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ABSTRACT. Given an algebraic number field k, we consider quotients
X /T associated with arithmetic subgroups I of the special linear algebraic
k-group G = SLa. The group G is k-simple, of k-rank one, and split over
k. The Lie group G of real points of the Q-group Resk/Q(G), obtained

vEVE oo G =
SL2(R)® x SL2(C)?, where the product ranges over the set Vj o of all
archimedean places of k, and s (resp. ¢) denotes the number of real (resp.
complex) places of k. The corresponding symmetric space is denoted by
Xa.

Using reduction theory, one can construct an open subset Yr C X /T
such that its closure Y1 is a compact manifold with boundary Y, and
the inclusion Y —» X¢a /T is a homotopy equivalence. The connected
components YIP] of the boundary Y are in one-to-one correspondence
with the finite set of I'-conjugacy classes of minimal parabolic k-subgroups
of G. We are concerned with the geometric structure of the boundary
components. Each component carries the natural structure of a fibre bun-
dle. We prove that the basis of this bundle is homeomorphic to the torus
Ts+t=1 of dimension s + t — 1, has the compact fibre T™ of dimension
m = s+ 2t = [k : Q], and its structure group is SL.,(Z). Finally, we
determine the cohomology of yIPl

by restriction of scalars, is the finite direct product Goo = H

1. INTRODUCTION

Given an algebraic number field &, we consider quotients X /I" associated
with arithmetic subgroups I' of the special linear algebraic k-group G = SLs.
This group is k-simple, k-split, and of k-rank one. The Lie group G of
real points of the Q-group Resy,q(G), obtained by restriction of scalars, is
the finite direct product G = [] Gy = SLa(R)* x SLy(C)t, where

VEVL, o
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the product ranges over the set Vj o of all archimedean places of k, and
s (resp. t) denotes the number of real (resp. complex) places of k. The
corresponding symmetric space is denoted by X¢. In fact, there is a Goo-
invariant Riemannian metric on Xq, and, if I is torsion-free, the homogenous
space X /T carries the structure of a Riemannian manifold of finite volume.

Via reduction theory there exists an open subset Yr C X¢/I' such that
its closure Y is a compact manifold with boundary Y, and the inclusion
Yr — X¢/T is a homotopy equivalence. The connected components YIP! of
the boundary dYr are parametrised by the finite set of I'-conjugacy classes
of minimal parabolic k-subgroups of G. We are concerned with the geometric
structure of the boundary components. Induced by a Levi decomposition
P = LN (with N the unipotent radical of P), each component carries the
structure of a fibre bundle Ny, /(Noo NT) — YIPI — Z; /T; where the
basis is a locally symmetric space originating with the Levi subgroup L. We
prove that the basis of this bundle is homeomorphic to the torus T°T¢~1 of
dimension s + ¢t — 1, has the compact fibre 7™ of dimension m = [k : Q], and
its structure group is SL,,(Z). Finally, we determine the cohomology of yPl
thereby giving a proof of Proposition 1.1 in [4]. The action of the fundamental
group I'y, on N /(No NT) extends to a natural action on the cohomology
H*(Ns/(NoNT'), C) of the fibre. This gives rise to a local coefficient system,
to be denoted H*(F}y, C), on the pathwise connected base space B = Z/T'f.
Here Fj, = No/(Noo NT) denotes the fibre over b € B. We obtain

H*(YP,C) = H*(Z, /T, H* (F,C)) =
H*(Z,/T1,C) ® H*(Nso/(Neo NT),C)"'",

where the term H*(Noo/(Noo NT),C)I't denotes the space of elements in
H*(Noo/(Noo NT),C) which are invariant under the action of I'y. If k
has a real embedding, that is, s > 0, the only I'y-invariant subspaces in
H*(No/(Noo NT'),C) are in degree 0 and m. If s = 0, it may happen that
one finds I'g-invariant classes in degree t as well.

NOTATION AND CONVENTIONS

Let k£ be an algebraic number field, and let Oy denote its ring of integers.
The set of places of k will be denoted by Vi, and Vi oo (resp. Vi ) refers
to the subsets of archimedean (resp. non-archimedean) places of k. Given a
place v € Vi, the completion of k£ with respect to v is denoted by k,. For a
finite place v € Vi, ¢ we write Oy, for the valuation ring in k,. If the field k
is fixed, we write V = Vj, etc.

Suppose the extension k/Q has degree m = [k : Q]. Let ¥ be the set of
distinct embeddings o; : k — C, 1 < i < m. Among these embeddings some
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factor through k¥ — R. Let o1, ...,05 denote these real embeddings k£ — R.
Given one of the remaining embeddings o : k — C,o(k) ¢ R, to be called
imaginary, there is the conjugate one & : k — C, defined by x — o(z), where
z denotes the usual complex conjugation of the complex number z. Then the
number of imaginary embeddings is an even number, which we denote by 2t¢.
We number the m = s + 2t embeddings o; : k - C , i = 1,...,m in such a
way that, as above, og; is real for 1 <14 < s, and G44; = Os444¢ for 1 <i < t.

The set Vo, of archimedean places of k is naturally identified with the
set of embeddings {0;}1<i<s++ C . We denote by o, the embedding which
corresponds to v € Vi, 0.

Let Ay (resp. Ii) be the ring of adéles (resp. the group of idéles) of k. We
denote by Ay o = Hvevk. . k, the archimedean component of the ring Ay,
and by Ay ¢ the finite adeéles of k. There is the usual decomposition of Ay
into the archimedean and the non-archimedean part A = Ay o X Ay 5.

2. REDUCTION THEORY FOR THE ALGEBRAIC k-GROUP SLo

2.1. The group SLs. Given an algebraic number field k, the group of k-
rational points of the connected reductive k-algebraic group G Lo coincides
with the group GL(2,k) of (2 x 2)-matrices with entries in k. The group
Z(k) of k-rational points of the centre Z of GLy is given by the group
Z(k) = {g = diag(\,\) | A € k*} of scalar diagonal matrices. We fix the
maximal k-split torus S in G Ly given by

Sk)={9=(0p) I \pek}.

Let & = ®(GLy, S) C X*(S) be the set of roots of GLy with respect to S.
A basis of ®, is given by the non-trivial character o : S/k — G, /k, defined
by the assignment (6‘ 2) — A\~ ', We denote by Qg the minimal parabolic k-
subgroup of GLs which is determined by {«}. We have a Levi decomposition
of Qo into the semi-direct product Qo = SNy of its unipotent radical Ny by
S.

The derived group of the general linear group GLo over k is the special
linear k-group SLs; it is a k-simple simply connected algebraic group of k-
rank one. We fix the maximal k-split torus Lg of S Lo, whose k-rational points
are given by Lo(k) = SLa(k) N S(k), hence,

Lo(k) = {g=(},%) | xe k*}.

A basis for the set of roots for S Ly with respect to Ly is given by the restriction
of a on Ly, denoted by the same letter. The minimal parabolic k-subgroup
which corresponds to « is denoted by Py with Levi decomposition Py = Ly Ny
of its unipotent radical Ny by Lg. We call P, the standard minimal parabolic
subgroup of SLs. Any minimal parabolic k-subgroup of SLs is k-conjugate
under SLs to Py, and we have a Levi decomposition P = LN.
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2.2. Reduction theory. Given an algebraic number field k, we write G for the
algebraic k-group SL,. For every archimedean place v € V}, o, together with
the corresponding embedding o, : kK — k, there are given a field k, = R or
C and a real Lie group G, = G°*(k,). The group

(2.1) Goo= ][] G

VEVE, 0o

viewed as the topological product of the groups G, v € Vj, o, is isomorphic
to the group of real points (Res;/oG)(R) of the algebraic Q-group Res; oG
obtained from G by restriction of scalars. In G, we identify G(k) with the
set of elements (¢7")yev, .. Where g € G(k). In an analogous way, if H is
an algebraic k-subgroup of G, we denote by H., the group of real points
(Resy/oH)(R) of the algebraic Q-group Resy /g H.

We denote by s (resp. t) the number of real (resp. complex) places of k.
Thus, the degree m of the extension k/Q equals m = s + 2¢t. Then the real
Lie group G is given as the finite direct product

(2.2) Goo = SLy(R)* x SLy(C)".

For each place v € Vi o, let X, be the symmetric space associated with
G, described as the space of maximal compact subgroups of G,. In fact,
all of these are conjugate to one another, thus, we may write X, = K,\G,
for any maximal compact subgroup K, C G,. If v € V},  is a real place,
X, is the hyperbolic 2-plane H?, and, if v € Vj o is a complex place, X,
is the hyperbolic 3-space H?. Since X, is diffeomorphic to R*+) where
d(G,) = dim G, — dim K, the space X, is contractible. We define

Xo= J] Xo=@®) x @)

'Uevk,oo

as the product of the symmetric spaces X,, and we let d(G) = >_ v, d(Gy).
Since the real Lie group Go acts properly from the right on X, a given arith-
metic subgroup I' of G(k), being viewed as a discrete, thus closed subgroup of
G, acts properly on X¢ as well. If T is torsion-free, the action of I' on X is
free, and the quotient X /I is a smooth manifold of dimension d(G). There
is a Goo-invariant Riemannian metric on Xg. Given an arithmetic subgroup
T of G(k), we are interested in the homogenous space X /. If T' is torsion-
free, the space X /I carries the structure of a Riemannian manifold of finite
volume.

Since G, is not compact and the k-group G is k-simple simply connected,
the group G has the strong approximation property (see [7]). Therefore, G(k)
is dense in the locally compact group G(Ag, s), or, equivalently, GoG(k) is
dense in G(Ay).
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Given any proper ideal a C Oy the corresponding principal congruence
subgroup of level a is defined by

(2.3) I'(a) := ker(SLy(Of) — SLy(Ok/a)).

Using [11, Prop. 4.4.4], if for every prime number p, the ideal a?~! does not
divide the principal ideal pOy, in Oy, the arithmetic group I'(a) is torsion-free.
Therefore, for almost all choices of the ideal a the group I'(a) is torsion-free.

Let p be a prime ideal in Oy, and let v9 € Vi s be the corresponding
non-archimedean place of k. Given a proper ideal a C Oy let vy(a) be
the maximal exponent e such that p¢ divides the ideal a. Thus, we have
a0y, = p”P(u)OUO. For each v € Vj, y, the kernel K, (a) of the natural homo-
morphism G(0,) — G(0,/a0,) is an open compact subgroup of G(O,).
This implies that the direct product K(a) := HueVM K,(a) is an open com-
pact subgroup of G (A ¢), and we have I'(a) = G(k) N K (a). Using the strong
approximation property of the algebraic k-group G, we have the continuous
map Goo — K(a)\G(Ag)/G(k), defined by g — K(a)gG(k). It gives rise to
a homeomorphism K (a)\G(Ay)/G(k)——Gx/T'(a) which is equivariant under
the action of G..

2.3. Reduction theory - the boundary components. Since the k-rank of the
algebraic k-group G = SLs is one, all proper parabolic k-subgroups of G
are minimal, all of these are conjugate under G(k). Given any arithmetic
subgroup I" C G(k), this conjugacy class falls into finitely many I'-conjugacy
classes (see [1, Prop. 15.6]). In the case of the group I' = SLy(Oy), the
cardinality of this set is equal to the class number hy, of k (see [13, Prop. 20]).

We consider the standard minimal parabolic k-subgroup Py = LgNy of
G. Any k-character y : Ly — G,,, induces a homomorphism

Xoo : Loco — G0 & (RX)S X (Cx)t.

Given an archimedean place v € Vj o, we denote by |- |, the absolute value
on k, = R if v is real resp. the square of the absolute value on k, = C if v is
complex. The norm homomorphism is defined by

|+ Gryo0 = H k= (R*)*x(C*)" — RZo, (9v)veVi,e H |golo-
UGVkﬁm vEVk,w
The compositum | - | o x can be canonically extended to a homomorphism
Ix| : Po,co — R;O. We apply this construction to the positive simple root
a: Ly — G,,, and, we define Pé}go ={p € Py, | |a|(p) = 1}. Given any
point z € X¢, let K, C G be the corresponding maximal compact subgroup
of the Lie group G, then Pé,lo)o NK,; = Py, NK,. Moreover, since the image
of the arithmetic group I' under « is an arithmetic subgroup of G,,(k), thus,
contained in O}, we have |a|(y) = 1 for every v € Py NT. It follows that

Pooo NI = PO(,lo)o NT. Given any other minimal parabolic subgroup P of G,
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there is a g € G(k) such that gP(k)g~! = Py(k). Therefore, we can define
Pécl) via conjugation.

In the specific case of the algebraic k-group G of k-rank one, the general
results in [5, Sect. 1.2] in reduction theory take the following form; a different
approach is carried through in [1, Thm. 17.10].

THEOREM 2.1. Given a torsion-free arithmetic subgroup I' C G(k), there
exists an open subset Yr C X /T such that its closure Yr is a compact man-
ifold with boundary OYr, and the inclusion Yr — Xg/T is a homotopy
equivalence. The connected components of the boundary OY r are in one-to-
one correspondence with the finite set, to be denoted P/T, of T'-conjugacy
classes of minimal parabolic k-subgroups of G. If P is a representative for a
T'-conjugacy class of minimal parabolic k-subgroups of G, we denote the cor-
responding connected component in Y p by Y1, Then we have as a disjoint
union

ovr= [ v".
[PleP/T

and the boundary component Y is diffeomorphic to the double coset space
(KN P(g))\Po(i)/(Péé) NT) where K C G is a mazimal compact subgroup.

We are interested in the geometric structure of such a boundary com-
ponent Y. The canonical morphism P —» P/N = L onto the maximal
k-split torus L gives rise to a surjective morphism p : P(g) — L&). The
image K, := p(KN ch)) of KN Péé) under this projection is a maximal com-
pact subgroup in Lg}). We write Zp, := K L\Lg)) for the associated manifold

f,? is diffeomorphic to Ng.

of right cosets. The preimage of a point in L

The image 'y, of Péé) N T under p is a discrete torsion-free subgroup of
L(o}j). The group I';, acts properly and freely on Z;,, and the double coset space
Z1,/T 1, is a manifold with universal cover Z,. The projection p : ch N Lf)?
induces a surjection

(2.4) 7 (KND\PY /(PY NT) — Z,/T;

it is a locally trivial fibration whose fibre is Noo/(Noo NT'). This fibre is
compact (see, e.g. [11, Sect. 9.3]).

PROPOSITION 2.2. Given a representative P for a T'-conjugacy class of
minimal parabolic k-subgroups of G, the corresponding boundary component
y'Pl (KﬂPéé))\Péi)/(Péé) NT') admits the structure of a fibre bundle which
is equivalent to the fibre bundle

(2.5) (Z1, %1, Noo/(Nso NT), Z1, N /(N N T)).
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This bundle is associated by the natural action of 'y, on the compact fibre
Noo/(Now NT), induced by inner automorphisms, to the universal covering
ZL — ZL/FL.

PrOOF. The action of the group PYAT on KL\PS) is proper and free.
Since P is the normaliser of N in G, the group N, NI is a normal subgroup
in P NT. Therefore, the quotient group Lp/n = (Po(cl) NT)/(Noo NT)
acts properly and freely on KL\P(%)/(NOO NT). In view of the decomposition

Péol) = L(O}j) N as a semi-direct product, induced by the semi-direct product
P = LN, this space can be viewed as the product space

(26)  EL\PY /(N NT)—KN\LY /(Noo NT) X Noo/(Noo N T).

We have that P is the normaliser of N, thus, the group P(;l)) NI acts via inner
automorphisms on N,. It follows, since N is commutative, that there is an
induced action of the quotient group I'p/y via diffeomorphisms on the space
Noo/(Noo NT). The group I'p,y is isomorphic to I'r. In view of (2.6), the
fibration in question is equivalent to the fibre bundle

(2.7) (Zp, %1, Noo/(Noo NT), Z1, Noo/(Noo N T))

which is associated by the natural action of ', on N /(Noo NT), induced by
inner automorphisms, to the universal covering Z;, — Z,/T'y. 0

2.4. The geometric structure of the boundary components. Let I" be a torsion-
free arithmetic subgroup of G(k) = SLz(k). Given a representative P for a I'-
conjugacy class of minimal parabolic k-subgroups of G we seek to understand
the base space and the fibre of the fibre bundle structure of the boundary
component Yl of 9Y 1. For any natural number n > 0, we denote by T" =
(S1)™ the n-dimensional torus.

THEOREM 2.3. The boundary component YW = Z; xr, Noo/(Noo NT)
is the total space of a fibre bundle with fibre Noo/(Noo NT)) = T™, base space
Zp )T =2 Tt and structure group T'p. Hence it is a torus bundle over
a torus. The structure group I'y, of the fibre bundle is a totally disconnected
commutative group.

PROOF. First, with regard to the fibre Ny /(No NT'), we may assume
that P is the standard minimal parabolic k-subgroup Py = LgNy whose group
of k-points is Py(k) = {g = (g Igl) |z e k*,ye k} The group of k-points
of its unipotent radical is commutative, and, since m = s + 2t we obtain as
additive groups

NO,oo =~ Resk/Q(ka)(R) = Rm

The group Ny NI as a discrete subgroup of Ny o forms a complete lattice
in R™, thus the claim follows.
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Second, we deal with the universal cover Zy, := K L\Lg,) of the base space
Z1, /T, of the fibration (2.4). We may assume that P = P, is the standard
minimal parabolic k-subgroup of G. We have the identification

Looo = {(gv)v = ((t’(’))” « (;,1) | t, € R* if v real, t, € C* ifv complex}
(R x (CF,
where v € V}, o, ranges ovre the archimedean places of k. Passing over to the

(1)

0.00 We obtain a diffeomorphism

group L

1 ~ ty)o 0
Lg),go—> (gv)v - (( 0) (tu)qjl) | tv € k13<7 H ‘tv|v =1

vEVE, 00

Recall that, given an archimedean place v € Vj o, we denote by | - |, the
absolute value on k, = R if v is real resp. the square of the absolute value on
k, = C if v is complex.

The assignement (z1,...,%s,21,...,2¢) = (|21],.. ., |zs|,|21)%, -+ -5 |2)%)
defines a surjective homomorphism Lg o = (R*)® x ((Cx)t. — (RZ,)*T It
gives rise to a surjective homomorphism

B LG = (RX) x (C))D — ((RZ)™)
where

(R)* x (€)Y = {(h)vevio € (R*)* x (C)) T Iholo =13,

vEVE, 00

and ((RZ)*)® is accordingly defined as
((Réo)s)(l) = {(xU)UEVk,oo RX s+t| H Ty = 1}

VEVE oo

We summarise the aforesaid considerations in the diagram

1 ™ Log™®)
LY — ey, . 59V —— (e, .. R H

. | |

P Log s
Loo —— (H’UGV]Q)OO k't>)<) - (H'UGV;C,OO R;O) —R +t7

where the map Log : ([[,cy, _ RZ) — R*** is defined by the assignment
(1,...,x54¢) — (logay,...,logxsit), where H denotes the hypersurface
H o= {r = (r;) € R | 3. r; = 0} in R*", and where the vertical ar-
rows are the natural inclusions. The map ¢ resp. Log(l) is obtained via
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restriction from the map 1 resp. Log. The horizontal arrows in both exterior
squares of the diagram are isomorphisms. The kernel of ¥(1) is the unique
maximal compact subgroup in ((R*)* x (C*)*)(M), given as the product of s
copies of {#1} and t copies of S*. We obtain ker(y()) = K. It follows that

2y = Ki\Lj, = RHL
By assumption the arithmetic group I' C SLy(Oy) is torsion-free. Tt
follows, since ker (") is compact, I'y, N ker () = {0}. Therefore, 1) maps
'z, isomorphically onto a discrete torsion-free subgroup of ([[,cy, _ RZ,)M.
The arithmetic group I'y, may be viewed as a sugbroup of O;. As worked
out in the usual proof of the Dirichlet theorem on the unit groups of number
fields (see, e.g., [3]), in our context of the diagram, the map induced by the
inclusion O} — Lo(k), maps O, isomophically onto a complete lattice in
the hyperplane H. Therefore, (Log(l) o) (T) is a complete lattice in H.
It follows that the base space Zr,/T'1, of the fibre bundle is the torus 75+ ~1.
a0

REMARK 2.4. Given a totally real quadratic number field, we are con-
cerned with Hilbert modular surfaces as dealt with in [6]. In this case the
boundary components Y¥! occur in the disguise of boundaries of neighbour-
hoods of cusp singularities.

3. TORUS BUNDLES OVER TORI

In order to determine the cohomology of a boundary component YF! it
is useful to describe an inductive construction of fibre bundles whose fibre
is a torus 7™ and whose basis is a torus 7", and whose structure group is
the group SL,,(Z) of automorphisms of the free Z-module Z™ of determinant
one.

First, using [15, Chap. 18], in particular, the notions and notations in-
troduced there, we recall the classification of fibre bundles over the 1-sphere.
Let (E, S, F, ) be a fibre bundle over S! with totally disconnected structure
group G. Up to equivalence, this bundle is in normal form. Thus we can
describe it in the following way: we cut the 1-sphere S! into two (closed)
hemispheres E; and F, whose intersection consists of exactly two antipo-
dal points ¢ and z; in S'. Then we can choose two open neighbourhoods
V1,Va € S' such that E; C V;,i = 1,2, and such that the change of coor-
dinates g2 satisfies g12(xo) = e € G. Then the group element gi2(x1) € G
describes the gluing process of the fibre over the point zi; this element is
called the characteristic homeomorphism of the given bundle. By [15, 18.3],
two fibre bundles (E,S!, F,7) and (E’, S', F,7’) over S! with characteristic
homeomorphisms A and A’ whose fibre F' and structure group G coincide are
equivalent if and only if there are an element g € G and a path w : [ — G
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in G such that w(0) = A and w(1) = gA’g~!. Since G is totally discon-
nected the characteristic homeomorphism is determined by a suitable chosen
generator of the fundamental group 71 (S*!). The bundle is equivalent to the
bundle ((I x F)/ ~,S', F,p) where the equivalence relation ~ is given by
(1,z) ~ (0, Ax),x € F, and the projection map p: (I x F')/ ~— I/(1 ~0)
is defined by the assignment (¢t,z) — t,t € I,z € F.

Second, let A := {41, As,..., A} be a subset of elements in SL,,(Z)
which commute with one another. We inductively construct, following [9],
fibre bundles T(Ay,...,A;), 1 < i < r, over T* = R*/Z" with fibre T™ and
structure group SL,,(Z). The matrices A;, 1 < i < r, induce homeomor-
phisms of T™ which will also be denoted by A;.

We set T(A1) = (I x T™)/ ~, where (1,2) ~ (0, Ayz), z € T™, and the
projection 7 : T(A;) — St is given by (¢,x) + t. The matrices A;,1 <14 <,
act on T'(A4;) via (t,z) — (¢, A;z) in a natural way.

Suppose that the torus bundle (T'(A4, ..., Ay), T*, T™, 1) is constructed,
and the matrices A; with k +1 <i <r act on T(Ay,..., Ar). We define

T(As,. .., Akpr) = (T x T(Ay, .., A))/ ~
where (1,y) ~ (0, Ax11y), y € T(Ay, ..., A), and the projection
Tha1 - T(Al,. .. ,Ak+1) — Sl X Tk = Tk+1

is given by the assignment (¢,y) — (¢, 7, (y)). The matrices Ayyo,..., A, act
on T(Ay,...,Aps1) via (t,y) — (¢, Ay), k+2 < i < r. Since the matrices
Ay, As, ..., A, commute with one another, this is well defined. The total
space is endowed with the orientations induced by the canonical orientations
on R™ and R’. One checks by induction that the induced action of the matrix
Aj, 7 > k, on the bundle is fibrewise.

For the sake of completeness we note the fact that this construction ex-
hausts up to equivalence all torus bundles over tori T" with structure group
SLy(Z). Via induction one proves (see [9, Thm. 4.3]) the following result.

PROPOSITION 3.1. Let (E,T",T™, p) be a torus bundle over the torus T"
with structure group SLpy,(Z). Then this bundle is equivalent to the bundle

(RT Xy (T7) Tm, TT, Tm, 7T)

associated to the universal covering R™ — R" /Z" by the natural action of the
fundamental group of the basis on the fibre T™ where w1 (T7) = Z" acts on
R” wia right translations. If we denote by Ay, Aa, ..., A, elements in SL,,(Z)
which correspond to the action of suitably chosen generators of the funda-
mental group w (T") then the bundle T'(A1, Aa, ..., A;) is equivalent to the
bundle (R" X, (pry T, T",T™, ). The matrices A1, Aa, ..., A, are uniquely
determined up to conjugation in SL.,(Z).
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4. DIGRESSION: SEMI-SIMPLE ENDOMORPHISMS

We review some basic facts regarding semi-simple endomorphisms of
finite-dimensional vector spaces over a field K. This notion plays a conclusive
role in the actual computation of the cohomology of torus bundles over tori.
This allows us to determine the cohomology of a boundary component.

DEFINITION 4.1. Let V be a finite-dimensional vector space over a field
K. We call an endomorphism « € Endg (V) semi-simple if every a-stable
subspace U C V, that is, aU C U, has a complementary a-stable subspace.
In other words, equivalently, V' viewed as a K[X]|-module, with X acting as
a, is semi-simple.

By the classification of finitely generated modules over the polynomial
ring K[X], such a V is isomorphic to a direct sum of modules of the form
k[X]/(f™) where f € K[X] is some irreducible polynomial. Therefore V' is
semi-simple if and only if each of these direct summands is semi-simple, that is,
m = 1. It follows that an endomorphism « € Endg (V) is semi-simple if and
only if its minimum polynomial is the product of relatively prime irreducible
polynomials.

The semi-simplicity of an endomorphism a € Endg (V) is preserved by
passage to an a-invariant K-subspace W C V, as well as to the quotient space
V/W.

The following technical observation is useful. Let V,W be two finite-
dimensional vector spaces over a field K. In view of the isomorphism

EndK(V) RK EndK(W)%EndK(V RK W),

given an endomorphism w € Endg(V @k W), there exist ¢; € Endg(V),
1; € Endg (W) such that w = )~ ¢; ®1);. A straightforward argument shows:
if ¢ € Endg(V), ¥ € Endg (W) are semi-simple endomorphisms, then the
endomorphism w = ¢ ® 1 € Endg (V @ W) is semi-simple.

Let L/K be a field extension. Given an endomorphism a € Endg (V), let
ar :=id® a € End (V%) be the endomorphism of Vi, := L ® ¢ V' induced by
extension of scalars. If «, is semi-simple, then « is also semi-simple, and if
L/K is separable, then the converse is correct.

We observe the following result (see [2, Chap. VII, §5, No. 8, Prop. 15]):

PROPOSITION 4.2. Given an endomoprhism o € Endg (V') with minimum
polynomial m,, € K[X], the following assertions are equivalent:
- For every field extension L/K, the endomorphism «y, is semi-simple.
- There exists a field extension L/K such that the endomorphism ay, is
diagonalisable.
- The minimum polynomial m,, is separable over K.

DEFINITION 4.3. An endomorphism « € Endg (V) is called absolutely
semi-simple if one of the equivalent conditions in Proposition 4.2 is valid.
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Clearly, a necessary and sufficient condition for a to be absolutely semi-
simple is that the irreducible factors of the minimum polynomial m, have no
multiple roots in the algebraic closure K of K.

More generally, we consider a family A of K-endomorphisms of a given
finite-dimensional K-vector space V. We say that the family A is diagonal-
isable if there exists a basis v = {v; };er of V such that the matrix M, , for
each a € A with respect to v has diagonal form. If A = {«a} consists of a
single element, we say that « is diagonalisable.

The following observation is decisive for the subsequent result: Let a, 5 €
Endg (V) be two endomorphisms of V' which commute with one another, and
let V) be any eigenspace for a. Then, for all v € Vy , we have a(S(v)) =
Bla(v)) = B(Av) = AB(v). Thus, V) is stable under 3.

PrOPOSITION 4.4. Let A be a family of K-endomorphisms of a given
finite-dimensional K-vector space V.. Then A is diagonalisable if and only if
all elements in A are diagonalisable and commute with one another.

Combining this result with the characterisations of an absolutely semi-
simple endomorphism in Proposition 4.2 we obtain

PROPOSITION 4.5. Let A be a family of K-endomorphisms of a given
finite-dimensional K -vector space V.. There exists a field extension L/ K such
that the set A := {ar | @« € A} C Endp(Vy) is diagonalisable if and only
if the endomorphisms in A are absolutely semi-simple and commute with one
another.

PROPOSITION 4.6. Let V' be a finite-dimensional vector space over a field
K. Let A = {¢a} be a finite family of semi-simple endomorphisms ¢, €
Endg (V) which commute pairwise with one another. We denote by A the
subalgebra of the endomorphism algebra Endg (V) generated by A and the
identity Idy. Then V decomposes as a direct sum V = VA @ U into the
subspace VA = {v € V | ¢(v) = v for all ¢ € A} and a complementary
subspace U.

PROOF. The proof proceeds by induction over the number of generators of
A. The case of a single generator is taken care by the very definition of a semi-
simple endomorphism. Let A be generated by the set {¢1,...,d,,Idyv} C A,
and let A’ be the subalgebra of Endg (V') generated by ¢1, ..., ¢,—1 and Idy .
By induction hypothesis, the subspace VA" admits a direct complement U’
such that V = VA @ U’. Since forall 1 <i<n—1, On © O; = ¢; © ¢, the
restriction of ¢, to VA is well defined and (gbn)lVAf is semi-simple. Thus,

there exists a direct complement U” of V4 in VA, We put U := U" @ U'.
Then we have V = VA @ U. O
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COROLLARY 4.7. Let V be a finite-dimensional vector space over a field
K. Given an absolutely semi-simple endomorphism ¢ € Endg(V), there is a
canonical identification ker(¢ — Id)——coker(¢ — Id).

PROOF. Setting V® = {v € V | ¢(v) = v}, since ¢ is absolutely semi-
simple, we have the direct sum decomposition V. = V¢ @ U where U =
im(¢ — Id). This implies the assertion. |

To be in the position to determine the cohomology of torus bundles over
tori as constructed above we determine the cohomology ring of an n-torus.

Let R be a commutative ring with identity element, and let {a1,...,an}
be a finite set of n symbols. We write | = {1,...,n}. Then the exterior alge-
bra Aglai,...,ay] is defined as the free R-module with generators a;, - - - a;,,

for all k-tuples (i1, ....ig) of indices in | with i; < ... < i, 1 <k < n, en-
dowed with the associative and distributive multiplication determined by the

rules a? = 0,i = 1,...,n, and aja; —aja; =01if ¢ # 7, 4,7 =1,...,n. If we
put /\%[al, ...yap] = R, then ARla1,...,a,] becomes a graded commutative
ring with the scalar 1 as unit element. For a fixed index p, 1 < p < n,
Nilai, ... a,] denotes the free R-submodule with basis a;, ---a;, for all
i1 < ... < ip. The generators ay,...,a, have degree one. The R-rank of
Nrla, .. an] is (7).

If R = Z, we identify the elements ay,...,a, with the standard basis
€1,...,en of the free Z-module Z"™, and we write A*(Z") for the corresponding

exterior algebra.

PROPOSITION 4.8. Given the n-dimensional torus T™ its cohomology ring
with coefficients in any commutative field R is given as the exterior algebra
H*(T",R) = Agla1, ..., an].

PRrROOF. The cohomology of the sphere S! is R[a]/(a?) as a ring, and
the underlying cohomology group is free. We view the n-torus 7™ as the
n-fold product of the sphere S'. Then the Kiinneth formula [14, VI, 12.16]
yields that the cohomology of T™ is the graded tensor product of n copies of
Rla]/(a?). Therefore we obtain H*(T™, R) = Aplai,. .., a,). 0

COROLLARY 4.9. An endomorphism A € Endz(Z™) of the free Z-module
Z" induces a unique map A : T™ = R"/Z" — T™ = R"/Z"™. Then the ring
homomorphism A* : H*(T",R) — H*(T", R) induced on the cohomology
ring H*(T™, R) coincides with the unique extension of A to a homomorphism
A*(A) on the exterior algebra A*(R™) with A*(A)(1) = 1.

5. THE COHOMOLOGY OF A BOUNDARY COMPONENT
The boundary component Y in X /T attached to a I'-conjugacy class
of minimal parabolic k-subgroups of G has, up to equivalence, the structure
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of the fibre bundle
(51) (ZL XrL Noo/(Nooﬂr)7ZL/FL7Noo/(NoomF))

associated by the natural action of T';, on the compact fibre N, /(Noo NT),
induced by inner automorphisms, to the universal covering Z;, — Z/T'f.
This fibre bundle with fibre Noo/(Noo NT) = T™, where m = s + 2t is the
degree of the extension k/Q, and base space Z,/T';, £ T", where r = s+t —1
is the Z-rank of the unit group O, of the underlying algebraic number field
k. We will see that this fibre bundle falls into the realm of torus bundles over
tori with structure group SL,,(Z) discussed in Section 3.

The action of the fundamental group I'y, on No/(No NT) extends to
an action on the cohomology H*(Ns/(Noo NT),C) of the fibre. This gives
rise to a local coefficient system, to be denoted H*(Fy,C) on the pathwise
connected base space B = Z,/T'1. Here F, = N, /(N NT') denotes the fibre
over b € B.

THEOREM 5.1. Let P be a representative for a I'-conjugacy class of min-
imal parabolic k-subgroups of G. The cohomology of the corresponding bound-
ary component Yl s given as

(5.2) H*(YW C)~ H*(Z, /T, H (F,,C)) =
H*(Zy/T1,C) ® H*(Ny /(Ny NT), C)E,

where H*(Noo /(NooNT), C)F'L denotes the space of elements in the cohomology
H*(Noo/(Noo NT),C) which are invariant under T'r,.

PrROOF. We may assume that P = Py is the standard minimal para-
bolic k-subgroup. The k-rational points of its unipotent radical are given by
No(k) = {g = (8 "5) |z € k} Moreover, upon identifying No(k) with k, we
see that No(k) N T = A is a complete Z-lattice in k. Passing over to the
real points of the group Resy, q(No), we obtain No o = Hvevk,oc k,. There-
fore, the underlying structure as a vector space over R, endowed with the
Euclidean topology, is N(j,_oo = HUEVk_m k, = R™. The group N(i'oo NIisa
discrete subgroup of maximal rank in N = R™. It follows that N(f o NI is
freely generated over Z by m vectors ui, ..., u, which are linearly indepen-
dent over R. We fix such a basis u = {uy,...,un} of R™. With regard to the
basis u, the action of N&OC NI on NoJfoo =~ R™ is the standard action of Z™
on R™.

It follows that we can describe the action of the fundamental group I'y,
on the fibre Ny oo /(No,co NT') in terms of matrices with integral entries. It is
induced by the operation of I';, on Ny o via inner automorphisms. The group
'y, is a subgroup of the unit group O}, hence, viewed as a finitely generated
Z-module, it is of rank s +¢ — 1. Given a set {a1,...,asy+—1} of generators,
each of them acts on Ny = R™ with respect to the basis u by an integral
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matrix A; € GL,,(Z), i =1,...,s+t—1, since a; leaves Ny o, NT invariant.
Since I'j, is commutative, the matrices A;, i =1,...,s4+t—1,, commute with
one another.

We view T'y, via the diagonal embedding O — [] ks as a sub-

VEVE, o
group of k% . Then the action of an element € € I'y, is given as a matrix over C

with respect to a suitable basis by a diagonal form diag(e%l), ceey 6(2m)) where

€(j) denotes the j-th component of ¢ € k%,. Since € € I'r, C O; is a unit,
the determinant of this matrix is one. Therefore, € acts orientation-preserving
on the fibre Ny o/(No,0o NT'). In addition, the endomorphisms induced by
generators of I';, are semi-simple endomorphisms.

Following the construction (and notation) introduced in Section 3, we
have to determine the cohomology of a torus bundle T'(Ay,..., A,), where
r:=s+t— 1, with fibre T and basis T", determined by integral matrices
A; € SL,(Z),i=1,...,7. We proceed by induction over the dimension r of
the basis.

A decisive tool in the argument is the Wang sequence in cohomology for
fibre bundles over the 1-sphere (see [8, Lemma 8.4.] or [14, Chap. 8, Sect. 5,
Cor. 6]). It relates the cohomology of the total space to the cohomology of
the fibre, accentuating the role of the characteristic homeomorphism.

PROPOSITION 5.2. Let (E, S, F, ) be a fibre bundle over S with totally
disconnected structure group G and characteristic homeomorphism A € G.
Then there is an exact sequence

(5.3)
— ~ HYE,R) > HY(F,R) X% Ho(F,R) — ¥~ H (B, R) — >

of cohomology groups where the coefficients are in any field R. The map
j : F — E is the natural inclusion, and &* is induced by the boundary
operator in a Mayer-Vietoris Sequence attached to a suitable excisive couple of
subsets of E. The endomorphism H1(F, R) — HI(F, R) is given by A* —1d.

As an application to our case of interest this result has the following
consequence:

COROLLARY 5.3. Let (E,SY, F,m) be a fibre bundle over S* with totally
disconnected structure group G and characteristic homeomorphism A € G.
Suppose that the endomorphism H*(A) = A* : H*(F,Q) — H*(F,Q) in-
duced by A is semi-simple, then we have

(5.4) H"(E,Q) = @ H"(S',Q) o HI(F,Q)*
p+q=n

where HI(F,Q)A" denotes the subspace of elements in H1(F,Q) invariant
under the endomorphism A*.
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Choose a prime £ so that the endomorphism A* : H*(F,Z;) — H*(F,Z)
induced by A is semi-simple. Then the analogous result is correct for the
cohomology H™(E,Z;) with coefficients in the finite field Zy.

PRrROOF. We simultaneously prove both results, and we accordingly write
R for the field of coefficients. We may assume that the given bundle is of
the form ((I x F)/ ~, S, F,p) where the equivalence relation ~ is given by
(1,z) ~ (0,Az),z € F, and the projection p’ : (I x F)/ ~— I/(1~0) is
defined by the assignment (t,z) — ¢,¢t € I,z € F. The Wang sequence in
Proposition 5.2 gives a short exact sequence

0 — coker(H9™Y(A) — Id) — HY(E, R) — ker(H9(A) — Id) — 0.
This sequence splits, and one gets a direct sum decomposition
HY(E,R) = ker(H?(A) — Id) @ coker(HY ' (A) — Id).

This isomorphism is not canonical but depends on the choice of a basis. How-

ever, the endomorphism A* is semi-simple, thus there is a canonical iden-

tification coker(H?71(A) — Id) = ker(H9~'(A) — Id). Taking into account

that

ker(H971(A) — Id) = ker(H? *(A) — Id) ® H'(S', R)
resp.
ker(H9(A) — Id) = ker(H?(A) — Id) ® H°(S*, R),

together with the identity ker(H?(A) — Id) = H*(F)4, brings the final result.

a0

The bundle T(A;) is obtained by the action of A; on the fibre T™.
The induced endomorphism A*(A;) =: A} on the cohomology of the fibre
H*(T™,Q) = A*(Q™) is semi-simple. Therefore, by Corollary 5.3, we have

HY(T(A),Q) = @ H(S',Q)» HI(T™, Q).
ptg=n

The matrices A;,7 > 1, act on T(Ay) via (¢, z) — (¢, A;x), x € T™. Since the
action is fibrewise the induced homomorphism in cohomology is of the form

ajs@y— s ((45)%),
where s € HP(S',Q) and y € H9(T™,Q)*1. We observe that the restriction
of the semi-simple endomorphism A; on Hi(T™, Q)AI is semi-simple. Note
that the endomorphisms o, j > 1 are semi-simple.

We have the following induction hypothesis:

( (A13A27' .- — @ Hq Tl 1 ®HT(Tm7Q)A;’A;""7A:71’
qg+r=n
and the endomorphism induced by A;, j > i—1,on H"(T'(A1, A2,..., 4;-1),Q)

is given by the assignment o : s®@ y — s ® ((4;)*y), where s € Hq( -1 Q)
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and y € HT(TW7Q)AIA§"“’A371. The endomorphisms «;, j >4 — 1, are semi-
simple.

By construction T'(Ay,...,A;) = (IxT(Ay,...,Ai—1))/ ~ where (1,y) ~
(0, A;y). We obtain by assigning (¢, z) — t a locally trivial fibration

W:T(Al,...,Ai)—>Sl

over S' with fibre T(Ay,...,A4;_1). The characteristic homeomorphism
of this bundle over S! is the morphism induced by the action of A; on
T(Ay,...,A;—1). By induction hypothesis the corresponding homomorphism
in cohomology is semi-simple, thus the cohomology result for bundles over S*
yields eventually the assertion. Indeed, using the induction hypothesis and
the compatibility of the tensor product with direct sums, we have

H"(T(A1,As,...,A;),Q) =

= @ (H9(S',Q) @ HP(T(Ay, As, ..., Ai_1),Q)™)
q+p=n

~ P HYS', Qe @ (H(T,Q) @ HH(T™,Q) A4
q+p=n a+b=p

= P H(S Qe P HYT',Q) ® H(IT™, Q) " AinAl))
q+p=n a+b=p

P (P @H(S" Q)@ BT, Q) & H(I™, QA1)
q+p=n a+b=p
= (B (HH(T,Q) & B (T™, QA5 AT,
u+b=n

One verifies that the endomorphism induced by Aj;, j > ¢, on a single sum-
mand of the cohomology H"(T (A1, Aa, ..., 4;),Q) is given by the assignment
a1 2@y > 2@ ((A;)*y), where z € H*(T*,Q) and y € HY(T™,Q)A1:A42:+A7,
The endomorphisms «;, j > 4, are semi-simple. O

REMARK 5.4. The same result is correct if we replace the coefficient sys-
tem Q by a finite field Z, = Z/¢Z where we have to suppose that the prime
number ¢ is admissible with regard to the integral matrices Ay, As, ..., A,
that is, the endomorphisms A;, € Endz, (Z}') induced by A; are absolutely
semi-simple. This is the case for almost all prime numbers.

It is not difficult to describe the space H* (N, /(NooNL'), C)F'L of elements
in the cohomology of the fibre which are invariant under the action of I'f.
Recall that H*(No/(Neo NT),C) = A*(C™). Let ¥ = {01,...,0m} be the
set of embeddings k — C. For each subset J C 3, we find a one-dimensional
subspace U; € A™~171(C™) such that u € T';, acts on Uy via multiplication by
[I,c, o(u?). The direct sum of these subspaces exhaust A*(C™). Since the
elements v in I';, C Of are units, and u acts via u?, we have that the product
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[l es o(u?) over all embeddings in ¥ is equal to 1. Therefore, in order to
identify the subsets J C ¥ with [] ., o(u?) = 1, we have to ensure that
also [[,c . o(u?) = 1 where o ranges over all elements in the complement
J¢ of J in ¥. Clearly the empty set J = @) and the set J = X fulfil these
requirements, and the corresponding I'y-invariant spaces are equal to Up =
A™(C™) respectively Us = A°(C™), thus, one-dimensional.

If £ has a real embedding, that is, s > 0, these subspaces are the only
I'p-invariant subspaces in H*(Ny, /(NooNT'), C). If s = 0, it may happen that
one finds I'-invariant classes in H'(Noo/(Noo NT), C).
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Opaska o komponentama ruba aritmetickih kvocijenata grupe SLo
nad poljem algebarskih brojeva

Joachim Schwermer

SAZETAK. Za polje algebarskih brojeva k, promatramo kvo-
cijente X /T pridruzene aritmetickim podgrupama I' specijalne
linearne algebarske grupe G = S Ly definirane nad k. Grupa G je
prosta, ranga jedan i rascjepiva nad k. Liejeva grupa G realnih
to¢aka Q-grupe Resy q(G), dobivene restrikcijom skalara, je ko-
nacni direktni produkt Goo = HvGVk,oo Gy = SLa2(R)* x SL2(C)?,
gdje produkt prolazi po skupu Vi, o svih arhimedskih mjesta od
k, a s (odnosno t) oznadava broj realnih (odnosno kompleksnih)
mjesta od k. Odgovarajuéi simetricni prostor je oznacen s Xq.
Koristeéi teoriju redukcije, moze se konstruirati otvoreni pod-
skup Yr C Xg/T &iji zatvaraé Yr je kompaktna mnogostrukost
s rubom 9Yr, pri éemu je ulaganje Yr — Xg/I' homotopska
ekvivalencija. Komponente povezanosti Y¥! ruba dYr su u bi-
jekciji sa skupom klasa I'-konjugiranosti minimalnih parabolickih
k-podgrupa od G koji je konacan. Zanima nas geometrijska struk-
tura komponenata ruba. Svaka komponenta ima prirodnu struk-
turu sveznja vlakana. U radu je dokazano da je taj svezanj home-
omorfan torusu 7°7*~! dimenzije s+t — 1, ima kompaktna vlakna
T™ dimenzije m = s + 2t = [k : Q] te strukturnu grupu SL,,(Z).
Na kraju, odredena je kohomologija komponenti Yyl
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