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ON SWAN EXPONENTS OF SYMMETRIC AND EXTERIOR
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Dedicated to Marko Tadić, on his 70th birthday.∗

Abstract. Let F be a local non-Archimedean field and E a finite Ga-
lois extension of F , with Galois group G. If ρ is a representation of G on a
complex vector space V , we may compose it with any tensor operation R

on V , and get another representation R◦ρ. We study the relation between
the Swan exponents Sw(ρ) and Sw(R◦ρ), with a particular attention to the
cases where R is symmetric square or exterior square. Indeed those cases
intervene in the local Langlands correspondence for split classical groups
over F , via the formal degree conjecture, and we present some applications
of our work to the explicit description of the Langlands parameter of sim-
ple cuspidal representations. For irreducible ρ our main results determine
Sw(Sym2 ρ) and Sw(∧2ρ) from Sw(ρ) when the residue characteristic p of
F is odd, and bound them in terms of Sw(ρ) when p is 2. In that case
where p is 2 we conjecture stronger bounds, for which we provide evidence.

1. Introduction

Let p be a prime number, F a non-Archimedean local field of residue
characteristic p, and E a finite Galois extension of F with Galois group G =
Gal(E/F ). Suppose that ρ is a finite-dimensional representation of G on a
complex vector space V (in this paper, we refer to such ρ simply as a Galois
representation). For any algebraic representation R of GLC(V ) on a finite-
dimensional complex vector space V ′, by composing R with ρ, we obtain
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another Galois representation R ◦ ρ of G.

G
ρ
//

R◦ρ
**

GLC(V )
R
// GLC(V ′)

Given that the Swan exponent is one of the most fundamental invariants
of Galois representations (see Section 2.1 for the definition), it is natural to ask
if there is an interesting relationship between the Swan exponents Sw(R ◦ ρ)
and Sw(ρ). This is the problem of our interest.

We first introduce several preceding results on this problem. Bushnell–
Henniart–Kutzko investigated the case where ρ is irreducible and R = Std⊗
Std∨, i.e., R ◦ρ = ρ⊗ρ∨, where ρ∨ denotes the contragredient representation
of ρ, in [13]. They established an explicit formula of Sw(ρ ⊗ ρ∨). (In fact,
their result is more general; for any two irreducible Galois representations ρ1
and ρ2, they obtained an explicit formula of Sw(ρ1⊗ρ2)). Based on the result
of Bushnell–Henniart–Kutzko, Anandavardhanan–Mondal ([2]) established a
similar explicit formula in the case where R is the symmetric square Sym2,
the exterior square ∧2, or the Asai representation “Asai”, by assuming that
p ̸= 2.

However, in these cases, the Swan exponent Sw(R ◦ ρ) cannot be ex-
pressed only in terms of Sw(ρ). The description requires the information of
a simple stratum (in the sense of Bushnell–Kutzko, [14]) associated to the
supercuspidal representation corresponding to ρ under the local Langlands
correspondence (cf. [13, 6.5, Theorem] and [2, Theorem 6.1]).

Based on this observation, we settle for looking for bounds estimating
Sw(R ◦ ρ) from Sw(ρ), sometimes even getting exact formulas. Concerning
this direction, let us mention the work of Bushnell–Henniart [11] and also the
work of Kiliç [27], in which upper bounds and lower bounds of Sw(ρ1 ⊗ ρ2)
are investigated. For example, some of the inequalities proved in loc. cit. are
as follows:

Theorem 1.1 ([11, Theorems AS and CS]). Let ρ1 and ρ2 be Galois
representations. We put n1 := dim(ρ1) and n2 := dim(ρ2).

1. If ρ1 is minimal in the sense that Sw(ρ1) ≤ Sw(ρ1 ⊗ χ) for any char-
acter χ, then we have

Sw(ρ1 ⊗ ρ2) ≥ 1
2 max{n2 Sw(ρ1), n1 Sw(ρ2)}.

2. We have

Sw(ρ1 ⊗ ρ2) ≤ n2 Sw(ρ1) + n1 Sw(ρ2)−min{Sw(ρ1),Sw(ρ2)}.
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Theorem 1.2 ([27, Theorem 9.3]). If ρ is a minimal (in the sense as in
Theorem 1.1) Galois representation on V , then, for any algebraic representa-
tion R of GLC(V ), we have

Sw(ρ⊗ (R ◦ ρ)) ≥ 1
2 dim(R ◦ ρ) · Sw(ρ).

Now let us explain our main results. Our principal interest is in the case
where R = Sym2 or R = ∧2. Our first main result is the following:

Proposition 1.3 (Proposition 2.3). Suppose that p ̸= 2. For any Galois
representation ρ, we have

Sw(Sym2 ρ)− Sw(∧2ρ) = Sw(ρ).

Note that if ρ is self-dual, then we have ρ⊗ ρ∨ ∼= ρ⊗ ρ ∼= Sym2 ρ⊕ ∧2ρ.
Thus, by combining Proposition 1.3 with the explicit formula of Sw(ρ ⊗ ρ)
by Bushnell–Henniart–Kutzko mentioned above, it is possible to get a precise
formula of Sw(Sym2 ρ) and Sw(∧2ρ). Especially, when ρ furthermore satisfies
some additional conditions, the resulting formula is particularly simple as
follows:

Corollary 1.4 (Corollary 2.4). Suppose that p ̸= 2. Let ρ be a 2n-
dimensional irreducible self-dual Galois representation such that (Sw(ρ), 2n) =
1. Then we have

Sw(Sym2 ρ) = n · Sw(ρ) and Sw(∧2ρ) = (n− 1) · Sw(ρ).

In fact, the equality of Proposition 1.3 has been already obtained in [2],
thus not new. Our contribution is that we gave an alternative and simpler
proof. See Remark 2.5 for more comments on Proposition 1.3 and Corollary
1.4.

We note that the assumption that p ̸= 2 is crucially used in the proof
of Proposition 1.3. In fact, the equality of Proposition 1.3 does not hold in
general when p = 2. For example, we have the following:

Proposition 1.5 (Proposition 2.8). Suppose that p = 2. Let ρ be
a (2n + 1)-dimensional irreducible self-dual Galois representation such that
(Sw(ρ), 2n+ 1) = 1. Then we have

Sw(Sym2 ρ)− Sw(∧2ρ) = 0.

Hence, by the same argument as in the case where p ̸= 2 (i.e., using the
Bushnell–Henniart–Kutzko formula), we obtain the following:

Corollary 1.6 (Corollary 2.10). With the same assumptions as in
Proposition 1.5, we have

Sw(Sym2 ρ) = Sw(∧2ρ) = n · Sw(ρ).
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On the other hand, there is also an example such that Sw(Sym2 ρ) −
Sw(∧2ρ) is not zero (for example, take ρ to be a 1-dimensional character such
that ρ2 is wildly ramified). Then what can we expect about the quantity
Sw(Sym2 ρ)− Sw(∧2ρ) when p = 2? Our second main result is the following:

Theorem 1.7 (Theorem 2.6). Suppose that p = 2. For any Galois rep-
resentation ρ, we have

0 ≤ Sw(Sym2 ρ)− Sw(∧2ρ) ≤ 2 Sw(ρ).

Note that the left inequality of Theorem 1.7 is “sharp” in the sense that
there exists ρ which attains the equality (Proposition 1.5; see also Proposition
2.7). On the other hand, the right inequality is not sharp whenever ρ is not
tame (Proposition 2.7). In fact, we expect that the following inequality holds
and is sharp.

Conjecture 1.8. Assume p = 2. For any Galois representation ρ, we
have

(⋆) Sw(Sym2 ρ)− Sw(∧2ρ) ≤ Sw(ρ).

In this paper, we verify Conjecture 1.8 in several special cases and also
discuss attempts to the conjecture in the general case.

1. In Section 3.1, we prove the inequality (⋆) for any 2-dimensional ρ.
2. In Section 3.2, we prove the inequality (⋆) for any ρ of the form

IndF ′/F χ, where F ′/F is cyclic and χ is a character of F ′×.
3. In Section 3.3, we discuss an approach based on an analysis of the

structure of the ramification subgroups. We also obtain definitive re-
sults in some specific cases (Propositions 3.9 and 3.10).

4. In Section 3.4, we discuss an approach via induction on the order of
the Galois group G. Especially, we show that if the conjecture is true,
then the inequality (⋆) must be strict when ρ is orthogonal (3.13).

5. In Section 3.5, we discuss an approach via induction on dim(ρ).
We finally mention that, in fact, our motivation originates from investi-

gating the explicit local Langlands correspondence for classical groups. When
G is a connected reductive group over F , the local Langlands correspondence
attaches to a smooth irreducible representation π of G(F ) an L-parameter ϕ
(L-parameters are a variant of Galois representations, see Section 4.1). When
π is discrete series, it is expected that a certain explicit identity is satisfied
between the formal degree of π and the special value of the adjoint γ-factor of
ϕ (the formal degree conjecture, see Section 4.2). The point is that, when G
is a classical group, the L-parameter ϕ can be naturally regarded as a Galois
representation (say ρ) and then the adjoint γ-factor of ϕ is related to the Swan
exponent Sw(R◦ρ) for some tensor operation R. For example, if G = SO2n+1
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(resp. Sp2n or SO2n), then R is given by Sym2 (resp. ∧2).

π: disc. ser. of G(F ) oo LLC //

��

ϕ: L-par.

��

oo // ρ: Gal. rep.

��
formal degree of π oo FDC // adjoint γ-factor of ϕ oo // Sw(R ◦ ρ)

Thus, for a given L-parameter ϕ, computing Sw(R ◦ ρ) is related to knowing
the formal degree of π, which can be a clue to determine the representation
π exactly (and vice versa). In Section 4, we present a few results which are
obtained based on this philosophy.

1.1. Notation. For a non-Archimedean local field F , we write OF , pF , and
kF for the ring of integers, the maximal ideal, and the residue field of F ,
respectively. For any r ∈ Z>0, we let UrF := 1 + prF .

2. Main Results

2.1. Swan exponent of Galois representations. We first recall the definition
of the Swan exponent of a local Galois representation. The contents of this
subsection are based on [32, Chapter VI] and [31, Chapter 19].

Let F be a non-Archimedean local field with residue characteristic p > 0.
Let E be a finite Galois extension of F . Let G := Gal(E/F ) and {Gi}∈Z≥0

be the filtration by the lower ramification subgroups of G; recall that {Gi}i≥0
is decreasing and satisfies Gi = {1} for sufficiently large i (see [32, Chapter
IV]). We write gi for the cardinality of Gi.

Suppose that ρ is a representation of G on a finite-dimensional C-vector
space V . We simply call such ρ a Galois representation (of G). Then the
Swan exponent of ρ is defined by

Sw(ρ) :=
∑
i≥1

gi
g0

dim(V/V Gi).

Similarly, the Artin exponent of ρ is defined by

Art(ρ) :=
∑
i≥0

gi
g0

dim(V/V Gi).

Let us review several basic properties of Sw(ρ) which will be useful to us.
2.1.1. Swan exponent as a scalar product. The Swan exponent of ρ can be

also thought of as the scalar product of the character Tr(ρ) with the character
S of the Swan representation “swG” (see [31, Chapter 19]):

Sw(ρ) = ⟨Tr(ρ),S⟩.
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2.1.2. Swan exponent via upper ramification filtration. For a Galois rep-
resentation ρ, we define the number slope(ρ) by

slope(ρ) := inf{s ∈ R≥0 | ρ is trivial on Gs},

where {Gr}r≥0 is the filtration of G by the upper ramification subgroups
(see [32, Section IV.3] for the definition of the upper ramification subgroups).
When ρ is irreducible, we have

Sw(ρ) = dim(ρ) · slope(ρ).

Indeed, it is obvious when ρ is trivial on G0 = G0, so let us consider the case
where ρ is non-trivial on G0. As each Gi is a normal subgroup of G, V Gi is a
subspace of V stable under the action of G. Thus, by letting m ∈ Z≥0 be the
largest integer such that Gm is non-trivial, the irreducibility of ρ implies that

V Gi =
{

0 if 0 ≤ i ≤ m,
V if m < i.

Hence we have

Sw(ρ) = dim(V )
m∑
i=1

gi
g0
.

The sum on the right-hand side is nothing but the value φE/F (m) of the
Herbrand function φE/F with respect to G = Gal(E/F ) at m (see [32, Section
IV.3]). By the definition of the upper ramification filtration, we have

GφE/F (m) = Gm and GφE/F (m)+ε = Gm+1

for any sufficiently small positive number ε. In other words, we have
slope(ρ) = φE/F (m) = Sw(ρ)/ dim(ρ).

Note that, by the definition of the slope, we have the following:

Lemma 2.1. Let ρ1 and ρ2 be irreducible Galois representations of G.
Then we have

slope(ρ1 ⊗ ρ2) ≤ max{slope(ρ1), slope(ρ2)},

where the equality holds if slope(ρ1) ̸= slope(ρ2).

2.1.3. Behavior under a tamely ramified extension. Let F ′ be a tamely
ramified extension of F contained in E. Note that this condition is equiva-
lent to that the corresponding subgroup G′ := Gal(E/F ′) of G = Gal(E/F )
contains G1. Let {G′

i}i∈Z≥0 be the filtration of G′ by the lower ramification
subgroups of G′. By noting that G′ ⊃ G1 and G′

i = G′ ∩Gi for any i ∈ Z≥0
([32, Chapter IV, Proposition 2]), we have G′

i = Gi for any i ∈ Z≥1. This
implies that

Sw(ρ|G′) = g0

g′
0
· Sw(ρ),
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where g′
0 denotes the cardinality of G′

0. In particular, by letting F ′ be the
maximal tamely ramified extension of F in E so that G′ = G1, we have

Sw(ρ|G1) = g0

g1
· Sw(ρ) = eF ′/F · Sw(ρ),

where eF ′/F denotes the ramification index of F ′/F .
2.1.4. Behavior under the induction. Let F ′ be an extension of F con-

tained in E. For any finite-dimensional representation σ of the Galois group
Gal(E/F ′), we have

Sw(IndF ′/F σ) = fF ′/F · Sw(σ) + (vF (dF ′/F )− [F ′ : F ] + fF ′/F ) · dim(σ),

where fF ′/F denotes the residue degree of F ′/F and dF ′/F is the discriminant
of F ′/F (see [32, Corollary of Proposition 4, Chapter VI], in which the formula
is stated in terms of Artin exponents).

In particular, we have the following:

Lemma 2.2. Suppose that F ′/F is a ramified quadratic extension of dyadic
fields. Then we have

Sw(IndF ′/F σ) = Sw(σ) + Sw(ωF ′/F ) · dim(σ),

where ωF ′/F denotes the quadratic character of F× corresponding to F ′/F .

Proof. By applying the above formula, we have

Sw(IndF ′/F σ) = Sw(σ) + (vF (dF ′/F )− 1) · dim(σ).

We have vF (dF ′/F ) = Sw(ωF ′/F ) + 1 by [32, Corollary 2 of Proposition 6,
Chapter VI] (note that the symbol f(−) in loc. cit. denotes the Artin expo-
nent), hence we get the assertion.

2.2. Difference of Sym2 and ∧2 Swan exponents: the case where p ̸= 2. In the
rest of this section, we investigate the difference of the Swan exponents of the
symmetric and exterior squares of a Galois representation. We first consider
the case where the residue characteristic p of F is odd.

Let us start with the following observation. For any class function f : G→
C, we define Ψ2f : G→ C by Ψ2f(g) := f(g2). Note that then Ψ2f is again a
class function on G. When ρ is a finite-dimensional representation of G whose
dimension is d, for g ∈ G, we have

Tr(Sym2 ρ)(g)− Tr(∧2ρ)(g) =
d∑
i=1

α2
i = Tr(ρ)(g2) = Ψ2 Tr(ρ)(g),

where α1, . . . , αd ∈ C× are the eigenvalues of ρ(g). In other words, Ψ2 Tr(ρ)
is the character of the virtual representation Sym2 ρ−∧2ρ of G. Let us write
Ψ2ρ := Sym2 ρ− ∧2ρ.
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Proposition 2.3. Suppose that p ̸= 2. For any Galois representation ρ,
we have

Sw(Sym2 ρ)− Sw(∧2ρ) = Sw(ρ).

Proof. If we replace F with the maximal tamely ramified extension F ′

of F in E, then each term in the equality in the assertion is multiplied by eF ′/F

(see Section 2.1.3). Thus, we may assume that G = G1 from the beginning.
Note that then G is a finite p-group. If we let pr be the order of G, then ρ
is defined over Q(µpr ), where µpr denotes the subset of C consisting of pr-th
roots of unity (see [31, Proposition 33]).

Let g ∈ G and α1, . . . , αd ∈ C× be the eigenvalues of ρ(g), where d :=
dim(ρ). Let τ ∈ Gal(Q(µpr )/Q) ∼= (Z/prZ)× be the element corresponding to
2 ∈ (Z/prZ)×, i.e., τ(α) = α2 for any α ∈ µpr . As every eigenvalue αi belongs
to µpr , the class function Ψ2 Tr(ρ) is equal to the character Tr(τρ) of the τ -
twist of ρ. Hence we have Ψ2ρ = τρ. Since the Galois twist does not change the
Swan exponent, we get Sw(Sym2 ρ)−Sw(∧2ρ) = Sw(Ψ2ρ) = Sw(τρ) = Sw(ρ).

By considering the last non-trivial lower ramification subgroup, we can
also prove the above theorem in the following way:

Another proof of Proposition 2.3. As in the above proof, let us
assume that G = G1 and ρ is a non-trivial irreducible representation of G.
Let Gm be the last non-trivial lower ramification group of G, i.e., Gm+1 = {1}.
Then Gm is central in G by [32, Chapter IV, Proposition 10]. Hence Gm acts
on ρ via a character χ. Then Gm acts on both Sym2 ρ and ∧2ρ via χ2. As Gm
is a p-group, where p is odd, χ2 is non-trivial. This means that any irreducible
constituent of Sym2 ρ and ∧2ρ has the same slope as ρ. Thus, by noting that
dim(Sym2 ρ) − dim(∧2ρ) = dim(ρ), we get Sw(Sym2 ρ) − Sw(∧2ρ) = Sw(ρ)
(see Section 2.1.2).

Corollary 2.4. Suppose that p ̸= 2. Let ρ be a 2n-dimensional irre-
ducible self-dual Galois representation such that (Sw(ρ), 2n) = 1. Then we
have

Sw(Sym2 ρ) = n · Sw(ρ) and Sw(∧2ρ) = (n− 1) · Sw(ρ).

Proof. As ρ is self-dual, we have ρ⊗ρ∨ ∼= ρ⊗ρ ∼= Sym2 ρ⊕∧2ρ. By the
explicit formula of Bushnell–Henniart–Kutzko ([13, 6.5, Theorem], see also
[12, 3.5]), the assumption that (Sw(ρ), 2n) = 1 implies that

Sw(ρ⊗ ρ∨) = (2n− 1) Sw(ρ).

Thus, by combining this equality with Proposition 2.3, we get the assertion.
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Remark 2.5. 1. It is known that there is no irreducible self-dual Ga-
lois representation whose dimension is odd and greater than 1 if the
residue characteristic of F is odd (see, e.g., [30, page 84, Proposition
4]). Hence the assumption that the dimension of ρ is even in Corol-
lary 2.4 automatically follows from the irreducibility and self-duality
assumptions.

2. Proposition 2.3 is not new; it has been already obtained in the work
of Anandavardhanan–Mondal ([2, Theorem 1.2]). Thus the point here
is that our proof is different from theirs.

3. Since the explicit formula of Bushnell–Henniart–Kutzko works for gen-
eral irreducible ρ, it is possible to get an explicit formula of Sw(Sym2 ρ)
and Sw(∧2ρ) for any irreducible ρ as in the manner of the proof of
Corollary 2.4. (We put various assumptions on ρ just because then the
formula is simplified.) In fact, this is exactly how Anandavardhanan–
Mondal established an explicit formula of Sw(Sym2 ρ) and Sw(∧2ρ).

2.3. Difference of Sym2 and ∧2 Swan exponents: the case where p = 2. We
next consider the case where the residue characteristic of F is p = 2.

Theorem 2.6. Suppose that p = 2. For any Galois representation ρ of
G, we have

0 ≤ Sw(Sym2 ρ)− Sw(∧2ρ) ≤ 2 Sw(ρ).(2.1)

Proof. By replacing G with G1, we may assume that G = G1 (the
same argument as in the proof of the case where p ̸= 2). We first note that
the quantity Sw(Sym2 ρ) − Sw(∧2ρ) is given by applying the operation Ψ2

to Tr(ρ) and then taking the scalar product with S (see Section 2.1.1). In
particular, Sw(Sym2 ρ)−Sw(∧2ρ) is additive in ρ. Thus it is enough to prove
the inequalities when ρ is irreducible. Since the assertion is obvious when ρ
is trivial, we may also assume that ρ is non-trivial.

We put d := dim(ρ). We note that dim(Sym2 ρ) − dim(∧2ρ) = dim(ρ).
By the definition of the Swan exponent, it suffices to show that, for any i > 0,

0 ≤ d− dim((Sym2 ρ)Gi) + dim((∧2ρ)Gi) ≤ 2d− 2 dim(ρGi),

or equivalently

−d ≤ dim((∧2ρ)Gi)− dim((Sym2 ρ)Gi) ≤ d− 2 dim(ρGi).(2.2)

By noting that this is additive in ρ and depends only on Gi, we may assume
that G = Gi and ρ is irreducible non-trivial by the same argument as above.
Then we have ρG = 0 and

dim((Sym2 ρ)G) + dim((∧2ρ)G) = dim((ρ⊗ ρ)G) =
{

1 if ρ is self-dual,
0 otherwise.
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Hence only 0,±1 are the possibilities of the value of

dim((∧2ρ)G)− dim((Sym2 ρ)G),

which gives the inequalities (2.2).

Let us now discuss the cases where the equalities of (2.1) are attained.
Note that all terms in (2.1) are 0 when ρ is tame, i.e., trivial on G1.

Proposition 2.7. Suppose that p = 2. Let ρ be a Galois representation
of G which is not tame. Then we have

0 ≤ Sw(Sym2 ρ)− Sw(∧2ρ) < 2 Sw(ρ).

The equality Sw(Sym2 ρ)− Sw(∧2ρ) = 0 holds if and only if the restriction of
ρ on G1 decomposes into the sum of quadratic characters.

Proof. By the same argument as in the proof of Theorem 2.6, it suffices
to show the inequalities

−d ≤ dim((∧2ρ)G)− dim((Sym2 ρ)G) < d(2.3)

and discuss the condition so that the left equality holds by assuming G = G1
and ρ is a non-trivial irreducible representation of G whose dimension is d.
The proof of Theorem 2.6 shows that the inequalities of (2.3) always hold
and the equality on the left never holds when d > 1. When d = 1, i.e., ρ is a
(non-trivial) character, we have dim((∧2ρ)G) = 0 and

dim((Sym2 ρ)G) =
{

0 if ρ2 is non-trivial,
1 if ρ2 is trivial.

This completes the proof.

As an application of the above proposition, we have the following.

Proposition 2.8. Suppose that p = 2. Let ρ be a (2n + 1)-dimensional
irreducible self-dual Galois representation such that (Sw(ρ), 2n+1) = 1. Then
we have

Sw(Sym2 ρ)− Sw(∧2ρ) = 0.

Proof. Since p is prime to dim(ρ) = 2n + 1, the classification result of
self-dual irreducible Galois representations due to Bushnell–Henniart implies
that ρ is of the form IndL/F (χ), where L/F is a tamely ramified extension of
degree 2n+ 1 and χ is a quadratic character of L× ([10, Section 3]). In other
words, there exist a subgroup H of G containing G1 and a quadratic character
χ of H such that ρ ∼= IndGH(χ). Thus we have ρ|G1

∼=
⊕

g∈G/H
gχ|G1 . Hence

the assumption in the last sentence of Proposition 2.7 is satisfied and we get
the assertion.
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Remark 2.9. Note that the assumption that dim(ρ) is odd is not auto-
matic when p = 2 and indispensable in the above proof so that the result of
Bushnell–Henniart [10] is available.

By the same argument as in the case where p ̸= 2 (i.e., using the Bushnell–
Henniart–Kutzko formula), we obtain the following:

Corollary 2.10. With the same assumptions as in Proposition 2.8, we
have

Sw(Sym2 ρ) = Sw(∧2ρ) = n · Sw(ρ).

3. A conjecture and some evidence

Let us keep the notation as in the previous section.

Conjecture 3.1. Assume p = 2. For any Galois representation ρ, we
have

Sw(Sym2 ρ)− Sw(∧2ρ) ≤ Sw(ρ).(3.1)

We remark that, by the same argument as in the proof of Theorem 2.6,
the above conjecture is equivalent to the following:

Conjecture 3.2. Assume p = 2 and G = G1. For any irreducible faithful
Galois representation ρ, we have

Sw(Sym2 ρ)− Sw(∧2ρ) ≤ Sw(ρ).

In the following, let us suppose that p = 2 and G = G1. In particular,
dim(ρ) is a power of 2. Conjecture 3.2 is obvious when dim(ρ) = 1, so let
us investigate the case where dim(ρ) > 1 in the following. Note that then G
is necessarily non-abelian since any irreducible representation of an abelian
group is 1-dimensional.

Remark 3.3. Note that the proof of Theorem 2.6 used only a descending
filtration by subgroups, but no particular property of that filtration. The
stronger conjecture (Conjecture 3.1), if true, necessarily uses strong properties
of the filtration by ramification subgroups, as can be seen in the examples in
this section.

3.1. The 2-dimensional case. We first investigate the case where dim(ρ) = 2.
Since any irreducible representation of a p-group is monomial, i.e., induced
from a 1-dimensional representation of a subgroup ([31, Theorems 14 and 16]),
we may write ρ ∼= IndGG′(χ), where G′ = Gal(E/F ′) for a quadratic separable
(ramified) extension F ′ of F and χ is a character of G′. We also see χ as
a character of F ′× by class field theory. Let ω := ωF ′/F be the quadratic
character of F× defining F ′/F . Let χ◦ := χ|F× . We put a := Sw(χ), b :=
Sw(χ2), c := Sw(χ◦), d := Sw(ωχ◦), and s := Sw(ω).

Lemma 3.4. We have the following relations:
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1. d ≤ max{c, s}, where equality holds when c ̸= s,
2. a ≥ 2c,
3. 0 < s ≤ 2e, where e := valF (2),
4. a ≥ s.

Proof. The inequality (1) is obvious.
Since F ′/F is a ramified quadratic extension, we get the inequality (2).
As F ′/F is wildly ramified, we have s > 0. On the other hand, as used

in the proof of Lemma 2.2, we have vF (dF ′/F ) = s+ 1. By the upper bound
formula for vF (dF ′/F ) (see [32, Chapter III, Section 6, Remarks (1)]), we get
vF (dF ′/F ) ≤ 1 + 2e. Thus we obtain s ≤ 2e, hence the inequalities (3).

Since ρ ∼= IndGG′(χ) is irreducible, we necessarily have χσ ̸= χ, where σ
is the non-trivial element of Gal(F ′/F ). If a < s, then σ acts trivially on
F ′×/1 + pa+1

F ′ , which implies that χσ · χ−1 is trivial, hence a contradiction.
Thus we get the inequality (4).

Lemma 3.5. We have b ≤ max{a/2, a − 2e} (< a). More precisely, we
have

• b = a− 2e when a > 4e,
• b = a/2 when a < 4e and a is even,
• b ≤ a/2 otherwise.

Proof. The first assertion simply follows from that (1 + pbF ′)2 ⊂ 1 +
p

min{b+2e,2b}
F ′ .

To show the latter assertion, let us examine the behavior of the squaring
map on O×

F ′ . We have (1+x)2 = 1+2x+x2 for any x ∈ F ′. If vF ′(x) = i ≥ 1,
then vF ′(x2) = 2i and vF ′(2x) = i+2e (recall that e = vF (2)). If follows that
vF ′(2x + x2) ≥ min{2i, i + 2e} with equality when 2i ̸= i + 2e. Recall that,
by definition, a ∈ Z>0 is the integer such that χ is trivial on 1 + pa+1

F ′ , but
not on 1 + paF ′ . (Note that we have a > 0 by Lemma 3.4 (3) and (4).)

Let us first assume a > 4e and take i = a− 2e. Then we have 2i > i+ 2e,
hence min{2i, i+ 2e} = a. Moreover, we have (1 + x)2 = 1 + 2x (mod pa+1

F ′ ).
Consequently, there exists an element x ∈ F ′ with valuation i such that
χ(1 + x)2 ̸= 1, thus b (:= Sw(χ2)) is at least a − 2e. On the other hand, if
we take i = a− 2e+ 1, then we have min{2i, i+ 2e} ≥ a+ 1. Hence we have
χ(1 + x)2 = 1 for any element x ∈ F ′ with valuation i, which implies that
b = a− 2e.

Let us then assume a < 4e and a is even. We take i = a/2. Then we have
2i < i+ 2e and min{2i, i+ 2e} = 2i = a. Hence we see that (1 + x)2 = 1 + x2

(mod pa+1
F ′ ). By noting that the squaring map is bijective on k×

F ′ , we can
choose x ∈ F ′ with valuation i satisfying χ(1 + x)2 ̸= 1. Similarly with
i = a/2 + 1, we see that χ(1 + x)2 = 1 for any element x ∈ F ′ with valuation
i. Thus we get b = a/2.

When a < 4e and a is odd or a = 4e, we can only assert that b ≤ a/2.
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By Lemma 2.2, we have Sw(ρ) = a+ s. Note that we have
∧2(IndF ′/F (χ)) ∼= ωχ◦ and Sym2(IndF ′/F (χ)) ∼= IndF ′/F (χ2)⊕ χ◦

(see Proposition A.1). Hence we get
Sw(Sym2 ρ)− Sw(∧2ρ) = Sw(IndF ′/F (χ2)) + Sw(χ◦)− Sw(ωχ◦)

= b+ s+ c− d,
where we again used Lemma 2.2 in the second equality. We investigate the
conjectural inequality (3.1) by a case-by-case argument:

1. If c > s, then d = c by Lemma 3.4 (1). Thus, by using Lemma 3.5, we
have

Sw(Sym2 ρ)− Sw(∧2ρ) = b+ s+ c− c = b+ s < a+ s = Sw(ρ).
Note that this is the strict inequality.

2. If c < s, then d = s by Lemma 3.4 (1). Thus, by using Lemma 3.5, we
have

Sw(Sym2 ρ)− Sw(∧2ρ) = b+ s+ c− s = b+ c < a+ s = Sw(ρ).
Note that this is the strict inequality.

3. If c = s, we have d ≤ c by Lemma 3.4 (1). Let us show that the weak
inequality

Sw(Sym2 ρ)− Sw(∧2ρ) = b+ s+ c− d ≤ a+ s = Sw(ρ),
or equivalently, a− b− c+ d ≥ 0 holds in this case.

(a) Suppose that a > 4e, hence b = a− 2e by Lemma 3.5. Since we
have s ≤ 2e by Lemma 3.4 (3), we get b + c = a − 2e + s ≤ a,
which implies that a − b − c + d ≥ 0. Note that we have the
strict inequality unless d = 0 and s = 2e.

(b) Suppose that a < 4e and a is even, hence b = a/2 by Lemma
3.5. Since we have a ≥ 2c by Lemma 3.4 (2), we get b + c ≤ a,
which implies that a − b − c + d ≥ 0. Note that we have the
strict inequality unless d = 0 and a = 2c.

(c) Suppose that a ≤ 4e, hence b ≤ a/2 by Lemma 3.5. Thus the
same discussion as in the previous case works. Note that we
have the strict inequality unless d = 0 and a = 2b = 2c.

Note that d = 0 means that ρ has trivial determinant (recall that we
are assuming G = G1), i.e. is symplectic.

Thus we obtain the following:

Theorem 3.6. Conjecture 3.2 is true if dim(ρ) = 2. Moreover, the in-
equality is strict unless ρ is symplectic.

Remark 3.7. Let us present an example where the equality Sw(Sym2 ρ)−
Sw(∧2ρ) = Sw(ρ) holds. Take F ′/F to have s = 1, and take χ such that a = 2
and χ◦ = ω; then we have c = 1, b = 1, d = 0.
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3.2. The case where ρ is induced along a cyclic extension.

Proposition 3.8. Suppose that ρ is an irreducible Galois representation
of the form ρ = IndF ′/F (χ), where F ′/F is cyclic and χ is a character of
F ′×. Then the inequality (3.1) holds.

Proof. Let ρ = IndF ′/F (χ), where F ′/F is cyclic and χ is a character
of F ′×. In other words, F ′ is a subfield of E corresponding to a normal
subgroup G′ of G such that G/G′ ∼= Gal(F ′/F ) is cyclic, say order 2n. Let c
be a generator of G/G′. Let H be a subgroup of G which is the preimage of
⟨cn⟩ ⊂ G/G′. Let L be the subfield of F ′ corresponding to H.

By the Frobenius formula for induced representations, we have

Tr(Ψ2ρ)(g) = Tr(ρ)(g2) =
{∑

τ∈G/G′ χτ (g2) if g2 ∈ G′,
0 otherwise.

Note that, as G/G′ is cyclic, we have g2 ∈ G′ if and only if g ∈ H. Similarly,
we have

Tr(IndF ′/F (χ2))(g) =
{∑

τ∈G/G′(χ2)τ (g) if g ∈ G′,
0 otherwise.

We let χ◦ denote the character of H corresponding to χ|L× under local class
field theory. By letting ω be the non-trivial character of H/G′, we have

Tr(IndL/F (χ◦)− IndL/F (χ◦ω))(g) =


0 if g ∈ G′,
2
∑
τ∈G/H(χ◦)τ (g) if g ∈ H ∖G′,

0 otherwise.

Therefore, by noting that χ(g2) = χ◦(g) for any g ∈ H ∖G′ (see [9, 29.1,
Transfer theorem]), we get

Tr(Ψ2ρ) = Tr(IndF ′/F (χ2) + IndL/F (χ◦)− IndL/F (χ◦ω)).

Hence

Sym2 ρ− ∧2ρ ∼= IndF ′/F (χ2) + IndL/F (χ◦)− IndL/F (χ◦ω)
∼= IndL/F

(
IndF ′/L(χ2) + χ◦ − χ◦ω

)
.

On the other hand, we also have ρ ∼= IndL/F (IndF ′/L(χ)). Hence, by Lemma
2.2, it suffices to show the inequality

Sw(IndF ′/L(χ2)) + Sw(χ◦)− Sw(χ◦ω) ≤ Sw(IndF ′/L(χ))(3.2)

(note that dim(Sym2 ρ)− dim(∧2ρ) = dim(ρ)).
As observed in the proof of Theorem 3.6, this inequality (3.2) is nothing

but the inequality (3.1) for IndF ′/L(χ), which we have already proved.
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3.3. Approach based on the structure of ramification subgroups. We next in-
vestigate the conjectural inequality by looking at the last two steps of the
ramification filtration. Let us assume that G = G1 ̸= {1} and ρ is an irre-
ducible faithful representation of G. We let n = dim(ρ), a power of 2. Since
the cases where n = 1, 2 are already treated, let us assume that n > 2 (most
considerations also work when n = 2). Note that the center Z(G) of G is
cyclic by Lemma A.4.

Let Z ⊂ G be the last non-trivial lower ramification subgroup. Since
G = G1, Z is contained in the center Z(G) of G (this follows from [32, Chapter
IV, Proposition 10]). By noting that Z has an F2-vector space structure
([32, Chapter IV, Section 2, Corollary 3]) and that Z(G) is cyclic, the order
of Z is 2 and Z ̸= G since n > 1.

Let us look at the smallest ramification subgroupH containing Z properly.
The quotient V = H/Z is a non-trivial F2-vector space, equipped with a
quadratic form q : V → Z ∼= F2; v 7→ v2 and an alternating bilinear form
b : V ×V → Z ∼= F2; (v1, v2) 7→ v1v2v

−1
1 v−1

2 . (See [32, Chapter IV, Proposition
10].) The center Y of H is the inverse image of

V 0 := {v0 ∈ V | b(v0, v) = 0 for any v ∈ V }
in H. Note that q|V 0 : V 0 → Z is a group homomorphism. We have either
that q|V 0 is trivial (then Y has exponent 2) or that q|V 0 is non-trivial, hence
Ker(q|V 0) is a hyperplane in V 0 (then Y has elements of order 4).

The group G acts by conjugation on H and Y . As we have G = G1, G acts
trivially on V = H/Z (again by [32, Chapter IV, Proposition 10]); this action
preserves b and q. Similarly, the action of G on V 0 = Y/Z is trivial, hence
any g ∈ G defines a homomorphism ϕg : V 0 → Z given by v 7→ gvg−1v−1.
Since ϕg is multiplicative on g, we get a homomorphism

ϕ : G→ HomF2(V 0, Z); g 7→ ϕg,

which is trivial on H. We define a subspace W of V 0 by W :=
⋂
g∈G Kerϕg.

If we let I ⊂ Y be the inverse image of W in Y , then we have I = H ∩Z(G).
As Z(G) is cyclic, we see that I is either Z or cyclic of order 4.

H // // V := H/Z
q // Z

Y // //
∪

V 0 q|V 0

66
∪

I
∪

// // W
∪

Z
∪

// // 0
∪

3.3.1. Let us first consider the case where I is cyclic of order 4.

Proposition 3.9. When I is of order 4, the strict inequality holds in
Conjecture 3.2.
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Proof. We write Z = Gα and H = Gα
′ via the upper numbering. As ρ is

irreducible and faithful, we have slope(ρ) = α, hence Sw(ρ) = nα (see Section
2.1.2). Since I acts on ρ as a faithful 1-dimensional character, any generator
of I acts by −1 on ρ ⊗ ρ. This implies that any irreducible constituent of
ρ⊗ρ ∼= Sym2 ρ⊕∧2ρ has slope α′. Hence we have Sw(Sym2 ρ) = n(n+1)α′/2
and Sw(∧2ρ) = n(n− 1)α′/2. Thus we get

Sw(Sym2 ρ)− Sw(∧2ρ) = nα′ < nα = Sw(ρ),

which is the strict inequality.

3.3.2. We now assume that I = Z, which means that W = 0. Note
that Im(ϕ) is a subspace of the dual (V 0)∨ of V 0, and its orthogonal in V 0 is
W by the definition of W . Hence we have Im(ϕ) = HomF2(V 0, Z). Now an
irreducible representation of H non-trivial on Z is determined by its central
character χ, which can be any character on Y which is non-trivial on Z (see
Section A.3). The action of g in G on χ is obtained by multiplying χ by
ϕg. An irreducible component of the restriction of ρ to H is thus labelled by
such a character χ, and G acts transitively on (the classes of) such irreducible
components.

Proposition 3.10. When I = Z and ρ restricts irreducibly to H, the
inequality holds. Moreover, the inequality is strict unless ρ is symplectic.

In the rest of this subsection, we prove this proposition. Since ρ|H is
irreducible, the center Y of H is equal to I = Z by the same reasoning as
in the beginning of this subsection. Hence we have V 0 = 0. In particular V
is a symplectic vector space (meaning that the alternating form on it is non-
degenerate). That representation is self-dual because the central character is
the order 2 character of Z.

We write Z = Gα and H = Gα
′ as above (thus α′ < α). Then we have

Sw(ρ) = nα. Since ρ|H is irreducible and self-dual, ρ ⊗ ρ|H contains the
trivial representation exactly once. This implies that exactly one irreducible
constituent of ρ ⊗ ρ has slope smaller than α′. Moreover, such a constituent
must be a 1-dimensional character.

1. If ρ is self-dual, then ρ ⊗ ρ contains the trivial representation with
multiplicity one.

(a) If ρ is orthogonal (i.e., the trivial representation appears in
Sym2 ρ), we have Sw(Sym2 ρ) = α′(n(n + 1)/2 − 1) and
Sw(∧2ρ) = α′n(n− 1)/2, hence

Sw(Sym2 ρ)− Sw(∧2ρ) = (n− 1)α′ < nα = Sw(ρ).

(b) If ρ is symplectic (i.e., the trivial representation appears in ∧2ρ),
we have Sw(Sym2 ρ) = α′n(n + 1)/2 and Sw(∧2ρ) = α′(n(n −
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1)/2− 1), hence

Sw(Sym2 ρ)− Sw(∧2ρ) = (n+ 1)α′.

2. If ρ is not self-dual, then the above observation on the slopes of the
irreducible constituents of ρ ⊗ ρ implies that Sw(Sym2 ρ) = α′(n(n +
1)/2−1)+γ and Sw(∧2ρ) = α′(n(n−1)/2−1)+δ with 0 ≤ γ ≤ α′ and
0 ≤ δ ≤ α′. Moreover, as G = G1, δ cannot be 0 (if δ=0, then it means
that ∧2ρ contains the trivial character of G, hence ρ is self-dual). Thus
we get

Sw(Sym2 ρ)− Sw(∧2ρ) = nα′ + γ − δ < (n+ 1)α′.

Lemma 3.11. We have Z(G)H = G.

Proof. For g ∈ G and v ∈ V = H/Z with a lift h ∈ H, the
commutator ghg−1h−1 does not depend on the choice of the lift h and
belongs to Z since G = G1 acts trivially on V . Then Φg : V →
Z; v 7→ ghg−1h−1 is a linear homomorphism because we have, for h, k ∈
H, ghkg−1k−1h−1 = (ghg−1h−1)h(gkg−1k−1)h−1 and h commutes with
gkg−1k−1 which is in Z. Moreover, for g, j ∈ G, we have gjhj−1g−1h−1 =
g(jhj−1h−1)g−1(ghg−1h−1), and g commutes with jhj−1h−1, hence
gjhj−1g−1h−1 = (jhj−1h−1)(ghg−1h−1). In other words, we have a group
homomorphism

Φ: G→ HomF2(V,Z); g 7→ Φg.
Note that since V is symplectic, the restriction of Φ to H is surjective.

Let J be the kernel of Φ. The intersection of H and J is just Z, and G = JH.
Moreover, J is the commutant of H in G. Thus, for any j ∈ J , ρ(j) gives
an H-automorphism of ρ|H . Since ρ|H is irreducible, this implies that ρ(j)
is a scalar multiplication by Schur’s lemma. Hence we get a homomorphism
ρ|J : J → C×. Noting that ρ is faithful, we see that J is abelian. Therefore,
J is central in G, which implies that J = Z(G).

Lemma 3.12. We have nα ≥ (n+ 1)α′

Proof. The same proof as that of [19, Théorème 1.8] works in the present
setting. For the sake of completeness, let us reproduce it here.

By Proposition A.5, we have ρ|H ∼= IndHX(χ), where X is a subgroup of
H such that X contains Z and X/Z is a maximal totally isotropic subspace
of H/Z and χ is a character of X. Let us put X̃ := Z(G)X and Ỹ := Z(G)Y .
Then, since we have G = Z(G)H by Lemma 3.11, there exists an extension
of χ̃ of χ to X̃ satisfying ρ ∼= IndGX̃(χ̃). By the induction formula for Swan
exponents (Section 2.1.4; note that [G : X̃] = n), we have

Sw(ρ) = Sw(χ̃) + vF (dEX̃/F )− n+ 1,(3.3)
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where EG′ denotes the fixed field of G′ in E for any subgroup G′ of G.

G ⊃ H = Gα
′

X̃ ⊃

∪

X

∪

Ỹ ⊃

∪

Y

∪

Z(G) ⊃

∪

Z = Gα
∪

To compute the right-hand side of (3.3), we introduce a few notations.
For a finite Galois extension L/K of non-Archimedean local fields, we put

α(L/K) := inf{u | Gal(L/K)u = {1}},

β(L/K) := inf{v | Gal(L/K)v = {1}}.
Note that we have

φL/K(β(L/K)) = α(L/K) and ψL/K(α(L/K)) = β(L/K),

where φL/K and ψL/K are the Herbrand functions. We remark that, in the
case where L/K is ramified, we have α(L/K) = sup{u | Gal(L/K)u ̸= {1}}
and β(L/K) = sup{v | Gal(L/K)v ̸= {1}} and these numbers are non-
negative.

We fix a non-trivial element s ∈ G/X̃ ∼= Gal(EX̃/F ) and let M ⊂ G be
the preimage of ⟨s⟩ ⊂ G/X̃ in G and N ⊂ X̃ be the kernel of the character
χ̃s−1. Thus we have the chain

G ⊃M ⊃ X̃ ⊃ N ⊃ Ỹ

whose indices are [G : M ] = n/2, [M : X̃] = 2, [X̃ : N ] = 2, and [N : Ỹ ] =
n/2. Then, by a result of Buhler ([6, Proposition 3, page 31]), we have

Sw(χ̃) ≥ α(EN/EX̃) + β(EX̃/EM ).

On the other hand, by [19, Lemme 4.4], we have

vF (dEX̃/F ) = n(α(EX̃/F ) + 1)− β(EX̃/F )− 1.

Hence, by (3.3), we have

Sw(ρ) ≥ α(EN/EX̃) + β(EX̃/EM ) + nα(EX̃/F )− β(EX̃/F ).(3.4)

As the numbering of the lower ramification filtration is consistent with
that for any subgroups ([32, Chapter IV, Proposition 2]), we have

β(EX̃/EM ) = β(EX̃/F )
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(note that there is no jump between H and Z by definition). Also, we have

α(EN/EX̃) = φEN/EX̃ (β(EN/EX̃))

= φEN/EX̃ (β(EN/F ))

= φEN/EX̃ ◦ ψEN/F (α(EN/F ))

= φEN/EX̃ ◦ ψEN/EX̃ ◦ ψEX̃/F (α(EN/F )) = ψEX̃/F (α(EN/F )).
By noting that the slope of ψEX̃/F is greater than or equal to 1 and that
α(EN/F ) = α′ (the upper numbering is consistent with taking a quotient of
the Galois group; [32, Chapter IV, Proposition 14]), we get α(EN/EX̃) ≥ α′.
Thus, finally noting that α(EX̃/F ) = α′, the above inequality (3.4) implies
that

Sw(ρ) ≥ (n+ 1)α′.

Since we have Sw(ρ) = nα (see Section 2.1.2), this is nothing but the claimed
inequality.

3.4. Approach via induction on the order of G. We next investigate the con-
jectural inequality from the viewpoint of the induction on the order of G.

Proposition 3.13. Suppose that Conjecture 3.1 is true. Then the in-
equality (3.1) is strict when ρ is irreducible orthogonal and non-trivial on G1.

Proof. We prove the statement by induction on the order of G. Let ρ be
an irreducible orthogonal representation of G on V and assume that G = G1
as usual. We write g := |G| and gi := |Gi|. Let m ∈ Z>0 be the integer such
that Gm ⊋ Gm+1 = {1}. By the definition of the Swan exponents, what we
want to prove (3.1) is that∑
i≥1

gi
g

(
dim(Sym2 V/(Sym2 V )Gi)−dim(∧2V/(∧2V )Gi)

)
<
∑
i≥1

gi
g

dim(V/V Gi).

Since ρ is irreducible, hence V Gi = 0 for any i ≤ m, the above inequality is
equivalent to

m∑
i=1

gi
g

(
dim((Sym2 V )Gi)− dim((∧2V )Gi)

)
> 0.(3.5)

Now let a ∈ Z>0 be the integer such thatG1 = · · · = Ga ⊋ Ga+1. Suppose
that H is a subgroup of G containing Ga+1. Let h := |H| and hi := |Hi|.
As the numbering of the lower ramification subgroups of G is consistent with
any subgroup of G ([32, Chapter IV, Proposition 2]), we have
H = H1 = · · · = Ha ⊇ Ha+1 (= Ga+1) ⊇ · · · ⊇ Hm (= Gm) ⊋ Hm+1 = {1}.

Let us take H so that [G : H] = 2. In this case, there are three possibilities:
1. ρ|H is irreducible, hence orthogonal;
2. ρ|H has two irreducible constituents, both of which are orthogonal;
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3. ρ|H has two irreducible constituents, both of which are not self-dual.
We first consider the cases (1) and (2). We apply the induction hypothesis

to ρ|H in the case (1) and to each irreducible constituent of ρ|H and then
summing up them in the case (2). Then, by the same reasoning as in the first
paragraph, we obtain

m∑
i=1

hi
h

(
dim((Sym2 V )Hi)− dim((∧2V )Hi)

)
> 0(3.6)

After multiplied by h/g, the summands of the left-hand side of (3.6) for i > a
are identical to those of (3.5). Thus, by noting that G = G1 = · · · = Ga and
H = H1 = · · · = Ha, it is enough to show that

dim((Sym2 V )G)− dim((∧2V )G) ≥ h

g

(
dim((Sym2 V )H)− dim((∧2V )H)

)
.

(3.7)

As ρ is irreducible orthogonal, we have dim((Sym2 V )G) = 1 and dim((∧2V )G)
= 0. In the case (1), as ρ|H is irreducible orthogonal, we have dim((Sym2 V )H)
= 1 and dim((∧2V )H) = 0. In the case (2), as ρ|H has two irreducible
orthogonal constituents, we have dim((Sym2 V )H) = 2 and dim((∧2V )H) = 0.
Since h/g = 1/2, we get the assertion in both cases.

We next consider the case (3). In this case, by applying Conjecture 3.1
to each irreducible constituent of ρ|H and then summing up them, we obtain

m∑
i=1

hi
h

(
dim((Sym2 V )Hi)− dim((∧2V )Hi)

)
≥ 0

by the same reasoning as in the first paragraph. Thus, by the same discus-
sion as in the cases (1) and (2), it suffices to show that the inequality (3.7)
holds without equality. This follows from that dim((Sym2 V )H) = 0 and
dim((∧2V )H) = 0 since two irreducible constituents of ρ|H are not self-dual.

Thus it is also reasonable to expect the following.

Conjecture 3.14. Assume p = 2. For any irreducible orthogonal Galois
representation ρ of G which is not tame, we have

Sw(Sym2 ρ)− Sw(∧2ρ) < Sw(ρ).

The point here is that it could be possible to approach Conjecture 3.1 by
induction on the order of G as performed in the proof of Proposition 3.13.
At least, by a similar consideration to the above proof, we can conclude the
following:

1. If ρ is orthogonal, then the inequality for H implies the inequality
for G, and even a strict one unless ρ is induced from an orthogonal
representation of H.
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2. If ρ is not self-dual, then the inequality for H implies the inequality
for G if ρ|H is not orthogonal.

3. If ρ is symplectic, then the inequality for H implies the inequality for
G only if ρ is induced from a symplectic representation of H.

From this observation, we see that the obstacle for making the induction
argument (on the order of G) work is the case where ρ is symplectic.

3.5. Approach via induction on the dimension of ρ. Let us finish this section
by giving some comments on the approach via the induction on the dimension
of ρ.

Suppose that ρ is irreducible, G = G1, and d := dim(ρ) > 2. Again
by the fact that any irreducible representation of a p-group is monomial, we
may write ρ = IndGH(σ), where H is a subgroup of G of index 2 and σ is
an irreducible representation of H. Let F ′ be the quadratic extension of F
corresponding to H and ω be the quadratic character of F× defining F ′/F .
By Lemma 2.2 and Section 2.1.2, we have

Sw(ρ) = Sw(σ) + sd/2,
where s = Sw(ω). On the other hand, by Proposition A.1, we have

∧2ρ ∼= IndGH(∧2σ)⊕ τ ⊗ ω and Sym2 ρ ∼= IndGH(Sym2 σ)⊕ τ,
where τ is an extension of the representation σ ⊗ σγ of H (γ ∈ G∖H) to G
(see Proposition A.1). Hence, again by Lemma 2.2, we get
Sw(Sym2 ρ)−Sw(∧2ρ) = Sw(Sym2 σ)−Sw(∧2σ)+sd/2+Sw(τ ⊗ω)−Sw(τ).
Therefore, to get the conjectural inequality, it suffices to show that

Sw(Sym2 σ)− Sw(∧2σ) + Sw(τ ⊗ ω)− Sw(τ) ≤ Sw(σ).
A favourable situation is when Sw(τ ⊗ ω) = Sw(τ), because then the in-

equality for σ implies the inequality for ρ, and similarly for the strict inequal-
ity. This is the case if, for example, the slope of any irreducible constituent
of τ is greater than s by Lemma 2.1. But we cannot insure this property in
general. Moreover, when σ is not self-dual, hence σγ is the contragredient
of σ, σ ⊗ σγ contains the trivial character of H. Thus τ contains at least
one irreducible constituent whose slope is 0 (i.e., the trivial character of G),
hence smaller than s. Therefore the equality Sw(τ ⊗ ω) = Sw(τ) never holds
in this case. This means that we should have some stronger inequality for σ
to conclude the conjectural inequality for ρ if σ is not self-dual.

4. Application to the local Langlands correspondence

4.1. Local Langlands correspondence. From now on, we assume that the char-
acteristic of a non-Archimedean local field F is zero. We write WF for the
Weil group of F . Let G be a split connected reductive group over F . Let
Ĝ denote the Langlands dual group of G. We say that a homomorphism
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ϕ : WF × SL2(C) → Ĝ is an L-parameter of G if ϕ is smooth on WF and
the restriction ϕ|SL2(C) : SL2(C)→ Ĝ is algebraic. We let Π(G) be the set of
equivalence classes of irreducible smooth representations of G(F ) and Φ(G)
the set of Ĝ-conjugacy classes of L-parameters of G.

The conjectural local Langlands correspondence asserts that there exists
a natural map

LLCG : Π(G)→ Φ(G),
with finite fibers. In other words, by letting ΠG

ϕ be the fiber of the map LLCG
at an L-parameter ϕ (called an L-packet), we have a natural partition

Π(G) =
⊔

ϕ∈Φ(G)

ΠG
ϕ ,

where each ΠG
ϕ is finite. Moreover, it is expected that each ΠG

ϕ is equipped
with a natural map ΠG

ϕ → Irr(Sϕ), where Irr(Sϕ) is the set of irreducible
characters of a certain finite group Sϕ associated to ϕ (see [24, Section 1] and
also [3, Section 6] for the details).

The local Langlands correspondence has been established for several spe-
cific groups. Especially, when G is GLN , the correspondence was constructed
by Harris–Taylor [18] and the first author [20]. Also, for a certain class of
classical groups, the correspondence has been established; for example, quasi-
split symplectic and orthogonal groups by Arthur [4]. Our motivation is to
seek an explicit description of the local Langlands correspondence for these
groups.

4.2. Hiraga–Ichino–Ikeda’s formal degree conjecture. We next recall the for-
mal degree conjecture proposed by Hiraga–Ichino–Ikeda ([24]).

Conjecture 4.1 (Formal degree conjecture, [24, Conjecture 1.4]). We
assume the local Langlands correspondence for G. Suppose that π ∈ Π(G) is
a discrete series representation whose L-parameter is ϕ. Then we have the
following identity:

deg(π) = ⟨1, π⟩
|S♮ϕ|

· |γ(0,Ad ◦ϕ, ψF )|.

Here,
• deg(π) is the formal degree of π (see [24] and also [23] for the normal-

ization of the Haar measure used here),
• ⟨−, π⟩ denotes the irreducible character of Sϕ associated to π via the

above-mentioned map ΠG
ϕ → Irr(Sϕ),

• S♮ϕ is a variant of the group Sϕ (see [24, Section 1] for the definition),
• γ(−,Ad ◦ϕ, ψF )| denotes the γ-factor of the representation Ad ◦ϕ of
WF ×SL2(C) with respect to a non-trivial additive character ψF , where
Ad is the adjoint representation of Ĝ on Lie(Ĝ)/Lie(Z(Ĝ)).
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4.3. Relation to Swan exponents. Now we explain why the above conjectures
are related to the problem of our interest. For this, let us first review the
γ-factors for L-parameters. For simplicity, we consider only the case where
the SL2(C)-part is trivial. (See [16, Section 2] for the general case.)

We first consider the case of GLn. In this case, an L-parameter with
trivial SL2(C)-part is nothing but an n-dimensional smooth semisimple rep-
resentation of WF . Let ϕ be such a representation of WF on a C-vector space
V . Then its L-factor is defined by

L(ϕ, s) := det(1− q−s · ϕ(Frob)
∣∣V ϕ(IF ))−1,

where IF denotes the inertia subgroup of WF and Frob is any lift of the
geometric Frobenius. Also, by fixing a non-trivial additive character ψF of
F , the ε-factor ε(ϕ, s, ψF ) is associated (Deligne [15] and Tate [33]). We do
not recall the definition of the ε-factor, but note that it has the following
relationship with the Artin exponent:

ε(ϕ, s, ψF ) = w · qArt(ϕ)( 1
2 −s),

where w is a complex number independent of s, which is a root of unity when
ρ is self-dual (see [16, Section 2.3]), and ψF is taken to be of level zero, i.e.,
trivial on OF but not on p−1

F . Let us recall that the γ-factor is defined by
using these local factors as follows:

γ(ϕ, s, ψF ) := ε(ϕ, s, ψF ) · L(ϕ∨, 1− s)
L(ϕ, s) ,

where ϕ∨ is the contragredient representation of ϕ.
We next consider the case where G is general. In this case, by taking a

finite-dimensional algebraic representation R of Ĝ, we obtain an L-parameter
R ◦ ϕ of a general linear group. Thus we can consider its L-factor, ε-factor,
and γ-factor. In the formal degree conjecture, R is taken to be the adjoint
representation of Ĝ. Note that Ad is self-dual (consider the Killing form),
hence so is Ad ◦ϕ. For example, when G is one of GLN , SON , and Sp2n, Ad ◦ϕ
is described as follows. By composing ϕ with the standard representation of
Ĝ, we may regard ϕ as a representation ρ of WF (let us write ρ). Then, Ad ◦ϕ
is isomorphic to R ◦ ρ as representations of WF , where

R =


Std⊗ Std∨ − 1 if G = GLN ,
Sym2 if G = SO2n+1,
∧2 if G = Sp2n or G = SO2n.

Now, by the above consideration, we can rewrite the identity predicted
by the formal degree conjecture as follows:

deg(π) = ⟨1, π⟩
|S♮ϕ|

· q 1
2 Art(Ad ◦ϕ) · |L(Ad ◦ϕ, 1)|

|L(Ad ◦ϕ, 0)| .(4.1)
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Our fundamental expectation is that establishing this identity is related to
investigating the explicit local Langlands correspondence. This is exactly the
point where our motivation for computing the Swan exponent of Sym2 ρ or
∧2ρ comes.

For example, let us consider the case where G is either SON or Sp2n. In
fact, Conjecture 4.1 in this case has been already solved ([25] for SO2n+1 and
[5] for SO2n and Sp2n). Suppose that an L-parameter ϕ is given “explicitly” in
the sense that we have a description of the associated representation ρ = std◦ϕ
of WF . Then, by computing the quantity on the right-hand side of (4.1), we
can access the formal degree of π ∈ ΠG

ϕ . This enables us to narrow down the
possibility of π. Of course, here the roles of ϕ and π can be swapped; we can
also start from an explicitly given discrete series representation of G(F ).

Conversely, we can also try to get the identity (4.1) by assuming the ex-
plicit local Langlands correspondence, i.e., assuming that we have an explicit
description of an irreducible discrete series representation π of G(F ) and its
L-parameter ϕ.

4.4. Some consequences for simple supercuspidal representations. Now we ex-
plain that the above strategy indeed works for simple supercuspidal represen-
tations, in the sense of Gross–Reeder [16], of symplectic groups.

4.4.1. From explicit LLC to FDC.

Corollary 4.2. Simple supercuspidal representations of symplectic groups
satisfy the formal degree conjecture when p ̸= 2.

Proof. We utilize the result of [29] (see [29, Section 9] for the details of
the arguments in this paragraph). Let π be a simple supercuspidal represen-
tation of Sp2n(F ) with L-parameter ϕ. By [29, Theorem 7.18], as a (2n+ 1)-
dimensional representation of WF , ϕ is the direct sum of a 2n-dimensional
representation ϕ0 satisfying Sw(ϕ0) = 1 and the 1-dimensional representa-
tion det ◦ϕ0. Moreover, [29, Theorem 7.18] also says that the L-packet of ϕ
consists of exactly two elements, which implies that ⟨π, 1⟩ = 1 and |S♮ϕ| = 2.
Since the adjoint L-factor L(s,Ad ◦ϕ) is trivial ([29, Proposition 9.22]), the
right-hand side of the equality (4.1) is given by 1

2 · q
1
2 Art(Ad ◦ϕ). By noting

that Ad ◦ϕ ∼= ∧2ϕ0⊕ϕ0⊗(det ◦ϕ0) and again using that L(s,Ad ◦ϕ) is trivial,
we see that

Art(Ad ◦ϕ) = Sw(Ad ◦ϕ) + n(2n+ 1) = Sw(∧2ϕ0) + 1 + n(2n+ 1).

On the other hand, by definition, the simple supercuspidal representation
π is constructed by the compact induction of a character of an explicit open
compact subgroup of Sp2n(F ) (see [29, Section 2]). Thus, by using a formula
for the formal degrees of such compactly-induced supercuspidal representa-
tions (see, e.g., [8, Theorem A.14]), we can express deg(π) in terms of the
volume of the open compact subgroup. As performed in [16] (see also the end
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of [29, Section 9]), we can conclude that deg(π) = 1
2 · q

n2+n. Therefore, in
order to get the equality (4.1), it suffices to show that Sw(∧2ϕ0) = n − 1.
This is a special case of Corollary 2.4.

Remark 4.3. In [29], the second author proved the equality Sw(∧2ρ) =
n− 1, hence obtained Corollary 4.2, in the case where p ∤ 2n or p = pe · n′ for
e ∈ Z>0 and n′ ∈ Z>0 satisfying n′|(p− 1). In [28], Mieda obtained Corollary
4.2 for any p ̸= 2 via a completely different method. On the other hand, as
mentioned above, it was announced by Beuzart-Plessis that the formal degree
conjecture for Sp2n has been solved (see [5]). Hence Corollary 4.2 is not new
in any case. But we would like to emphasize that our proof presented above
is new.

4.4.2. From FDC to explicit LLC. We next consider the case where p = 2.
In this case, we determined explicitly the L-parameter of a simple supercusp-
idal representation of Sp2n(F ) in [22]. However, we cannot deduce the formal
degree conjecture for simple supercuspidal representations of Sp2n(F ) from
the description in loc. cit. as we did in Section 4.4.1. Rather, in contrast to
the case where p ̸= 2, we utilized the formal degree conjecture in order to
determine the L-parameter. Let us just present the outline of the arguments
of loc. cit. here.

The point is starting from an irreducible (2n+ 1)-dimensional orthogonal
representation ρ of WF whose Swan exponent is 1. Then it associates an
irreducible supercuspidal representation π of Sp2n(F ). On the other hand,
it also associates an irreducible self-dual supercuspidal representation Π of
GL2n+1(F ), which is known to be simple supercuspidal. By utilizing the
twisted endoscopic character relation between Π and π, we can prove that π is
either depth-zero supercuspidal or simple supercuspidal ([22, Corollary 4.5]).
Since we know that Sw(∧2ρ) = n ([22, Proposition 4.12], or more generally,
Corollary 2.10 of this paper), the formal degree conjecture tells us the value
of the formal degree of π. In fact, this information is enough for concluding
that π is not depth-zero, hence simple supercuspidal (see [21, A.4]). Once we
see that π is simple supercuspidal, it is not difficult to determine it exactly
again by using the twisted endoscopic character relation.

Remark 4.4. Although we only mentioned the case of Sp2n, it is also
possible to establish the explicit local Langlands correspondence for simple
supercuspidal representations of split special orthogonal groups by utilizing
the formal degree conjecture effectively. That is the content of [1].

5. Simple supercuspidal L-parameters for Sp6(Q2) have value in
G2(C)

This section, a remark really, is prompted by a question of Gordan Savin
to the authors. After we had submitted our previous paper [22] mentioned
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in Section 4.4.2, Savin asked us if the L-parameter of a simple supercuspidal
representation of Sp6(Q2), which takes values in SO7(C), actually can be
conjugated to take values in the subgroup G2(C) of SO7(C).

That question is related to the analysis of the parameter of simple super-
cuspidal representations of G2(Q2) in [26, Section 4]. In loc. cit., a subgroup
I of G2(C) is introduced. The group I is a semi-direct product of a normal
subgroup J , which is isomorphic to the additive 2-group F8 (where F8 is a
field with 8 elements), with a subgroup which is itself a semi-direct product
of F×

8 and Gal(F8/F2) (acting naturally on F×
8 ), with their natural actions on

F8.

1 // J (∼= F8) // I // I/J (∼= F×
8 ⋊ Gal(F8/F2)) //

split

ee 1

It is shown that the inclusion of I into G2(C), itself inside GL7(C), gives the
unique irreducible faithful self-dual (hence orthogonal) representation of I of
dimension 7. It is also explicited in loc. cit. how the group I is a quotient of
WQ2 .

Now take a simple supercuspidal representation π of Sp6(Q2), and let σ be
the corresponding representation of WQ2 , which is an orthogonal irreducible
representation of dimension 7.

Proposition 5.1. The representation σ is the same as the representation
described after Proposition 4.2 in loc. cit.

Proof. By [22] (cf. [10]), the representation σ is given by IndK/Q2(χ),
where K/Q2 is the tame totally ramified extension of degree 7 generated by
a 7th root ϖ of 2 (remark that K is unique up to isomorphism) and χ is a
quadratic character of K× of Swan exponent 1. Note that such χ must be as
follows:

• χ(ϖ) is either 1 or −1,
• χ|U2

K
is trivial, and

• χ|U1
K

is the unique non-trivial character (say χ1) of U1
K .

Under the identification

U1
K/U

2
K
∼= F2 : 1 +ϖx 7→ x (x ∈ OK),

where x denotes the modulo pK reduction, we transform χ1 into the non-
trivial character of F2. Moreover, since we have det(σ) ∼= δK/Q2 ·(χ|Q×

2
), where

δK/Q2 := det(IndK/Q2 1), the triviality of det(σ) implies that χ|Q×
2

= δK/Q2

(see [9, 29.2]). By [7, (10.1.6) Proposition], δK/Q2 is unramified and takes
value the Jacobi symbol ( 2

7 ) at 2. But ( 2
7 ) = 1 since 32 ≡ 2 (mod 7). Hence

χ|Q×
2

is trivial. In particular, χ(ϖ) must be 1. Conversely, χ|Q×
2

is trivial
when χ(ϖ) = 1.
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On the other hand, [26] introduces the Galois closure L of K, which is
the splitting field of K/Q2. Then the 21-dimensional representation ρ of WQ2

is introduced, which is given by IndL/Q2(η), where η is a quadratic character
of L× taking value 1 at the uniformizer ϖ and giving on restriction to U1

L

any non-trivial character trivial on U2
L (there are 7 of them, any of which

induces to ρ). Then ρ splits into the sum of three irreducible representations
of dimension 7, only one of which is self-dual.

But we can take η = χ ◦ NL/K , which shows that σ is the self-dual
irreducible component of ρ. That proves what we claimed.

The above arguments can be generalized to any 2-adic field F as a base
field.

Proposition 5.2. Let π be a simple supercuspidal representation of
Sp6(F ) and σ be the corresponding representation of WF , which is an or-
thogonal irreducible representation of dimension 7. Then σ takes values (up
to conjugation) in the subgroup I of G2(C), and its image is then either I or
its subgroup of index 3.

Proof. Again by [22] (cf. [10]), σ is given by IndK/F (χ), where K/F is
a totally ramified extension of degree 7 and χ is a quadratic character of K×

with Sw(χ) = 1.
Let qF be the cardinality of kF . We first consider the case where 7 ∤

(qF − 1). In this case, there is a unique such extension K up to isomorphism,
generated by a 7th root Π of a uniformizer of F . Its Galois closure K ′/F is
KF ′ where F ′/F is the unramified extension of degree 3 obtained by adjoining
7th roots of unity. Then we have

Gal(K ′/F ) ∼= Gal(K ′/F ′) ⋊ Gal(K ′/K),

where the inertia subgroup Gal(K ′/F ′) is cyclic of order 7. The Frobenius
element of Gal(K ′/K) acts on Gal(K ′/F ′) by taking qF -th powers, an order
3 automorphism of Gal(K ′/F ′).

K ′

GalF ′

tame of deg 7

K

ur. of deg 3

F

ur. of deg 3 tame of deg 7

The possible inducing characters of K×, to get by induction to WF an
irreducible special orthogonal representation with Swan exponent 1, are the
quadratic characters χ non-trivial on U1

F but trivial on U2
F , and taking the

value 1 on the uniformizer Π. There are qF −1 of them, as it should. Consider
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the character χ′ = χ ◦ NrK′/K of K ′×, which induces to WF ′ the restriction
σ′ of σ. We identify the residue field kK′ of K ′ with U1

K′/U2
K′ by the map

U1
K′/U2

K′ ∼= kK′ : 1 + Πx 7→ x (x ∈ OK′).
The action of Gal(K ′/F ′) is given by multiplication by 7th roots of 1,

reflecting the action on Π, and Gal(K ′/K) acts by its natural action on kK′ =
kF ′ . The field kF ′ is an extension of F8, and the action of Gal(K ′/F ′) by 7th
roots of 1 is an action via a morphism into F×

8 . It follows that the restriction
of σ to WK′ , which is the direct sum of all conjugates of χ′, factors through
the quotient of kF ′ by an F8 hyperplane, and in particular its image is a line
over F8. It follows again that the image of σ is isomorphic to I.

We next consider the case where 7|(qF − 1). In this case, the situation is
simpler, as K/F is cyclic of degree 7. A similar, but simpler, analysis goes
through to show that the image of σ is isomorphic to the index 3 subgroup of
I.

Remark 5.3. Proposition 5.2 guarantees only that the L-parameter of
any simple supercuspidal representation of Sp6(F ) is obtained by lifting an
L-parameter of G2. Thus, a priori, it is possible that two inequivalent (i.e.,
not G2(C)-conjugate) L-parameters of G2 lift to the L-parameter of a simple
supercuspidal representation of Sp6(F ). However, it does not happen since
any two subgroups of G2(C) which are conjugate in GL7(C) are conjugate
also in G2(C) ([17, 1.2 Corollary 1]). We would like to thank the referee for
pointing us to the reference [17].

Remark 5.4. In fact, when p ̸= 2, at most the half of the L-parameters
of Sp6 corresponding to simple supercuspidal representations come from G2.
When p > 3, we can check that indeed exactly the half of them come from
G2. Moreover, any such L-parameter comes from G2 if and only if the central
character of a simple supercuspidal representation of Sp6 contained in the
corresponding L-packet is trivial. Some details will appear in an ongoing
work of the second author with Yoichi Mieda.

Appendix A. Some basic facts on representations of finite
groups

In this section, we collect some basic facts on representations of finite
groups. The facts introduced in this section might be well-known, but we
give proofs for the sake of completeness.

A.1. Symmetric and Exterior squares of induced representations. Let G be a
finite group and H a subgroup of G of index 2. We fix an element γ of G∖H.
Let σ be a representation of H. If we put{

τ(h)(v1 ⊗ v2) := (σ(h)v1)⊗ (σγ(h)v2)
τ(γh)(v1 ⊗ v2) := (σγ(h)v2)⊗ (σ(γ2)σ(h)v1)
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for any h ∈ H, then it can be easily checked that τ is a representation of G
which extends the representation σ ⊗ σγ of H.

Proposition A.1. We put ρ := IndGH(σ). Let ω be the non-trivial char-
acter of G/H. Then we have

1. ∧2ρ ∼= IndGH(∧2σ)⊕ τ ⊗ ω.
2. Sym2 ρ ∼= IndGH(Sym2 σ)⊕ τ .

We first show some lemmas.

Lemma A.2. Let V1 and V2 be finite dimensional C-vector spaces equipped
with isomorphisms I1 : V1 → V2 and I2 : V2 → V1. If we define an automor-
phism I1 ⊗ I2 of V1 ⊗ V2 by I1 ⊗ I2(v1 ⊗ v2) := I2(v2) ⊗ I1(v1), then we
have

Tr(I1 ⊗ I2 | V1 ⊗ V2) = Tr(I2 ◦ I1 | V1).

Proof. We take a C-basis {e1, . . . , en} of V1 and define a C-basis
{e′

1, . . . , e
′
n} of V2 by e′

i := I1(ei). Then {ej ⊗ e′
j}1≤i,j≤n forms a C-basis

of V1 ⊗ V2. Since we have
I1 ⊗ I2(ei ⊗ e′

j) = I2(e′
j)⊗ I1(ei) = (I2 ◦ I1)(ej)⊗ e′

i,

ei ⊗ e′
j contributes to the trace of I1 ⊗ I2 only when i = j (see the matrix in

the basis {ej ⊗ e′
j}1≤i,j≤n). Moreover, the contribution is exactly that of ei

to the trace of I2 ◦ I1 (seen in the basis {ei}1≤i≤n).

Lemma A.3. 1. We have Tr(σ)(g2) = Tr(σγ)(g2) for any g ∈ G,
where γ is a(ny) element of G∖H.

2. We have

Tr(τ)(g) =
{

Tr(σ)(g) · Tr(σγ)(g) if g ∈ H,
Tr(σ)(g2) if g ∈ G∖H.

Proof. We show (1). When g ∈ G∖H, by writing g = hγ with h ∈ H,
we get γg2γ−1 = γhγh = h−1g2h. In particular, γg2γ−1 and g2 are conjugate
in H. Hence we have Tr(σγ)(g2) = Tr(σ)(g2).

We next show (2). As τ is an extension of σ⊗σγ , the equality Tr(τ)(g) =
Tr(σ)(g) ·Tr(σγ)(g) for g ∈ H is obvious. For the case where g = γh ∈ G∖H,
by Lemma A.2, we get
Tr(τ)(g)=Tr(σ(γ2)σ(h)σγ(h))=Tr(σ)(γ2hγhγ−1)=Tr(σγ)(g2)=Tr(σ)(g2),

where we used (1) in the last equality.

Proof of Proposition A.1. By noting that ρ⊗ρ ∼= Sym2 ρ⊕∧2ρ and
Ψ2ρ ∼= Sym2 ρ−∧2ρ (and that the same is true for σ), it suffices to show that

(1’) ρ⊗ ρ ∼= IndGH(σ ⊗ σ)⊕ τ ⊕ τ ⊗ ω and
(2’) Ψ2ρ ∼= IndGH(Ψ2σ)⊕ τ − τ ⊗ ω.
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We first note that the Frobenius formula for induced representations im-
plies that

Tr(ρ)(g) =
{

Tr(σ)(g) + Tr(σγ)(g) if g ∈ H,
0 if g ∈ G∖H.

Thus, we have

Tr(ρ⊗ ρ)(g) = Tr(ρ)(g)2 =
{

(Tr(σ)(g) + Tr(σγ)(g))2 if g ∈ H,
0 if g ∈ G∖H,

and
Tr(Ψ2ρ)(g) = Tr(ρ)(g2) = Tr(σ)(g2) + Tr(σγ)(g2)

where we note that g2 always belongs to H in the last equality. Similarly, we
have

Tr(IndGH(σ ⊗ σ))(g) =
{

Tr(σ ⊗ σ)(g) + Tr((σ ⊗ σ)γ)(g) if g ∈ H,
0 if g ∈ G∖H,

=
{

Tr(σ)(g)2 + Tr(σγ)(g)2 if g ∈ H,
0 if g ∈ G∖H,

and

Tr(IndGH(Ψ2σ))(g) =
{

Tr(Ψ2σ)(g) + Tr(Ψ2σγ)(g) if g ∈ H,
0 if g ∈ G∖H,

=
{

Tr(σ)(g2) + Tr(σγ)(g2) if g ∈ H,
0 if g ∈ G∖H.

Thus, the identities (1’) and (2’) follows by using Lemma A.3.

A.2. Faithful irreducible representation of a p-group.

Lemma A.4. Let G be a p-group. If G has a faithful irreducible represen-
tation, then the center Z(G) of G is a non-trivial cyclic group.

Proof. Suppose that ρ is a faithful irreducible representation of G. It is
well-known that any p-group has a non-trivial center (see, e.g., [31, Theorem
14 in Chapter 8]). Thus Z(G) is a non-trivial finite abelian p-group. If we
let ωρ be the central character of ρ, then ωρ is also faithful. However, Z(G)
must be cyclic so that Z(G) has a faithful 1-dimensional character.

A.3. Representations of a certain p-group. Let p be a prime number. Let H
be a finite p-group and Z(H) its center. We assume that H is non-abelian and
that there exists a subgroup Z ⊂ Z(H) satisfying the following conditions:

1. Z is cyclic of order p, and
2. H/Z is an elementary abelian p-group.
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We remark that G is said to be an extra-special p-group if Z can be taken to
be Z(H).

We note that, by the condition (2), the image of the commutator map
H ×H → H : (x, y) 7→ xyx−1y−1 lies in Z. Thus, by fixing an identification
Z ∼= Fp, we obtain a symplectic form (i.e., non-degenerate alternating bilinear
form) on H/Z(H)

⟨−,−⟩ : H/Z(H)×H/Z(H)→ Fp.

We take a maximal totally isotropic subspace U ⊂ H/Z(H) with respect to
⟨−,−⟩. We let H ′ be the preimage of U in H, which is abelian.

The following proposition is given in [9, 16.4 Lemma 2] in the case where
Z = Z(H) (in fact, it is allowed that Z = Z(H) is any finite cyclic group in
loc. cit.).

Proposition A.5. For any character χ of Z(H) whose restriction to Z
is non-trivial, there uniquely (up to isomorphism) exists an irreducible repre-
sentation ρχ of H on which Z(H) acts via χ. Moreover, ρχ is explicitly given
by IndHH′(χ′) for any character χ′ of H ′ extending χ (note that such χ′ can
be always taken since H ′ is abelian).

Proof. We just reproduce the proof of [9, 16.4 Lemma 2] in our setting.
The center Z(H) obviously acts on IndHH′(χ′) via χ. Thus let us next check

that IndHH′(χ′) is irreducible. Since H ′ is normal in H, it suffices to show that
any element h ∈ H satisfying (χ′)h = χ′ lies in H ′. If h ∈ H is such an
element, we have χ′(hh′h−1h′−1) = 1 for any h′ ∈ H ′. Since χ′ extends the
character χ of Z, which is faithful, this implies that hh′h−1h′−1 = 1 for any
h′ ∈ H ′. As H ′ is the preimage of the maximal totally isotropic subspace U
of H/Z(H) with respect to ⟨−,−⟩, we see that h must belongs to H ′.

Let us finally show the uniqueness of ρχ by a counting argument. For
this, we let |H/Z(H)| = p2d and |Z(H)/Z| = pr, hence |H| = p2d+r+1. Note
that

|H| =
∑

ρ: irr. rep. of H
(dim ρ)2

=
∑

ρ: irr. rep. of H
trivial on Z

(dim ρ)2 +
∑

ρ: irr. rep. of H
non-trivial on Z

(dim ρ)2.

Since H/Z is abelian, the first term is simply given by |H/Z| = p2d+r. On
the other hand, by noting that dim(IndHH′(χ′))2 = p2d and that the number
of characters of Z(H) non-trivial on Z is given by pr(p− 1), we see that the
second term is bounded below by p2d+r(p − 1). Thus we get |H| ≥ p2d+r+1.
However, we already know that |H| = p2d+r+1. Therefore, we conclude that
the representations IndHH′(χ′) exhausts all irreducible representations of H
whose restrictions to Z are non-trivial.
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O Swanovim eksponentima simetričnih i anti-simetričnih kvadrata
Galoisovih reprezentacija

Guy Henniart i Masao Oi

Sažetak. Neka je F lokalno nearhimedsko polje i E konačno
Galoisovo proširenje polja F , čija je Galoisova grupa G. Ako
je ρ reprezentacija grupe G na kompleksnom vektorskom pros-
toru V , onda možemo komponirati ρ s bilo kojom tenzorskom
operacijom R na V . Na taj način dobijemo novu reprezentaciju
R ◦ ρ. U ovom radu proučavamo odnos izmedu Swanovih eks-
ponenata Sw(ρ) i Sw(R ◦ ρ). Posebno diskutiramo slučaj kada
je R simetrični ili antisimetrični kvadrat. Ovi slučajevi su od
posebnog interesa u lokalnoj Langlandsovoj korespondenciji ras-
cjepivih klasičnih grupa definiranih nad F , preko slutnje o for-
malnim stupnjevima. Vezano za to, dajemo eksplicitan opis Lang-
landsovog parametra jednostavnih kuspidalnih reprezentacija. Za
ireducibilnu reprezentaciju ρ, glavni rezultati ovog rada odreduju
Sw(Sym2 ρ) i Sw(∧2ρ) iz Sw(ρ) kada je rezidualna karakteristika
p polja F neparna, a u slučaju p = 2 ograničava ih u terminima of
Sw(ρ). U posljednjem slučaju dajemo i slutnju koja sadrži bolju
ogradu za koju dajemo neke argumente za istinitost.
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