, π,∧2⊗χ) away from the vertical lines
Re(z) = 0 and Re(z) = 1.

We begin with a lemma regarding the analytic properties of the Eisenstein
series E(fs, g) on the general spin group Gn(A) associated to a χ-self-dual
cuspidal automorphic representation π of GLr(A), as defined in Section 3.

Lemma 6.1. Let π be a cuspidal automorphic representation of GLr(A)
which is χ-self-dual, that is, π ∼= π̃⊗χ, normalized as in Convention of Section
3. Let either n = 2r+1 or n = 2r. Let E(fs, g) be the Eisenstein series on the
general spin group Gn(A) associated to a cuspidal automorphic representation
π⊗χ of the Levi factor M(A) of the Siegel parabolic subgroup P of Gn. Then,
it would follow from the endoscopic classification of the discrete spectrum of
general spin groups that the Eisenstein series E(fs, g) is holomorphic at the
values s of its complex parameter such that Re(s) ≥ 0 and s ̸= 1/2.

Proof. First of all, by the general theory of Eisenstein series, they are
holomorphic on the imaginary axis, so that it is sufficient to give the proof for
Re(s) > 0. Suppose that the Eisenstein series E(fs, g) has a pole at s = s0
such that Re(s0) > 0. Then, the residues span a residual representation
of Gn(A), which is a direct summand in the discrete spectrum L2

disc(Gn, χ).
According to Theorem 3.2, it is isomorphic to Π ∼= ⊗vΠv, where Πv is a
quotient of the parabolically induced representation

I(s0, πv ⊗ χv) = IndGn(Fv)
P (Fv) (πv|det |s0

v ⊗ χv) .

For the places v at which Πv is unramified, we have that πv and χv are unram-
ified, so that Πv is the unramified constituent of the induced representation
above. Hence, the Satake parameter of Πv is

c(Πv) = c(πv)⊗ diag
(
qs0
v , q

−s0
v

)
at all but finitely many places.
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By the endoscopic classification of L2
disc(Gn, χ), the representation Π be-

longs to the Arthur packet Πψ, where the parameter ψ is such that

c(ψv) = c(Πv)

at all but finitely many places. Hence, due to the strong multiplicity one for
the general linear group [26, Thm. 4.4], the Arthur parameter ψ is necessarily
of the form

ψ = π ⊠ ν,

where ν should be the unique irreducible representation of SL2(C) of dimen-
sion 2s0 + 1, so that the exponents of qv in the Satake parameters match.
But the dimensions should satisfy the condition (i) in Definition 5.3 of Arthur
parameters, so that

r(2s0 + 1) = 2r.

This implies that s0 = 1/2 as claimed, because otherwise the Arthur param-
eter required to parameterize Π does not exist.

We are now ready to prove the main result of this section regarding an-
alytic properties of twisted symmetric and exterior square automorphic L-
functions in the case of χ-self-dual cuspidal automorphic representation of
GLr(A).

Theorem 6.2. Let χ be a unitary Hecke character of the group of idèles I.
Let π be a cuspidal automorphic representation of GLr(A) which is χ-self-dual,
that is, π ∼= π̃ ⊗ χ. Then, it would follow from the endoscopic classification
for the general spin groups, that the twisted symmetric and exterior square
automorphic L-functions

L(z, π, Sym2 ⊗ χ) and L(z, π,∧2 ⊗ χ)

associated to π are holomorphic at the values z of their complex parameter
such that Re(z) ̸= 0 and Re(z) ̸= 1, and non-zero at the values of z such that
Re(z) ≥ 1 and Re(z) ≤ 0.

Proof. It is sufficient to prove the theorem for π normalized as in Con-
vention made in Section 3, so that the possible poles are real.

We begin with the proof of non-vanishing. As in the proof of Theorem 4.2,
we use the method of Shahidi [37], [40, Sect. 7], and consider the non-constant
Fourier coefficient of the Eisenstein series E(fs, g) associated to π ⊗ χ. The
same argument as in the proof of Theorem 4.2, relying on Lemma 6.1, implies
that the automorphic L-functions L(z, π,R) are non-zero at the values z of
the complex parameter such that Re(z) ≥ 1 and z ̸= 2. The possible zero at
z = 2 is a consequence of the possible pole of the Eisenstein series E(fs, g) at
s = 1/2, obtained in Lemma 6.1.
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In order to deal with the remaining issue at z = 2, we consider again the
decomposition

L(z, π × (π ⊗ χ)) = L(z, π, Sym2 ⊗ χ)L(z, π,∧2 ⊗ χ)

of the Rankin–Selberg L-function of pairs, as in the proof of Theorem 4.2 and
Lemma 5.1. According to [24], [25], [26], [33], the Rankin–Selberg L-function
is holomorphic and non-zero at the values z of its complex parameter such
that Re(z) > 1. Hence, if one of the automorphic L-functions on the right-
hand side has a zero at z = 2, then the other one would have a pole at z = 2.
Suppose that L(z, π,∧2 ⊗ χ) has a zero at z = 2 and that L(z, π, Sym2 ⊗ χ)
has a pole at z = 2. The other possibility is treated in the same way.

Consider the Eisenstein series E(fs, g) on the general spin group G2r+1(A)
associated to π ⊗ χ. According to Theorem 3.2, if the ratio

L(z, π, Sym2 ⊗ χ)
L(1 + z, π, Sym2 ⊗ χ)

of automorphic L-functions had a pole at z = z0 > 0, then the Eisenstein series
E(fs, g) would have a pole at s = z0/2 > 0. By Lemma 6.1, the Eisenstein
series E(fs, g) is holomorphic at s = 1, which implies that the above ratio
of automorphic L-functions is holomorphic at z = 2. Since the numerator
has a pole at z = 2, it must be cancelled by the pole of the denominator
at z = 2. This means that the L-function L(z, π, Sym2 ⊗ χ) has a pole at
z = 3. But the Rankin–Selberg L-function in the product decomposition
above is holomorphic at z = 3. Thus, the pole of L(z, π, Sym2 ⊗ χ) must be
cancelled by a zero of L(z, π,∧2 ⊗ χ) at z = 3. However, we already proved
that L(z, π,∧2 ⊗ χ) is non-zero at z = 3, so that we obtain a contradiction
which proves that L(z, π,∧2 ⊗ χ) is non-zero at z = 2 as well.

This proves that the twisted symmetric and exterior square automorphic
L-functions L(z, π,R) are non-zero in the right half-plane Re(z) ≥ 1. The
non-vanishing in the left half-plane Re(s) ≤ 0 follows by the functional equa-
tion.

For the holomorphy of L(z, π,R), we first consider the right half-plane
Re(z) > 1. In this half-plane, the Rankin–Selberg L-function L(z, π×(π⊗χ))
is holomorphic and non-zero according to [24], [25], [26], [33]. We al-
ready proved that the twisted symmetric and exterior square automorphic
L-functions are non-zero in the same right half-plane. It follows that both L-
functions are holomorphic at values z such that Re(z) > 1, because otherwise
the pole would produce a pole of the Rankin–Selberg L-function.

It remains to prove the holomorphy of L(z, π,R) in the critical strip, that
is, at the values z such that 0 < Re(z) < 1. Suppose that L(z, π,R) has a
pole at z = z0 such that 0 < z0 < 1. Since we already proved that L(z, π,R)
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is holomorphic at z such that Re(z) > 1, the ratio of automorphic L-functions

L(z, π,R)
L(1 + z, π,R)

has a pole at z = z0. According to Theorem 3.2, it follows that the Eisenstein
series E(fs, g) on the general spin group Gn(A) associated to π⊗χ has a pole
at s = z0/2, where n = 2r + 1 if R = Sym2 ⊗ χ and n = 2r if R = ∧2 ⊗ χ.
This is a contradiction to Lemma 6.1, because 0 < s < 1/2.
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Endoskopski transfer i automorfne L-funkcije: slučaj opće spinorne
grupe i L-funkcija zakrenutog simetričnog i vanjskog kvadrata

Neven Grbac

Sažetak. Endoskopska klasifikacija i Langlandsova spek-
tralna teorija su dva pristupa diskretnom spektru grupe adeličkih
točaka reduktivne linearne algebarske grupe definirane nad po-
ljem algebarskih brojeva. Ova dva pogleda na isti objekt imaju
zanimljive posljedice. U ovom radu, promatra se slučaj opće
spinorne grupe. U tom slučaju, pokazano je kako usporedba dvaju
pristupa implicira da su potpune automorfne L-funkcije zakrenu-
tog simetričnog i vanjskog kvadrata pridružene kuspidalnoj auto-
morfnoj reprezentaciji opće linearne grupe holomorfne u kritičnoj
pruzi.
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