A NOTE ON BOUNDARY COMPONENTS OF ARITHMETIC QUOTIENTS OF THE GROUP $S L_{2}$ OVER AN ALGEBRAIC NUMBER FIELD

Joachim Schwermer

Dedicated to M. Tadić on the occasion of his 70th birthday

Abstract

Given an algebraic number field k, we consider quotients X_{G} / Γ associated with arithmetic subgroups Γ of the special linear algebraic k-group $G=S L_{2}$. The group G is k-simple, of k-rank one, and split over k. The Lie group G_{∞} of real points of the \mathbb{Q}-group $\operatorname{Res}_{k / \mathbb{Q}}(G)$, obtained by restriction of scalars, is the finite direct product $G_{\infty}=\prod_{v \in V_{k, \infty}} G_{v}=$ $S L_{2}(\mathbb{R})^{s} \times S L_{2}(\mathbb{C})^{t}$, where the product ranges over the set $V_{k, \infty}$ of all archimedean places of k, and s (resp. t) denotes the number of real (resp. complex) places of k. The corresponding symmetric space is denoted by X_{G}.

Using reduction theory, one can construct an open subset $Y_{\Gamma} \subset X_{G} / \Gamma$ such that its closure \bar{Y}_{Γ} is a compact manifold with boundary $\partial \bar{Y}_{\Gamma}$, and the inclusion $\bar{Y}_{\Gamma} \longrightarrow X_{G} / \Gamma$ is a homotopy equivalence. The connected components $Y^{[P]}$ of the boundary $\partial \bar{Y}_{\Gamma}$ are in one-to-one correspondence with the finite set of Γ-conjugacy classes of minimal parabolic k-subgroups of G. We are concerned with the geometric structure of the boundary components. Each component carries the natural structure of a fibre bundle. We prove that the basis of this bundle is homeomorphic to the torus T^{s+t-1} of dimension $s+t-1$, has the compact fibre T^{m} of dimension $m=s+2 t=[k: \mathbb{Q}]$, and its structure group is $S L_{m}(\mathbb{Z})$. Finally, we determine the cohomology of $Y^{[P]}$.

1. Introduction

Given an algebraic number field k, we consider quotients X_{G} / Γ associated with arithmetic subgroups Γ of the special linear algebraic k-group $G=S L_{2}$. This group is k-simple, k-split, and of k-rank one. The Lie group G_{∞} of real points of the \mathbb{Q}-group $\operatorname{Res}_{k / \mathbb{Q}}(G)$, obtained by restriction of scalars, is the finite direct product $G_{\infty}=\prod_{v \in V_{k, \infty}} G_{v}=S L_{2}(\mathbb{R})^{s} \times S L_{2}(\mathbb{C})^{t}$, where

Key words and phrases. Cohomology of arithmetic groups, Hilbert modular varieties.
the product ranges over the set $V_{k, \infty}$ of all archimedean places of k, and s (resp. t) denotes the number of real (resp. complex) places of k. The corresponding symmetric space is denoted by X_{G}. In fact, there is a $G_{\infty^{-}}$ invariant Riemannian metric on X_{G}, and, if Γ is torsion-free, the homogenous space X_{G} / Γ carries the structure of a Riemannian manifold of finite volume.

Via reduction theory there exists an open subset $Y_{\Gamma} \subset X_{G} / \Gamma$ such that its closure \bar{Y}_{Γ} is a compact manifold with boundary $\partial \bar{Y}_{\Gamma}$, and the inclusion $\bar{Y}_{\Gamma} \longrightarrow X_{G} / \Gamma$ is a homotopy equivalence. The connected components $Y^{[P]}$ of the boundary $\partial \bar{Y}_{\Gamma}$ are parametrised by the finite set of Γ-conjugacy classes of minimal parabolic k-subgroups of G. We are concerned with the geometric structure of the boundary components. Induced by a Levi decomposition $P=L N$ (with N the unipotent radical of P), each component carries the structure of a fibre bundle $N_{\infty} /\left(N_{\infty} \cap \Gamma\right) \longrightarrow Y^{[P]} \longrightarrow Z_{L} / \Gamma_{L}$ where the basis is a locally symmetric space originating with the Levi subgroup L. We prove that the basis of this bundle is homeomorphic to the torus T^{s+t-1} of dimension $s+t-1$, has the compact fibre T^{m} of dimension $m=[k: \mathbb{Q}]$, and its structure group is $S L_{m}(\mathbb{Z})$. Finally, we determine the cohomology of $Y^{[P]}$, thereby giving a proof of Proposition 1.1 in [4]. The action of the fundamental group Γ_{L} on $N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$ extends to a natural action on the cohomology $H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)$ of the fibre. This gives rise to a local coefficient system, to be denoted $\mathrm{H}^{*}\left(F_{b}, \mathbb{C}\right)$, on the pathwise connected base space $B=Z_{L} / \Gamma_{L}$. Here $F_{b} \cong N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$ denotes the fibre over $b \in B$. We obtain

$$
\begin{aligned}
H^{*}\left(Y^{[P]}, \mathbb{C}\right) \cong H^{*}\left(Z_{L} / \Gamma_{L}, \mathrm{H}^{*}(\right. & \left.\left(F_{b}, \mathbb{C}\right)\right) \cong \\
& H^{*}\left(Z_{L} / \Gamma_{L}, \mathbb{C}\right) \otimes H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)^{\Gamma_{L}}
\end{aligned}
$$

where the term $H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)^{\Gamma_{L}}$ denotes the space of elements in $H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)$ which are invariant under the action of Γ_{L}. If k has a real embedding, that is, $s>0$, the only Γ_{L}-invariant subspaces in $H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)$ are in degree 0 and m. If $s=0$, it may happen that one finds Γ_{L}-invariant classes in degree t as well.

Notation and conventions

Let k be an algebraic number field, and let \mathcal{O}_{k} denote its ring of integers. The set of places of k will be denoted by V_{k}, and $V_{k, \infty}$ (resp. $V_{k, f}$) refers to the subsets of archimedean (resp. non-archimedean) places of k. Given a place $v \in V_{k}$, the completion of k with respect to v is denoted by k_{v}. For a finite place $v \in V_{k, f}$ we write $\mathcal{O}_{k, v}$ for the valuation ring in k_{v}. If the field k is fixed, we write $V=V_{k}$ etc.

Suppose the extension k / \mathbb{Q} has degree $m=[k: \mathbb{Q}]$. Let Σ be the set of distinct embeddings $\sigma_{i}: k \rightarrow \mathbb{C}, 1 \leq i \leq m$. Among these embeddings some
factor through $k \rightarrow \mathbb{R}$. Let $\sigma_{1}, \ldots, \sigma_{s}$ denote these real embeddings $k \rightarrow \mathbb{R}$. Given one of the remaining embeddings $\sigma: k \rightarrow \mathbb{C}, \sigma(k) \not \subset \mathbb{R}$, to be called imaginary, there is the conjugate one $\bar{\sigma}: k \rightarrow \mathbb{C}$, defined by $x \mapsto \overline{\sigma(x)}$, where \bar{z} denotes the usual complex conjugation of the complex number z. Then the number of imaginary embeddings is an even number, which we denote by $2 t$. We number the $m=s+2 t$ embeddings $\sigma_{i}: k \rightarrow \mathbb{C}, i=1, \ldots, m$ in such a way that, as above, σ_{i} is real for $1 \leq i \leq s$, and $\bar{\sigma}_{s+i}=\sigma_{s+i+t}$ for $1 \leq i \leq t$.

The set V_{∞} of archimedean places of k is naturally identified with the set of embeddings $\left\{\sigma_{i}\right\}_{1 \leq i \leq s+t} \subset \Sigma$. We denote by σ_{v} the embedding which corresponds to $v \in V_{k, \infty}$.

Let \mathbb{A}_{k} (resp. \mathbb{I}_{k}) be the ring of adèles (resp. the group of idèles) of k. We denote by $\mathbb{A}_{k, \infty}=\prod_{v \in V_{k, \infty}} k_{v}$ the archimedean component of the ring \mathbb{A}_{k}, and by $\mathbb{A}_{k, f}$ the finite adèles of k. There is the usual decomposition of \mathbb{A}_{k} into the archimedean and the non-archimedean part $\mathbb{A}=\mathbb{A}_{k, \infty} \times \mathbb{A}_{k, f}$.

2. Reduction theory for the algebraic k-group $S L_{2}$

2.1. The group $S L_{2}$. Given an algebraic number field k, the group of k rational points of the connected reductive k-algebraic group $G L_{2}$ coincides with the group $G L(2, k)$ of (2×2)-matrices with entries in k. The group $Z(k)$ of k-rational points of the centre Z of $G L_{2}$ is given by the group $Z(k)=\left\{g=\operatorname{diag}(\lambda, \lambda) \mid \lambda \in k^{\times}\right\}$of scalar diagonal matrices. We fix the maximal k-split torus S in $G L_{2}$ given by

$$
S(k)=\left\{\left.g=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right) \right\rvert\, \lambda, \mu \in k^{\times}\right\} .
$$

Let $\Phi_{k}=\Phi\left(G L_{2}, S\right) \subset X^{*}(S)$ be the set of roots of $G L_{2}$ with respect to S. A basis of Φ_{k} is given by the non-trivial character $\alpha: S / k \rightarrow \mathbb{G}_{m} / k$, defined by the assignment $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right) \mapsto \lambda \mu^{-1}$. We denote by Q_{0} the minimal parabolic k subgroup of $G L_{2}$ which is determined by $\{\alpha\}$. We have a Levi decomposition of Q_{0} into the semi-direct product $Q_{0}=S N_{0}$ of its unipotent radical N_{0} by S.

The derived group of the general linear group $G L_{2}$ over k is the special linear k-group $S L_{2}$; it is a k-simple simply connected algebraic group of k rank one. We fix the maximal k-split torus L_{0} of $S L_{2}$, whose k-rational points are given by $L_{0}(k)=S L_{2}(k) \cap S(k)$, hence,

$$
L_{0}(k)=\left\{\left.g=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) \right\rvert\, \lambda \in k^{\times}\right\} .
$$

A basis for the set of roots for $S L_{2}$ with respect to L_{0} is given by the restriction of α on L_{0}, denoted by the same letter. The minimal parabolic k-subgroup which corresponds to α is denoted by P_{0} with Levi decomposition $P_{0}=L_{0} N_{0}$ of its unipotent radical N_{0} by L_{0}. We call P_{0} the standard minimal parabolic subgroup of $S L_{2}$. Any minimal parabolic k-subgroup of $S L_{2}$ is k-conjugate under $S L_{2}$ to P_{0}, and we have a Levi decomposition $P=L N$.
2.2. Reduction theory. Given an algebraic number field k, we write G for the algebraic k-group $S L_{2}$. For every archimedean place $v \in V_{k, \infty}$, together with the corresponding embedding $\sigma_{v}: k \longrightarrow \bar{k}$, there are given a field $k_{v}=\mathbb{R}$ or \mathbb{C} and a real Lie group $G_{v}=G^{\sigma_{v}}\left(k_{v}\right)$. The group

$$
\begin{equation*}
G_{\infty}=\prod_{v \in V_{k, \infty}} G_{v} \tag{2.1}
\end{equation*}
$$

viewed as the topological product of the groups $G_{v}, v \in V_{k, \infty}$, is isomorphic to the group of real points $\left(\operatorname{Res}_{k / \mathbb{Q}} G\right)(\mathbb{R})$ of the algebraic \mathbb{Q}-group $\operatorname{Res}_{k / \mathbb{Q}} G$ obtained from G by restriction of scalars. In G_{∞}, we identify $G(k)$ with the set of elements $\left(g^{\sigma_{v}}\right)_{v \in V_{k, \infty}}$ where $g \in G(k)$. In an analogous way, if H is an algebraic k-subgroup of G, we denote by H_{∞} the group of real points $\left(\operatorname{Res}_{k / \mathbb{Q}} H\right)(\mathbb{R})$ of the algebraic \mathbb{Q}-group $\operatorname{Res}_{k / \mathbb{Q}} H$.

We denote by s (resp. t) the number of real (resp. complex) places of k. Thus, the degree m of the extension k / \mathbb{Q} equals $m=s+2 t$. Then the real Lie group G_{∞} is given as the finite direct product

$$
\begin{equation*}
G_{\infty} \cong S L_{2}(\mathbb{R})^{s} \times S L_{2}(\mathbb{C})^{t} \tag{2.2}
\end{equation*}
$$

For each place $v \in V_{k, \infty}$, let X_{v} be the symmetric space associated with G_{v}, described as the space of maximal compact subgroups of G_{v}. In fact, all of these are conjugate to one another, thus, we may write $X_{v}=K_{v} \backslash G_{v}$ for any maximal compact subgroup $K_{v} \subset G_{v}$. If $v \in V_{k, \infty}$ is a real place, X_{v} is the hyperbolic 2-plane H^{2}, and, if $v \in V_{k, \infty}$ is a complex place, X_{v} is the hyperbolic 3 -space H^{3}. Since X_{v} is diffeomorphic to $\mathbb{R}^{d\left(G_{v}\right)}$ where $d\left(G_{v}\right)=\operatorname{dim} G_{v}-\operatorname{dim} K_{v}$, the space X_{v} is contractible. We define

$$
X_{G}:=\prod_{v \in V_{k, \infty}} X_{v} \cong\left(\mathrm{H}^{2}\right)^{s} \times\left(\mathrm{H}^{3}\right)^{t}
$$

as the product of the symmetric spaces X_{v}, and we let $d(G)=\sum_{v \in V_{k, \infty}} d\left(G_{v}\right)$. Since the real Lie group G_{∞} acts properly from the right on X_{G}, a given arithmetic subgroup Γ of $G(k)$, being viewed as a discrete, thus closed subgroup of G_{∞}, acts properly on X_{G} as well. If Γ is torsion-free, the action of Γ on X_{G} is free, and the quotient X_{G} / Γ is a smooth manifold of dimension $d(G)$. There is a G_{∞}-invariant Riemannian metric on X_{G}. Given an arithmetic subgroup Γ of $G(k)$, we are interested in the homogenous space X_{G} / Γ. If Γ is torsionfree, the space X_{G} / Γ carries the structure of a Riemannian manifold of finite volume.

Since G_{∞} is not compact and the k-group G is k-simple simply connected, the group G has the strong approximation property (see [7]). Therefore, $G(k)$ is dense in the locally compact group $G\left(\mathbb{A}_{k, f}\right)$, or, equivalently, $G_{\infty} G(k)$ is dense in $G\left(\mathbb{A}_{k}\right)$.

Given any proper ideal $\mathfrak{a} \subset \mathcal{O}_{k}$ the corresponding principal congruence subgroup of level \mathfrak{a} is defined by

$$
\begin{equation*}
\Gamma(\mathfrak{a}):=\operatorname{ker}\left(S L_{2}\left(\mathcal{O}_{k}\right) \longrightarrow S L_{2}\left(\mathcal{O}_{k} / \mathfrak{a}\right)\right) . \tag{2.3}
\end{equation*}
$$

Using [11, Prop. 4.4.4], if for every prime number p, the ideal \mathfrak{a}^{p-1} does not divide the principal ideal $p \mathcal{O}_{k}$ in \mathcal{O}_{k}, the arithmetic group $\Gamma(\mathfrak{a})$ is torsion-free. Therefore, for almost all choices of the ideal \mathfrak{a} the group $\Gamma(\mathfrak{a})$ is torsion-free.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_{k}, and let $v_{0} \in V_{k, f}$ be the corresponding non-archimedean place of k. Given a proper ideal $\mathfrak{a} \subset \mathcal{O}_{k}$ let $\nu_{\mathfrak{p}}(\mathfrak{a})$ be the maximal exponent e such that \mathfrak{p}^{e} divides the ideal \mathfrak{a}. Thus, we have $\mathfrak{a} \mathcal{O}_{v_{0}}=\mathfrak{p}^{\nu_{\mathfrak{p}}(\mathfrak{a})} \mathcal{O}_{v_{0}}$. For each $v \in V_{k, f}$, the kernel $K_{v}(\mathfrak{a})$ of the natural homomorphism $G\left(\mathcal{O}_{v}\right) \longrightarrow G\left(\mathcal{O}_{v} / \mathfrak{a} \mathcal{O}_{v}\right)$ is an open compact subgroup of $G\left(\mathcal{O}_{v}\right)$. This implies that the direct product $K(\mathfrak{a}):=\prod_{v \in V_{k, f}} K_{v}(\mathfrak{a})$ is an open compact subgroup of $G\left(\mathbb{A}_{k, f}\right)$, and we have $\Gamma(\mathfrak{a})=G(k) \cap K(\mathfrak{a})$. Using the strong approximation property of the algebraic k-group G, we have the continuous $\operatorname{map} G_{\infty} \longrightarrow K(\mathfrak{a}) \backslash G\left(\mathbb{A}_{k}\right) / G(k)$, defined by $g \mapsto K(\mathfrak{a}) g G(k)$. It gives rise to a homeomorphism $K(\mathfrak{a}) \backslash G\left(\mathbb{A}_{k}\right) / G(k) \xrightarrow{\sim} G_{\infty} / \Gamma(\mathfrak{a})$ which is equivariant under the action of G_{∞}.
2.3. Reduction theory - the boundary components. Since the k-rank of the algebraic k-group $G=S L_{2}$ is one, all proper parabolic k-subgroups of G are minimal, all of these are conjugate under $G(k)$. Given any arithmetic subgroup $\Gamma \subset G(k)$, this conjugacy class falls into finitely many Γ-conjugacy classes (see [1, Prop. 15.6]). In the case of the group $\Gamma=S L_{2}\left(\mathcal{O}_{k}\right)$, the cardinality of this set is equal to the class number h_{k} of k (see [13, Prop. 20]).

We consider the standard minimal parabolic k-subgroup $P_{0}=L_{0} N_{0}$ of G. Any k-character $\chi: L_{0} \longrightarrow \mathbb{G}_{m}$ induces a homomorphism

$$
\chi_{\infty}: L_{0, \infty} \longrightarrow \mathbb{G}_{m, \infty} \cong\left(\mathbb{R}^{\times}\right)^{s} \times\left(\mathbb{C}^{\times}\right)^{t}
$$

Given an archimedean place $v \in V_{k, \infty}$, we denote by $|\cdot|_{v}$ the absolute value on $k_{v}=\mathbb{R}$ if v is real resp. the square of the absolute value on $k_{v}=\mathbb{C}$ if v is complex. The norm homomorphism is defined by

$$
|\cdot|: \mathbb{G}_{m, \infty} \cong \prod_{v \in V_{k, \infty}} k_{v}^{\times}=\left(\mathbb{R}^{\times}\right)^{s} \times\left(\mathbb{C}^{\times}\right)^{t} \longrightarrow \mathbb{R}_{>0}^{\times}, \quad\left(g_{v}\right)_{v \in V_{k, \infty}} \mapsto \prod_{v \in V_{k, \infty}}\left|g_{v}\right|_{v}
$$

The compositum $|\cdot| \circ \chi$ can be canonically extended to a homomorphism $|\chi|: P_{0, \infty} \longrightarrow \mathbb{R}_{>0}^{\times}$. We apply this construction to the positive simple root $\alpha: L_{0} \longrightarrow \mathbb{G}_{m}$, and, we define $P_{0, \infty}^{(1)}:=\left\{p \in P_{0, \infty}| | \alpha \mid(p)=1\right\}$. Given any point $x \in X_{G}$, let $K_{x} \subset G_{\infty}$ be the corresponding maximal compact subgroup of the Lie group G_{∞}, then $P_{0, \infty}^{(1)} \cap K_{x}=P_{0, \infty} \cap K_{x}$. Moreover, since the image of the arithmetic group Γ under α is an arithmetic subgroup of $\mathbb{G}_{m}(k)$, thus, contained in \mathcal{O}_{k}^{\times}, we have $|\alpha|(\gamma)=1$ for every $\gamma \in P_{0, \infty} \cap \Gamma$. It follows that $P_{0, \infty} \cap \Gamma=P_{0, \infty}^{(1)} \cap \Gamma$. Given any other minimal parabolic subgroup P of G,
there is a $g \in G(k)$ such that $g P(k) g^{-1}=P_{0}(k)$. Therefore, we can define $P_{\infty}^{(1)}$ via conjugation.

In the specific case of the algebraic k-group G of k-rank one, the general results in [5, Sect. 1.2] in reduction theory take the following form; a different approach is carried through in [1, Thm. 17.10].

Theorem 2.1. Given a torsion-free arithmetic subgroup $\Gamma \subset G(k)$, there exists an open subset $Y_{\Gamma} \subset X_{G} / \Gamma$ such that its closure \bar{Y}_{Γ} is a compact manifold with boundary $\partial \bar{Y}_{\Gamma}$, and the inclusion $\bar{Y}_{\Gamma} \longrightarrow X_{G} / \Gamma$ is a homotopy equivalence. The connected components of the boundary $\partial \bar{Y}_{\Gamma}$ are in one-toone correspondence with the finite set, to be denoted \mathcal{P} / Γ, of Γ-conjugacy classes of minimal parabolic k-subgroups of G. If P is a representative for a Γ-conjugacy class of minimal parabolic k-subgroups of G, we denote the corresponding connected component in $\partial \bar{Y}_{\Gamma}$ by $Y^{[P]}$. Then we have as a disjoint union

$$
\partial \bar{Y}_{\Gamma}=\coprod_{[P] \in \mathcal{P} / \Gamma} Y^{[P]}
$$

and the boundary component $Y^{[P]}$ is diffeomorphic to the double coset space $\left(K \cap P_{\infty}^{(1)}\right) \backslash P_{\infty}^{(1)} /\left(P_{\infty}^{(1)} \cap \Gamma\right)$ where $K \subset G_{\infty}$ is a maximal compact subgroup.

We are interested in the geometric structure of such a boundary component $Y^{[P]}$. The canonical morphism $P \longrightarrow P / N=L$ onto the maximal k-split torus L gives rise to a surjective morphism $p: P_{\infty}^{(1)} \longrightarrow L_{\infty}^{(1)}$. The image $K_{L}:=p\left(K \cap P_{\infty}^{(1)}\right)$ of $K \cap P_{\infty}^{(1)}$ under this projection is a maximal compact subgroup in $L_{\infty}^{(1)}$. We write $Z_{L}:=K_{L} \backslash L_{\infty}^{(1)}$ for the associated manifold of right cosets. The preimage of a point in $L_{\infty}^{(1)}$ is diffeomorphic to N_{∞}.

The image Γ_{L} of $P_{\infty}^{(1)} \cap \Gamma$ under p is a discrete torsion-free subgroup of $L_{\infty}^{(1)}$. The group Γ_{L} acts properly and freely on Z_{L}, and the double coset space Z_{L} / Γ_{L} is a manifold with universal cover Z_{L}. The projection $p: P_{\infty}^{(1)} \longrightarrow L_{\infty}^{(1)}$ induces a surjection

$$
\begin{equation*}
\pi:(K \cap \Gamma) \backslash P_{\infty}^{(1)} /\left(P_{\infty}^{(1)} \cap \Gamma\right) \longrightarrow Z_{L} / \Gamma_{L} \tag{2.4}
\end{equation*}
$$

it is a locally trivial fibration whose fibre is $N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$. This fibre is compact (see, e.g. [11, Sect. 9.3]).

Proposition 2.2. Given a representative P for a Γ-conjugacy class of minimal parabolic k-subgroups of G, the corresponding boundary component $Y^{[P]} \cong\left(K \cap P_{\infty}^{(1)}\right) \backslash P_{\infty}^{(1)} /\left(P_{\infty}^{(1)} \cap \Gamma\right)$ admits the structure of a fibre bundle which is equivalent to the fibre bundle

$$
\begin{equation*}
\left(Z_{L} \times_{\Gamma_{L}} N_{\infty} /\left(N_{\infty} \cap \Gamma\right), Z_{L}, N_{\infty} /\left(N_{\infty} \cap \Gamma\right)\right) \tag{2.5}
\end{equation*}
$$

This bundle is associated by the natural action of Γ_{L} on the compact fibre $N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$, induced by inner automorphisms, to the universal covering $Z_{L} \longrightarrow Z_{L} / \Gamma_{L}$.

Proof. The action of the group $P_{\infty}^{(1)} \cap \Gamma$ on $K_{L} \backslash P_{\infty}^{(1)}$ is proper and free. Since P is the normaliser of N in G, the group $N_{\infty} \cap \Gamma$ is a normal subgroup in $P_{\infty}^{(1)} \cap \Gamma$. Therefore, the quotient group $\Gamma_{P / N}:=\left(P_{\infty}^{(1)} \cap \Gamma\right) /\left(N_{\infty} \cap \Gamma\right)$ acts properly and freely on $K_{L} \backslash P_{\infty}^{(1)} /\left(N_{\infty} \cap \Gamma\right)$. In view of the decomposition $P_{\infty}^{(1)}=L_{\infty}^{(1)} N_{\infty}$ as a semi-direct product, induced by the semi-direct product $P=L N$, this space can be viewed as the product space

$$
\begin{equation*}
K_{L} \backslash P_{\infty}^{(1)} /\left(N_{\infty} \cap \Gamma\right) \xrightarrow{\sim} K_{L} \backslash L_{\infty}^{(1)} /\left(N_{\infty} \cap \Gamma\right) \times N_{\infty} /\left(N_{\infty} \cap \Gamma\right) \tag{2.6}
\end{equation*}
$$

We have that P is the normaliser of N, thus, the group $P_{\infty}^{(1)} \cap \Gamma$ acts via inner automorphisms on N_{∞}. It follows, since N is commutative, that there is an induced action of the quotient group $\Gamma_{P / N}$ via diffeomorphisms on the space $N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$. The group $\Gamma_{P / N}$ is isomorphic to Γ_{L}. In view of (2.6), the fibration in question is equivalent to the fibre bundle

$$
\begin{equation*}
\left(Z_{L} \times_{\Gamma_{L}} N_{\infty} /\left(N_{\infty} \cap \Gamma\right), Z_{L}, N_{\infty} /\left(N_{\infty} \cap \Gamma\right)\right) \tag{2.7}
\end{equation*}
$$

which is associated by the natural action of Γ_{L} on $N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$, induced by inner automorphisms, to the universal covering $Z_{L} \longrightarrow Z_{L} / \Gamma_{L}$.
2.4. The geometric structure of the boundary components. Let Γ be a torsionfree arithmetic subgroup of $G(k)=S L_{2}(k)$. Given a representative P for a Γ conjugacy class of minimal parabolic k-subgroups of G we seek to understand the base space and the fibre of the fibre bundle structure of the boundary component $Y^{[P]}$ of $\partial \bar{Y}_{\Gamma}$. For any natural number $n>0$, we denote by $T^{n}=$ $\left(S^{1}\right)^{n}$ the n-dimensional torus.

ThEOREM 2.3. The boundary component $Y^{[P]}=Z_{L} \times_{\Gamma_{L}} N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$ is the total space of a fibre bundle with fibre $\left.N_{\infty} /\left(N_{\infty} \cap \Gamma\right)\right) \cong T^{m}$, base space $Z_{L} / \Gamma_{L} \cong T^{s+t-1}$, and structure group Γ_{L}. Hence it is a torus bundle over a torus. The structure group Γ_{L} of the fibre bundle is a totally disconnected commutative group.

Proof. First, with regard to the fibre $N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$, we may assume that P is the standard minimal parabolic k-subgroup $P_{0}=L_{0} N_{0}$ whose group of k-points is $P_{0}(k)=\left\{\left.g=\left(\begin{array}{cc}x & y \\ 0 & x^{-1}\end{array}\right) \right\rvert\, x \in k^{\times}, y \in k\right\}$. The group of k-points of its unipotent radical is commutative, and, since $m=s+2 t$ we obtain as additive groups

$$
N_{0, \infty} \cong \operatorname{Res}_{k / \mathbb{Q}}\left(k_{a}\right)(\mathbb{R}) \cong \mathbb{R}^{m}
$$

The group $N_{0, \infty} \cap \Gamma$ as a discrete subgroup of $N_{0, \infty}$ forms a complete lattice in \mathbb{R}^{m}, thus the claim follows.

Second, we deal with the universal cover $Z_{L}:=K_{L} \backslash L_{\infty}^{(1)}$ of the base space Z_{L} / Γ_{L} of the fibration (2.4). We may assume that $P=P_{0}$ is the standard minimal parabolic k-subgroup of G. We have the identification

$$
\begin{aligned}
L_{0, \infty}=\left\{\left.\left(g_{v}\right)_{v}=\left(\begin{array}{cc}
\left(t_{v}\right)_{v} & 0 \\
0 & \left(t_{v}\right)_{v}^{-1}
\end{array}\right) \right\rvert\, t_{v} \in \mathbb{R}^{\times} \text {if } v \text { real, } t_{v}\right. & \left.\in \mathbb{C}^{\times} \text {if } v \text { complex }\right\} \\
& \tilde{\longrightarrow}\left(\mathbb{R}^{\times}\right)^{s} \times\left(\mathbb{C}^{\times}\right)^{t}
\end{aligned}
$$

where $v \in V_{k, \infty}$ ranges ovre the archimedean places of k. Passing over to the group $L_{0, \infty}^{(1)}$, we obtain a diffeomorphism

$$
L_{0, \infty}^{(1)} \xrightarrow[\longrightarrow]{\sim}\left\{\left(g_{v}\right)_{v}=\left.\left(\begin{array}{cc}
\left(t_{v}\right)_{v} & 0 \\
0 & \left(t_{v}\right)_{v}^{-1}
\end{array}\right)\left|t_{v} \in k_{v}^{\times}, \prod_{v \in V_{k, \infty}}\right| t_{v}\right|_{v}=1\right\} .
$$

Recall that, given an archimedean place $v \in V_{k, \infty}$, we denote by $|\cdot|_{v}$ the absolute value on $k_{v}=\mathbb{R}$ if v is real resp. the square of the absolute value on $k_{v}=\mathbb{C}$ if v is complex.

The assignement $\left(x_{1}, \ldots, x_{s}, z_{1}, \ldots, z_{t}\right) \mapsto\left(\left|x_{1}\right|, \ldots,\left|x_{s}\right|,\left|z_{1}\right|^{2}, \ldots,\left|z_{t}\right|^{2}\right)$ defines a surjective homomorphism $L_{0, \infty}=\left(\mathbb{R}^{\times}\right)^{s} \times\left(\mathbb{C}^{\times}\right)^{t}$. $\longrightarrow\left(\mathbb{R}_{>0}^{\times}\right)^{s+t}$. It gives rise to a surjective homomorphism

$$
\psi^{(1)}: L_{0, \infty}^{(1)} \cong\left(\left(\mathbb{R}^{\times}\right)^{s} \times\left(\mathbb{C}^{\times}\right)^{t}\right)^{(1)} \longrightarrow\left(\left(\mathbb{R}_{>0}^{\times}\right)^{s+t}\right)^{(1)}
$$

where

$$
\left(\left(\mathbb{R}^{\times}\right)^{s} \times\left(\mathbb{C}^{\times}\right)^{t}\right)^{(1)}:=\left\{\left.\left(h_{v}\right)_{v \in V_{k, \infty}} \in\left(\left(\mathbb{R}^{\times}\right)^{s} \times\left(\mathbb{C}^{\times}\right)^{t}\right)\left|\prod_{v \in V_{k, \infty}}\right| h_{v}\right|_{v}=1\right\}
$$

and $\left(\left(\mathbb{R}_{>0}^{\times}\right)^{s}\right)^{(1)}$ is accordingly defined as

$$
\left(\left(\mathbb{R}_{>0}^{\times}\right)^{s}\right)^{(1)}:=\left\{\left(x_{v}\right)_{v \in V_{k, \infty}} \in\left(\mathbb{R}_{>0}^{\times}\right)^{s+t} \mid \prod_{v \in V_{k, \infty}} x_{v}=1\right\}
$$

We summarise the aforesaid considerations in the diagram

where the map Log : $\left(\prod_{v \in V_{k, \infty}} \mathbb{R}_{>0}^{\times}\right) \longrightarrow \mathbb{R}^{s+t}$ is defined by the assignment $\left(x_{1}, \ldots, x_{s+t}\right) \mapsto\left(\log x_{1}, \ldots, \log x_{s+t}\right)$, where \mathcal{H} denotes the hypersurface $\mathcal{H}:=\left\{r=\left(r_{i}\right) \in \mathbb{R}^{s+t} \mid \sum_{i} r_{i}=0\right\}$ in \mathbb{R}^{s+t}, and where the vertical arrows are the natural inclusions. The map $\psi^{(1)}$ resp. $\log ^{(1)}$ is obtained via
restriction from the map ψ resp. Log. The horizontal arrows in both exterior squares of the diagram are isomorphisms. The kernel of $\psi^{(1)}$ is the unique maximal compact subgroup in $\left(\left(\mathbb{R}^{\times}\right)^{s} \times\left(\mathbb{C}^{\times}\right)^{t}\right)^{(1)}$, given as the product of s copies of $\{ \pm 1\}$ and t copies of S^{1}. We obtain $\operatorname{ker}\left(\psi^{(1)}\right)=K_{L}$. It follows that $Z_{L}=K_{L} \backslash L_{0, \infty}^{(1)} \cong \mathbb{R}^{s+t-1}$.

By assumption the arithmetic group $\Gamma \subset S L_{2}\left(\mathcal{O}_{k}\right)$ is torsion-free. It follows, since $\operatorname{ker} \psi^{(1)}$ is compact, $\Gamma_{L} \cap \operatorname{ker} \psi^{(1)}=\{0\}$. Therefore, $\psi^{(1)}$ maps Γ_{L} isomorphically onto a discrete torsion-free subgroup of $\left(\prod_{v \in V_{k, \infty}} \mathbb{R}_{>0}^{\times}\right)^{(1)}$. The arithmetic group Γ_{L} may be viewed as a sugbroup of \mathcal{O}_{k}^{\times}. As worked out in the usual proof of the Dirichlet theorem on the unit groups of number fields (see, e.g., [3]), in our context of the diagram, the map induced by the inclusion $\mathcal{O}_{k}^{\times} \longrightarrow L_{0}(k)$, maps \mathcal{O}_{k}^{\times}isomophically onto a complete lattice in the hyperplane \mathcal{H}. Therefore, $\left(\log ^{(1)} \circ \psi^{(1)}\right)\left(\Gamma_{L}\right)$ is a complete lattice in \mathcal{H}. It follows that the base space Z_{L} / Γ_{L} of the fibre bundle is the torus T^{s+t-1}.

Remark 2.4. Given a totally real quadratic number field, we are concerned with Hilbert modular surfaces as dealt with in [6]. In this case the boundary components $Y^{[P]}$ occur in the disguise of boundaries of neighbourhoods of cusp singularities.

3. Torus bundles over tori

In order to determine the cohomology of a boundary component $Y^{[P]}$ it is useful to describe an inductive construction of fibre bundles whose fibre is a torus T^{m} and whose basis is a torus T^{r}, and whose structure group is the group $S L_{m}(\mathbb{Z})$ of automorphisms of the free \mathbb{Z}-module \mathbb{Z}^{m} of determinant one.

First, using [15, Chap. 18], in particular, the notions and notations introduced there, we recall the classification of fibre bundles over the 1 -sphere. Let $\left(E, S^{1}, F, \pi\right)$ be a fibre bundle over S^{1} with totally disconnected structure group G. Up to equivalence, this bundle is in normal form. Thus we can describe it in the following way: we cut the 1 -sphere S^{1} into two (closed) hemispheres E_{1} and E_{2} whose intersection consists of exactly two antipodal points x_{0} and x_{1} in S^{1}. Then we can choose two open neighbourhoods $V_{1}, V_{2} \subset S^{1}$ such that $E_{i} \subset V_{i}, i=1,2$, and such that the change of coordinates g_{12} satisfies $g_{12}\left(x_{0}\right)=e \in G$. Then the group element $g_{12}\left(x_{1}\right) \in G$ describes the gluing process of the fibre over the point x_{1}; this element is called the characteristic homeomorphism of the given bundle. By [15, 18.3], two fibre bundles $\left(E, S^{1}, F, \pi\right)$ and ($E^{\prime}, S^{1}, F, \pi^{\prime}$) over S^{1} with characteristic homeomorphisms A and A^{\prime} whose fibre F and structure group G coincide are equivalent if and only if there are an element $g \in G$ and a path $\omega: I \longrightarrow G$
in G such that $\omega(0)=A$ and $\omega(1)=g A^{\prime} g^{-1}$. Since G is totally disconnected the characteristic homeomorphism is determined by a suitable chosen generator of the fundamental group $\pi_{1}\left(S^{1}\right)$. The bundle is equivalent to the bundle $\left((I \times F) / \sim, S^{1}, F, p\right)$ where the equivalence relation \sim is given by $(1, x) \sim(0, A x), x \in F$, and the projection map $p:(I \times F) / \sim \longrightarrow I /(1 \sim 0)$ is defined by the assignment $(t, x) \mapsto t, t \in I, x \in F$.

Second, let $\mathrm{A}:=\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ be a subset of elements in $S L_{m}(\mathbb{Z})$ which commute with one another. We inductively construct, following [9], fibre bundles $T\left(A_{1}, \ldots, A_{i}\right), 1 \leq i \leq r$, over $T^{i}=\mathbb{R}^{i} / \mathbb{Z}^{i}$ with fibre T^{m} and structure group $S L_{m}(\mathbb{Z})$. The matrices $A_{i}, 1 \leq i \leq r$, induce homeomorphisms of T^{m} which will also be denoted by A_{i}.

We set $T\left(A_{1}\right)=\left(I \times T^{m}\right) / \sim$, where $(1, x) \sim\left(0, A_{1} x\right), x \in T^{m}$, and the projection $\pi: T\left(A_{1}\right) \longrightarrow S^{1}$ is given by $(t, x) \mapsto t$. The matrices $A_{i}, 1<i \leq r$, act on $T\left(A_{1}\right)$ via $(t, x) \mapsto\left(t, A_{i} x\right)$ in a natural way.

Suppose that the torus bundle $\left(T\left(A_{1}, \ldots, A_{k}\right), T^{k}, T^{m}, \pi_{k}\right)$ is constructed, and the matrices A_{i} with $k+1 \leq i \leq r$ act on $T\left(A_{1}, \ldots, A_{k}\right)$. We define

$$
T\left(A_{1}, \ldots, A_{k+1}\right)=\left(I \times T\left(A_{1}, \ldots, A_{k}\right)\right) / \sim
$$

where $(1, y) \sim\left(0, A_{k+1} y\right), y \in T\left(A_{1}, \ldots, A_{k}\right)$, and the projection

$$
\pi_{k+1}: T\left(A_{1}, \ldots, A_{k+1}\right) \longrightarrow S^{1} \times T^{k}=T^{k+1}
$$

is given by the assignment $(t, y) \mapsto\left(t, \pi_{k}(y)\right)$. The matrices A_{k+2}, \ldots, A_{r} act on $T\left(A_{1}, \ldots, A_{k+1}\right)$ via $(t, y) \mapsto\left(t, A_{i} y\right), k+2 \leq i \leq r$. Since the matrices $A_{1}, A_{2}, \ldots, A_{r}$ commute with one another, this is well defined. The total space is endowed with the orientations induced by the canonical orientations on \mathbb{R}^{m} and \mathbb{R}^{j}. One checks by induction that the induced action of the matrix $A_{j}, j>k$, on the bundle is fibrewise.

For the sake of completeness we note the fact that this construction exhausts up to equivalence all torus bundles over tori T^{r} with structure group $S L_{m}(\mathbb{Z})$. Via induction one proves (see [9, Thm. 4.3]) the following result.

Proposition 3.1. Let $\left(E, T^{r}, T^{m}, \rho\right)$ be a torus bundle over the torus T^{r} with structure group $S L_{m}(\mathbb{Z})$. Then this bundle is equivalent to the bundle

$$
\left(\mathbb{R}^{r} \times_{\pi_{1}\left(T^{r}\right)} T^{m}, T^{r}, T^{m}, \pi\right)
$$

associated to the universal covering $\mathbb{R}^{r} \longrightarrow \mathbb{R}^{r} / \mathbb{Z}^{r}$ by the natural action of the fundamental group of the basis on the fibre T^{m} where $\pi_{1}\left(T^{r}\right)=\mathbb{Z}^{r}$ acts on \mathbb{R}^{r} via right translations. If we denote by $A_{1}, A_{2}, \ldots, A_{r}$ elements in $S L_{m}(\mathbb{Z})$ which correspond to the action of suitably chosen generators of the fundamental group $\pi_{1}\left(T^{r}\right)$ then the bundle $T\left(A_{1}, A_{2}, \ldots, A_{r}\right)$ is equivalent to the bundle $\left(\mathbb{R}^{r} \times{ }_{\pi_{1}\left(T^{r}\right)} T^{m}, T^{r}, T^{m}, \pi\right)$. The matrices $A_{1}, A_{2}, \ldots, A_{r}$ are uniquely determined up to conjugation in $S L_{m}(\mathbb{Z})$.

4. Digression: SEmi-simple endomorphisms

We review some basic facts regarding semi-simple endomorphisms of finite-dimensional vector spaces over a field K. This notion plays a conclusive role in the actual computation of the cohomology of torus bundles over tori. This allows us to determine the cohomology of a boundary component.

Definition 4.1. Let V be a finite-dimensional vector space over a field K. We call an endomorphism $\alpha \in \operatorname{End}_{K}(V)$ semi-simple if every α-stable subspace $U \subset V$, that is, $\alpha U \subset U$, has a complementary α-stable subspace. In other words, equivalently, V viewed as a $K[X]$-module, with X acting as α, is semi-simple.

By the classification of finitely generated modules over the polynomial ring $K[X]$, such a V is isomorphic to a direct sum of modules of the form $k[X] /\left(f^{m}\right)$ where $f \in K[X]$ is some irreducible polynomial. Therefore V is semi-simple if and only if each of these direct summands is semi-simple, that is, $m=1$. It follows that an endomorphism $\alpha \in \operatorname{End}_{K}(V)$ is semi-simple if and only if its minimum polynomial is the product of relatively prime irreducible polynomials.

The semi-simplicity of an endomorphism $\alpha \in \operatorname{End}_{K}(V)$ is preserved by passage to an α-invariant K-subspace $W \subset V$, as well as to the quotient space V / W.

The following technical observation is useful. Let V, W be two finitedimensional vector spaces over a field K. In view of the isomorphism

$$
\operatorname{End}_{K}(V) \otimes_{K} \operatorname{End}_{K}(W) \xrightarrow{\sim} \operatorname{End}_{K}\left(V \otimes_{K} W\right),
$$

given an endomorphism $\omega \in \operatorname{End}_{K}\left(V \otimes_{K} W\right)$, there exist $\phi_{i} \in \operatorname{End}_{K}(V)$, $\psi_{j} \in \operatorname{End}_{K}(W)$ such that $\omega=\sum \phi_{i} \otimes \psi_{j}$. A straightforward argument shows: if $\phi \in \operatorname{End}_{K}(V), \psi \in \operatorname{End}_{K}(W)$ are semi-simple endomorphisms, then the endomorphism $\omega=\phi \otimes \psi \in \operatorname{End}_{K}\left(V \otimes_{K} W\right)$ is semi-simple.

Let L / K be a field extension. Given an endomorphism $\alpha \in \operatorname{End}_{K}(V)$, let $\alpha_{L}:=\mathrm{id} \otimes \alpha \in \operatorname{End}_{L}\left(V_{L}\right)$ be the endomorphism of $V_{L}:=L \otimes_{K} V$ induced by extension of scalars. If α_{L} is semi-simple, then α is also semi-simple, and if L / K is separable, then the converse is correct.

We observe the following result (see [2, Chap. VII, §5, No. 8, Prop. 15]):
Proposition 4.2. Given an endomoprhism $\alpha \in \operatorname{End}_{K}(V)$ with minimum polynomial $m_{\alpha} \in K[X]$, the following assertions are equivalent:

- For every field extension L / K, the endomorphism α_{L} is semi-simple.
- There exists a field extension L / K such that the endomorphism α_{L} is diagonalisable.
- The minimum polynomial m_{α} is separable over K.

Definition 4.3. An endomorphism $\alpha \in \operatorname{End}_{K}(V)$ is called absolutely semi-simple if one of the equivalent conditions in Proposition 4.2 is valid.

Clearly, a necessary and sufficient condition for α to be absolutely semisimple is that the irreducible factors of the minimum polynomial m_{α} have no multiple roots in the algebraic closure \bar{K} of K.

More generally, we consider a family \mathcal{A} of K-endomorphisms of a given finite-dimensional K-vector space V. We say that the family \mathcal{A} is diagonalisable if there exists a basis $v=\left\{v_{i}\right\}_{i \in I}$ of V such that the matrix $M_{\alpha, v}$ for each $\alpha \in \mathcal{A}$ with respect to v has diagonal form. If $\mathcal{A}=\{\alpha\}$ consists of a single element, we say that α is diagonalisable.

The following observation is decisive for the subsequent result: Let $\alpha, \beta \in$ $\operatorname{End}_{K}(V)$ be two endomorphisms of V which commute with one another, and let V_{λ} be any eigenspace for α. Then, for all $v \in V_{\lambda}$, we have $\alpha(\beta(v))=$ $\beta(\alpha(v))=\beta(\lambda v)=\lambda \beta(v)$. Thus, V_{λ} is stable under β.

Proposition 4.4. Let \mathcal{A} be a family of K-endomorphisms of a given finite-dimensional K-vector space V. Then \mathcal{A} is diagonalisable if and only if all elements in \mathcal{A} are diagonalisable and commute with one another.

Combining this result with the characterisations of an absolutely semisimple endomorphism in Proposition 4.2 we obtain

Proposition 4.5. Let \mathcal{A} be a family of K-endomorphisms of a given finite-dimensional K-vector space V. There exists a field extension L / K such that the set $\mathcal{A}_{L}:=\left\{\alpha_{L} \mid \alpha \in \mathcal{A}\right\} \subset \operatorname{End}_{L}\left(V_{L}\right)$ is diagonalisable if and only if the endomorphisms in \mathcal{A} are absolutely semi-simple and commute with one another.

Proposition 4.6. Let V be a finite-dimensional vector space over a field K. Let $\mathcal{A}=\left\{\phi_{a}\right\}$ be a finite family of semi-simple endomorphisms $\phi_{a} \in$ $\operatorname{End}_{K}(V)$ which commute pairwise with one another. We denote by A the subalgebra of the endomorphism algebra $\operatorname{End}_{K}(V)$ generated by \mathcal{A} and the identity Id_{V}. Then V decomposes as a direct sum $V=V^{A} \oplus U$ into the subspace $V^{A}=\{v \in V \mid \phi(v)=v$ for all $\phi \in A\}$ and a complementary subspace U.

Proof. The proof proceeds by induction over the number of generators of A. The case of a single generator is taken care by the very definition of a semisimple endomorphism. Let A be generated by the set $\left\{\phi_{1}, \ldots, \phi_{n}, \operatorname{Id}_{V}\right\} \subset \mathcal{A}$, and let A^{\prime} be the subalgebra of $\operatorname{End}_{K}(V)$ generated by $\phi_{1}, \ldots, \phi_{n-1}$ and Id_{V}. By induction hypothesis, the subspace $V^{A^{\prime}}$ admits a direct complement U^{\prime} such that $V=V^{A^{\prime}} \oplus U^{\prime}$. Since for all $1 \leq i \leq n-1, \phi_{n} \circ \phi_{i}=\phi_{i} \circ \phi_{n}$, the restriction of ϕ_{n} to $V^{A^{\prime}}$ is well defined and $\left(\phi_{n}\right)_{\mid V^{A^{\prime}}}$ is semi-simple. Thus, there exists a direct complement $U^{\prime \prime}$ of V^{A} in $V^{A^{\prime}}$. We put $U:=U^{\prime \prime} \oplus U^{\prime}$. Then we have $V=V^{A} \oplus U$.

Corollary 4.7. Let V be a finite-dimensional vector space over a field K. Given an absolutely semi-simple endomorphism $\phi \in \operatorname{End}_{K}(V)$, there is a canonical identification $\operatorname{ker}(\phi-\mathrm{Id}) \xrightarrow{\sim} \operatorname{coker}(\phi-\mathrm{Id})$.

Proof. Setting $V^{\phi}=\{v \in V \mid \phi(v)=v\}$, since ϕ is absolutely semisimple, we have the direct sum decomposition $V=V^{\phi} \oplus U$ where $U=$ $\operatorname{im}(\phi-\mathrm{Id})$. This implies the assertion.

To be in the position to determine the cohomology of torus bundles over tori as constructed above we determine the cohomology ring of an n-torus.

Let R be a commutative ring with identity element, and let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a finite set of n symbols. We write $\mathbf{I}=\{1, \ldots, n\}$. Then the exterior algebra $\bigwedge_{R}\left[a_{1}, \ldots, a_{n}\right]$ is defined as the free R-module with generators $a_{i_{1}} \cdots a_{i_{k}}$, for all k-tuples $\left(i_{1}, \ldots i_{k}\right)$ of indices in I with $i_{1}<\ldots<i_{k}, 1 \leq k \leq n$, endowed with the associative and distributive multiplication determined by the rules $a_{i}^{2}=0, i=1, \ldots, n$, and $a_{i} a_{j}-a_{j} a_{i}=0$ if $i \neq j, i, j=1, \ldots, n$. If we put $\bigwedge_{R}^{0}\left[a_{1}, \ldots, a_{n}\right]:=R$, then $\bigwedge_{R}^{*}\left[a_{1}, \ldots, a_{n}\right]$ becomes a graded commutative ring with the scalar 1 as unit element. For a fixed index $p, 1 \leq p \leq n$, $\bigwedge_{R}^{p}\left[a_{1}, \ldots, a_{n}\right]$ denotes the free R-submodule with basis $a_{i_{1}} \cdots a_{i_{p}}$ for all $i_{1}<\ldots<i_{p}$. The generators a_{1}, \ldots, a_{n} have degree one. The R-rank of $\bigwedge_{R}^{p}\left[a_{1}, \ldots, a_{n}\right]$ is $\binom{n}{p}$.

If $R=\mathbb{Z}$, we identify the elements a_{1}, \ldots, a_{n} with the standard basis e_{1}, \ldots, e_{n} of the free \mathbb{Z}-module \mathbb{Z}^{n}, and we write $\Lambda^{*}\left(\mathbb{Z}^{n}\right)$ for the corresponding exterior algebra.

Proposition 4.8. Given the n-dimensional torus T^{n} its cohomology ring with coefficients in any commutative field R is given as the exterior algebra $H^{*}\left(T^{n}, R\right)=\bigwedge_{R}\left[a_{1}, \ldots, a_{n}\right]$.

Proof. The cohomology of the sphere S^{1} is $R[a] /\left(a^{2}\right)$ as a ring, and the underlying cohomology group is free. We view the n-torus T^{n} as the n-fold product of the sphere S^{1}. Then the Künneth formula [14, VI, 12.16] yields that the cohomology of T^{n} is the graded tensor product of n copies of $R[a] /\left(a^{2}\right)$. Therefore we obtain $H^{*}\left(T^{n}, R\right)=\bigwedge_{R}\left[a_{1}, \ldots, a_{n}\right]$.

Corollary 4.9. An endomorphism $A \in E n d_{\mathbb{Z}}\left(\mathbb{Z}^{n}\right)$ of the free \mathbb{Z}-module \mathbb{Z}^{n} induces a unique map $A: T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n} \longrightarrow T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$. Then the ring homomorphism $A^{*}: H^{*}\left(T^{n}, R\right) \longrightarrow H^{*}\left(T^{n}, R\right)$ induced on the cohomology ring $H^{*}\left(T^{n}, R\right)$ coincides with the unique extension of A to a homomorphism $\Lambda^{*}(A)$ on the exterior algebra $\Lambda^{*}\left(R^{n}\right)$ with $\Lambda^{*}(A)(1)=1$.

5. The cohomology of a boundary component

The boundary component $Y^{[P]}$ in X_{G} / Γ attached to a Γ-conjugacy class of minimal parabolic k-subgroups of G has, up to equivalence, the structure
of the fibre bundle

$$
\begin{equation*}
\left(Z_{L} \times_{\Gamma_{L}} N_{\infty} /\left(N_{\infty} \cap \Gamma\right), Z_{L} / \Gamma_{L}, N_{\infty} /\left(N_{\infty} \cap \Gamma\right)\right) \tag{5.1}
\end{equation*}
$$

associated by the natural action of Γ_{L} on the compact fibre $N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$, induced by inner automorphisms, to the universal covering $Z_{L} \longrightarrow Z_{L} / \Gamma_{L}$. This fibre bundle with fibre $N_{\infty} /\left(N_{\infty} \cap \Gamma\right) \cong T^{m}$, where $m=s+2 t$ is the degree of the extension k / \mathbb{Q}, and base space $Z_{L} / \Gamma_{L} \cong T^{r}$, where $r=s+t-1$ is the \mathbb{Z}-rank of the unit group \mathcal{O}_{k}^{\times}of the underlying algebraic number field k. We will see that this fibre bundle falls into the realm of torus bundles over tori with structure group $S L_{m}(\mathbb{Z})$ discussed in Section 3.

The action of the fundamental group Γ_{L} on $N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$ extends to an action on the cohomology $H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)$ of the fibre. This gives rise to a local coefficient system, to be denoted $\mathrm{H}^{*}\left(F_{b}, \mathbb{C}\right)$ on the pathwise connected base space $B=Z_{L} / \Gamma_{L}$. Here $F_{b} \cong N_{\infty} /\left(N_{\infty} \cap \Gamma\right)$ denotes the fibre over $b \in B$.

Theorem 5.1. Let P be a representative for a Γ-conjugacy class of minimal parabolic k-subgroups of G. The cohomology of the corresponding boundary component $Y^{[P]}$ is given as

$$
\begin{align*}
& H^{*}\left(Y^{[P]}, \mathbb{C}\right) \cong H^{*}\left(Z_{L} / \Gamma_{L}, \mathrm{H}^{*}\left(F_{b}, \mathbb{C}\right)\right) \cong \tag{5.2}\\
& H^{*}\left(Z_{L} / \Gamma_{L}, \mathbb{C}\right) \otimes H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)^{\Gamma_{L}}
\end{align*}
$$

where $H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)^{\Gamma_{L}}$ denotes the space of elements in the cohomology $H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)$ which are invariant under Γ_{L}.

Proof. We may assume that $P=P_{0}$ is the standard minimal parabolic k-subgroup. The k-rational points of its unipotent radical are given by $N_{0}(k)=\left\{\left.g=\left(\begin{array}{cc}0 & x \\ 0 & 0\end{array}\right) \right\rvert\, x \in k\right\}$. Moreover, upon identifying $N_{0}(k)$ with k, we see that $N_{0}(k) \cap \Gamma=\Delta$ is a complete \mathbb{Z}-lattice in k. Passing over to the real points of the group $\operatorname{Res}_{k / \mathbb{Q}}\left(N_{0}\right)$, we obtain $N_{0, \infty} \cong \prod_{v \in V_{k, \infty}} k_{v}$. Therefore, the underlying structure as a vector space over \mathbb{R}, endowed with the Euclidean topology, is $N_{0, \infty}^{+} \cong \prod_{v \in V_{k, \infty}} k_{v} \cong \mathbb{R}^{m}$. The group $N_{0, \infty}^{+} \cap \Gamma$ is a discrete subgroup of maximal rank in $N_{0, \infty}^{+} \cong \mathbb{R}^{m}$. It follows that $N_{0, \infty}^{+} \cap \Gamma$ is freely generated over \mathbb{Z} by m vectors u_{1}, \ldots, u_{m} which are linearly independent over \mathbb{R}. We fix such a basis $u=\left\{u_{1}, \ldots, u_{m}\right\}$ of \mathbb{R}^{m}. With regard to the basis u , the action of $N_{0, \infty}^{+} \cap \Gamma$ on $N_{0, \infty}^{+} \cong \mathbb{R}^{m}$ is the standard action of \mathbb{Z}^{m} on \mathbb{R}^{m}.

It follows that we can describe the action of the fundamental group Γ_{L} on the fibre $N_{0, \infty} /\left(N_{0, \infty} \cap \Gamma\right)$ in terms of matrices with integral entries. It is induced by the operation of Γ_{L} on $N_{0, \infty}$ via inner automorphisms. The group Γ_{L} is a subgroup of the unit group \mathcal{O}_{k}^{\times}, hence, viewed as a finitely generated \mathbb{Z}-module, it is of rank $s+t-1$. Given a set $\left\{\alpha_{1}, \ldots, \alpha_{s+t-1}\right\}$ of generators, each of them acts on $N_{0, \infty} \cong \mathbb{R}^{m}$ with respect to the basis u by an integral
$\operatorname{matrix} A_{i} \in G L_{m}(\mathbb{Z}), i=1, \ldots, s+t-1$, since α_{i} leaves $N_{0, \infty} \cap \Gamma$ invariant. Since Γ_{L} is commutative, the matrices $A_{i}, i=1, \ldots, s+t-1$, commute with one another.

We view Γ_{L} via the diagonal embedding $\mathcal{O}_{k}^{\times} \longrightarrow \prod_{v \in V_{k, \infty}} k_{v}^{\times}$as a subgroup of k_{∞}^{\times}. Then the action of an element $\epsilon \in \Gamma_{L}$ is given as a matrix over \mathbb{C} with respect to a suitable basis by a diagonal form $\operatorname{diag}\left(\epsilon_{(1)}^{2}, \ldots, \epsilon_{(m)}^{2}\right)$ where $\epsilon_{(j)}$ denotes the j-th component of $\epsilon \in k_{\infty}^{\times}$. Since $\epsilon \in \Gamma_{L} \subset \mathcal{O}_{k}^{\times}$is a unit, the determinant of this matrix is one. Therefore, ϵ acts orientation-preserving on the fibre $N_{0, \infty} /\left(N_{0, \infty} \cap \Gamma\right)$. In addition, the endomorphisms induced by generators of Γ_{L} are semi-simple endomorphisms.

Following the construction (and notation) introduced in Section 3, we have to determine the cohomology of a torus bundle $T\left(A_{1}, \ldots, A_{r}\right)$, where $r:=s+t-1$, with fibre T^{m} and basis T^{r}, determined by integral matrices $A_{i} \in S L_{m}(\mathbb{Z}), i=1, \ldots, r$. We proceed by induction over the dimension r of the basis.

A decisive tool in the argument is the Wang sequence in cohomology for fibre bundles over the 1 -sphere (see [8, Lemma 8.4.] or [14, Chap. 8, Sect. 5, Cor. 6]). It relates the cohomology of the total space to the cohomology of the fibre, accentuating the role of the characteristic homeomorphism.

Proposition 5.2. Let $\left(E, S^{1}, F, \pi\right)$ be a fibre bundle over S^{1} with totally disconnected structure group G and characteristic homeomorphism $A \in G$. Then there is an exact sequence

$$
\begin{equation*}
\longrightarrow H^{q}(E, R) \xrightarrow{j^{*}} H^{q}(F, R) \xrightarrow{A^{*}-\mathrm{Id}} H^{q}(F, R) \xrightarrow{\delta^{*}} H^{q+1}(E, R) \longrightarrow \tag{5.3}
\end{equation*}
$$

of cohomology groups where the coefficients are in any field R. The map $j: F \longrightarrow E$ is the natural inclusion, and δ^{*} is induced by the boundary operator in a Mayer-Vietoris Sequence attached to a suitable excisive couple of subsets of E. The endomorphism $H^{q}(F, R) \longrightarrow H^{q}(F, R)$ is given by $A^{*}-\mathrm{Id}$.

As an application to our case of interest this result has the following consequence:

Corollary 5.3. Let $\left(E, S^{1}, F, \pi\right)$ be a fibre bundle over S^{1} with totally disconnected structure group G and characteristic homeomorphism $A \in G$. Suppose that the endomorphism $H^{*}(A)=A^{*}: H^{*}(F, \mathbb{Q}) \longrightarrow H^{*}(F, \mathbb{Q})$ induced by A is semi-simple, then we have

$$
\begin{equation*}
H^{n}(E, \mathbb{Q})=\bigoplus_{p+q=n} H^{p}\left(S^{1}, \mathbb{Q}\right) \otimes H^{q}(F, \mathbb{Q})^{A^{*}} \tag{5.4}
\end{equation*}
$$

where $H^{q}(F, \mathbb{Q})^{A^{*}}$ denotes the subspace of elements in $H^{q}(F, \mathbb{Q})$ invariant under the endomorphism A^{*}.

Choose a prime ℓ so that the endomorphism $A^{*}: H^{*}\left(F, \mathbb{Z}_{\ell}\right) \longrightarrow H^{*}\left(F, \mathbb{Z}_{\ell}\right)$ induced by A is semi-simple. Then the analogous result is correct for the cohomology $H^{n}\left(E, \mathbb{Z}_{\ell}\right)$ with coefficients in the finite field \mathbb{Z}_{ℓ}.

Proof. We simultaneously prove both results, and we accordingly write R for the field of coefficients. We may assume that the given bundle is of the form $\left((I \times F) / \sim, S^{1}, F, p\right)$ where the equivalence relation \sim is given by $(1, x) \sim(0, A x), x \in F$, and the projection $p^{\prime}:(I \times F) / \sim \rightarrow I /(1 \sim 0)$ is defined by the assignment $(t, x) \mapsto t, t \in I, x \in F$. The Wang sequence in Proposition 5.2 gives a short exact sequence

$$
0 \longrightarrow \operatorname{coker}\left(H^{q-1}(A)-I d\right) \longrightarrow H^{q}(E, R) \longrightarrow \operatorname{ker}\left(H^{q}(A)-I d\right) \longrightarrow 0
$$

This sequence splits, and one gets a direct sum decomposition

$$
H^{q}(E, R)=\operatorname{ker}\left(H^{q}(A)-I d\right) \oplus \operatorname{coker}\left(H^{q-1}(A)-I d\right)
$$

This isomorphism is not canonical but depends on the choice of a basis. However, the endomorphism A^{*} is semi-simple, thus there is a canonical identification $\operatorname{coker}\left(H^{q-1}(A)-I d\right)=\operatorname{ker}\left(H^{q-1}(A)-I d\right)$. Taking into account that

$$
\operatorname{ker}\left(H^{q-1}(A)-I d\right) \cong \operatorname{ker}\left(H^{q-1}(A)-I d\right) \otimes H^{1}\left(S^{1}, R\right)
$$

resp.

$$
\operatorname{ker}\left(H^{q}(A)-I d\right) \cong \operatorname{ker}\left(H^{q}(A)-I d\right) \otimes H^{0}\left(S^{1}, R\right)
$$

together with the identity $\operatorname{ker}\left(H^{q}(A)-I d\right)=H^{*}(F)^{A}$, brings the final result.

The bundle $T\left(A_{1}\right)$ is obtained by the action of A_{1} on the fibre T^{m}. The induced endomorphism $\Lambda^{*}\left(A_{1}\right)=: A_{1}^{*}$ on the cohomology of the fibre $H^{*}\left(T^{m}, \mathbb{Q}\right)=\Lambda^{*}\left(\mathbb{Q}^{m}\right)$ is semi-simple. Therefore, by Corollary 5.3 , we have

$$
H^{n}\left(T\left(A_{1}\right), \mathbb{Q}\right)=\bigoplus_{p+q=n} H^{p}\left(S^{1}, \mathbb{Q}\right) \otimes H^{q}\left(T^{m}, \mathbb{Q}\right)^{A_{1}^{*}}
$$

The matrices $A_{j}, j>1$, act on $T\left(A_{1}\right)$ via $(t, x) \mapsto\left(t, A_{j} x\right), x \in T^{m}$. Since the action is fibrewise the induced homomorphism in cohomology is of the form

$$
\alpha_{j}: s \otimes y \mapsto s \otimes\left(\left(A_{j}\right)^{*} y\right)
$$

where $s \in H^{p}\left(S^{1}, \mathbb{Q}\right)$ and $y \in H^{q}\left(T^{m}, \mathbb{Q}\right)^{A_{1}^{*}}$. We observe that the restriction of the semi-simple endomorphism A_{j}^{*} on $H^{q}\left(T^{m}, \mathbb{Q}\right)^{A_{1}^{*}}$ is semi-simple. Note that the endomorphisms $\alpha_{j}, j>1$ are semi-simple.

We have the following induction hypothesis:

$$
H^{n}\left(T\left(A_{1}, A_{2}, \ldots, A_{i-1}\right), \mathbb{Q}\right)=\bigoplus_{q+r=n} H^{q}\left(T^{i-1}, \mathbb{Q}\right) \otimes H^{r}\left(T^{m}, \mathbb{Q}\right)^{A_{1}^{*}, A_{2}^{*}, \ldots, A_{i-1}^{*}}
$$

and the endomorphism induced by $A_{j}, j>i-1$, on $H^{n}\left(T\left(A_{1}, A_{2}, \ldots, A_{i-1}\right), \mathbb{Q}\right)$ is given by the assignment $\alpha_{j}: s \otimes y \mapsto s \otimes\left(\left(A_{j}\right)^{*} y\right)$, where $s \in H^{q}\left(T^{i-1}, \mathbb{Q}\right)$
and $y \in H^{r}\left(T^{m}, \mathbb{Q}\right)^{A_{1}^{*} A_{2}^{*}, \ldots, A_{i-1}^{*}}$. The endomorphisms $\alpha_{j}, j>i-1$, are semisimple.

By construction $T\left(A_{1}, \ldots, A_{i}\right)=\left(I \times T\left(A_{1}, \ldots, A_{i-1}\right)\right) / \sim$ where $(1, y) \sim$ $\left(0, A_{i} y\right)$. We obtain by assigning $(t, x) \mapsto t$ a locally trivial fibration

$$
\pi: T\left(A_{1}, \ldots, A_{i}\right) \longrightarrow S^{1}
$$

over S^{1} with fibre $T\left(A_{1}, \ldots, A_{i-1}\right)$. The characteristic homeomorphism of this bundle over S^{1} is the morphism induced by the action of A_{i} on $T\left(A_{1}, \ldots, A_{i-1}\right)$. By induction hypothesis the corresponding homomorphism in cohomology is semi-simple, thus the cohomology result for bundles over S^{1} yields eventually the assertion. Indeed, using the induction hypothesis and the compatibility of the tensor product with direct sums, we have

$$
\begin{aligned}
& H^{n}\left(T\left(A_{1}, A_{2}, \ldots, A_{i}\right), \mathbb{Q}\right) \cong \\
& \cong \bigoplus_{q+p=n}\left(H^{q}\left(S^{1}, \mathbb{Q}\right) \otimes H^{p}\left(T\left(A_{1}, A_{2}, \ldots, A_{i-1}\right), \mathbb{Q}\right)^{A_{i}^{*}}\right) \\
& \cong \bigoplus_{q+p=n}\left(H ^ { q } (S ^ { 1 } , \mathbb { Q }) \otimes \bigoplus _ { a + b = p } \left(H^{a}\left(T^{i-1}, \mathbb{Q}\right) \otimes H^{b}\left(T^{m}, \mathbb{Q}\right)^{\left.\left.A_{1}^{*}, A_{2}^{*}, \ldots, A_{i-1}^{*}\right)^{A_{i}^{*}}\right)}\right.\right. \\
& =\bigoplus_{q+p=n}\left(H^{q}\left(S^{1}, \mathbb{Q}\right) \otimes \bigoplus_{a+b=p}\left(H^{a}\left(T^{i-1}, \mathbb{Q}\right) \otimes H^{b}\left(T^{m}, \mathbb{Q}\right)^{A_{1}^{*}, A_{2}^{*}, \ldots, A_{i-1}^{*}, A_{i}^{*}}\right)\right) \\
& =\bigoplus_{q+p=n}\left(\bigoplus_{a+b=p}\left(H^{q}\left(S^{1}, \mathbb{Q}\right) \otimes H^{a}\left(T^{i-1}, \mathbb{Q}\right) \otimes H^{b}\left(T^{m}, \mathbb{Q}\right)^{A_{1}^{*}, A_{2}^{*}, \ldots, A_{i-1}^{*}, A_{i}^{*}}\right)\right) \\
& \cong \bigoplus_{u+b=n}\left(H^{u}\left(T^{i}, \mathbb{Q}\right) \otimes H^{b}\left(T^{m}, \mathbb{Q}\right)^{A_{1}^{*}, A_{2}^{*}, \ldots, A_{i-1}^{*}, A_{i}^{*}}\right) .
\end{aligned}
$$

One verifies that the endomorphism induced by $A_{j}, j>i$, on a single summand of the cohomology $H^{n}\left(T\left(A_{1}, A_{2}, \ldots, A_{i}\right), \mathbb{Q}\right)$ is given by the assignment $\alpha_{j}: z \otimes y \mapsto z \otimes\left(\left(A_{j}\right)^{*} y\right)$, where $z \in H^{u}\left(T^{i}, \mathbb{Q}\right)$ and $y \in H^{b}\left(T^{m}, \mathbb{Q}\right)^{A_{1}^{*}, A_{2}^{*}, \ldots, A_{i}^{*}}$. The endomorphisms $\alpha_{j}, j>i$, are semi-simple.

Remark 5.4. The same result is correct if we replace the coefficient system \mathbb{Q} by a finite field $\mathbb{Z}_{\ell}=\mathbb{Z} / \ell \mathbb{Z}$ where we have to suppose that the prime number ℓ is admissible with regard to the integral matrices $A_{1}, A_{2}, \ldots, A_{r}$, that is, the endomorphisms $A_{j, \ell} \in \operatorname{End}_{\mathbb{Z}_{\ell}}\left(\mathbb{Z}_{\ell}^{m}\right)$ induced by A_{j} are absolutely semi-simple. This is the case for almost all prime numbers.

It is not difficult to describe the space $H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)^{\Gamma_{L}}$ of elements in the cohomology of the fibre which are invariant under the action of Γ_{L}. Recall that $H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right) \cong \Lambda^{*}\left(\mathbb{C}^{m}\right)$. Let $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$ be the set of embeddings $k \longrightarrow \mathbb{C}$. For each subset $J \subset \Sigma$, we find a one-dimensional subspace $U_{J} \subset \Lambda^{m-|J|}\left(\mathbb{C}^{m}\right)$ such that $u \in \Gamma_{L}$ acts on U_{J} via multiplication by $\prod_{\sigma \in J} \sigma\left(u^{2}\right)$. The direct sum of these subspaces exhaust $\Lambda^{*}\left(\mathbb{C}^{m}\right)$. Since the elements u in $\Gamma_{L} \subset \mathcal{O}_{k}^{*}$ are units, and u acts via u^{2}, we have that the product
$\prod_{\sigma \in \Sigma} \sigma\left(u^{2}\right)$ over all embeddings in Σ is equal to 1 . Therefore, in order to identify the subsets $J \subset \Sigma$ with $\prod_{\sigma \in J} \sigma\left(u^{2}\right)=1$, we have to ensure that also $\prod_{\sigma \in J c} \sigma\left(u^{2}\right)=1$ where σ ranges over all elements in the complement J^{c} of J in Σ. Clearly the empty set $J=\emptyset$ and the set $J=\Sigma$ fulfil these requirements, and the corresponding Γ_{L}-invariant spaces are equal to $U_{\emptyset}=$ $\Lambda^{m}\left(\mathbb{C}^{m}\right)$ respectively $U_{\Sigma}=\Lambda^{0}\left(\mathbb{C}^{m}\right)$, thus, one-dimensional.

If k has a real embedding, that is, $s>0$, these subspaces are the only Γ_{L}-invariant subspaces in $H^{*}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)$. If $s=0$, it may happen that one finds Γ_{L}-invariant classes in $H^{t}\left(N_{\infty} /\left(N_{\infty} \cap \Gamma\right), \mathbb{C}\right)$.

References

[1] A. Borel, Introduction aux Groupes Arithmétiques, Hermann, Paris, 1969.
[2] N. Bourbaki, Algebra II, Chapters 4-7, Springer, Berlin-Heidelberg, 2003.
[3] A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge Univ. Press, Cambridge, 1993.
[4] G. Harder, On the cohomology of $S L(2, \mathcal{O})$, in: Lie Groups and Their Representations, Proc. of the Summer School on Group Representations, Halsted Press, New YorkToronto, 1975, pp. 139-150.
[5] G. Harder, A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Sci. École Norm. Sup. (4) 4 (1971), 409-455.
[6] F. Hirzebruch, Hilbert modular surfaces, Enseign. Math. (2) 19 (1973), 183-281.
[7] M. Kneser, Starke Approximation in algebraischen Gruppen. I, J. Reine Angew. Math. 218 (1965), 190-203.
[8] J. W. Milnor, Singular Points of Complex Hypersurfaces, Ann. of Math. Stud. vol. 61, Princeton University Press, Princeton, NJ, 1968.
[9] J. Schwermer, Zur ganzzahligen Kohomologie von Torusbündeln, Diplomarbeit, Inst. Mathematik, Universität Bonn, 1973.
[10] J. Schwermer, Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lecture Notes in Math. 988, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
[11] J. Schwermer, Reduction Theory and Arithmetic Groups, New Math. Monogr. vol. 45, Cambridge Univ. Press, Cambridge, 2023.
[12] C. L. Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1-86.
[13] C. L. Siegel, Lectures on Advanced Analytic Number Theory. Notes by S. Raghavan. Lect. Math., No. 23, Tata Institute of Fundamental Research, Bombay, 1965.
[14] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[15] N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ, 1951.

Opaska o komponentama ruba aritmetičkih kvocijenata grupe $S L_{2}$ nad poljem algebarskih brojeva

Joachim Schwermer

Sažetak. Za polje algebarskih brojeva k, promatramo kvocijente X_{G} / Γ pridružene aritmetičkim podgrupama Γ specijalne linearne algebarske grupe $G=S L_{2}$ definirane nad k. Grupa G je prosta, ranga jedan i rascjepiva nad k. Liejeva grupa G_{∞} realnih točaka \mathbb{Q}-grupe $\operatorname{Res}_{k / \mathbb{Q}}(G)$, dobivene restrikcijom skalara, je konačni direktni produkt $G_{\infty}=\prod_{v \in V_{k, \infty}} G_{v}=S L_{2}(\mathbb{R})^{s} \times S L_{2}(\mathbb{C})^{t}$, gdje produkt prolazi po skupu $V_{k, \infty}$ svih arhimedskih mjesta od k, a s (odnosno t) označava broj realnih (odnosno kompleksnih) mjesta od k. Odgovarajući simetrični prostor je označen $\mathrm{s} X_{G}$. Koristeći teoriju redukcije, može se konstruirati otvoreni podskup $Y_{\Gamma} \subset X_{G} / \Gamma$ čiji zatvarač \bar{Y}_{Γ} je kompaktna mnogostrukost s rubom $\partial \bar{Y}_{\Gamma}$, pri čemu je ulaganje $\bar{Y}_{\Gamma} \longrightarrow X_{G} / \Gamma$ homotopska ekvivalencija. Komponente povezanosti $Y^{[P]}$ ruba $\partial \bar{Y}_{\Gamma}$ su u bijekciji sa skupom klasa Γ-konjugiranosti minimalnih paraboličkih k-podgrupa od G koji je konačan. Zanima nas geometrijska struktura komponenata ruba. Svaka komponenta ima prirodnu strukturu svežnja vlakana. U radu je dokazano da je taj svežanj homeomorfan torusu T^{s+t-1} dimenzije $s+t-1$, ima kompaktna vlakna T^{m} dimenzije $m=s+2 t=[k: \mathbb{Q}]$ te strukturnu grupu $S L_{m}(\mathbb{Z})$. Na kraju, određena je kohomologija komponenti $Y^{[P]}$.

